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Since its discovery, the quantum entanglement becomes a promising resource in quantum communication and computation. How-
ever, the entanglement is fragile due to the presence of noise in quantum channels. Entanglement purification is a powerful tool to
distill high quality entangled states from the low quality entangled states. In this review, we present an overview of entanglement
purification, including the basic entanglement purification theory, the entanglement purification protocols (EPPs) with linear op-
tics, EPPs with cross-Kerr nonlinearities, hyperentanglement EPPs, deterministic EPPs, and measurement-based EPPs. We also
review experimental progress of EPPs in linear optics. Finally, we give the discussion on potential outlook for the future devel-
opment of EPPs. This review may pave the way for practical implementations in future long-distance quantum communication
and quantum network.
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1 Introduction

Quantum entanglement is a counterintuitive phenomenon
which leads quantum mechanics to be different from clas-
sical one and it is a central resource in quantum information
processing such as quantum key distribution (QKD) [1-5],
quantum secret sharing (QSS) [6, 7], quantum secure di-
rect communication (QSDC) [8-23], quantum teleportation
[24-27], quantum computation [28-31], and quantum net-
work [32-36]. However, the inherent noise of quantum chan-
nels and the imperfect operations will lead to the maximal
entangled states degrade into the low quality mixed states
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[37]. All of these defects limit the applications of quantum
entanglement and degrade the performance of quantum in-
formation processing.

To obtain the high-quality entanglement, one can use
some methods such as the high-fidelity entanglement gener-
ation [38-42], quantum error correction codes (QECCs) [43-
50], and entanglement purification protocols (EPPs) [51-89].
However, the imperfections in physical devices will reduce
the quality of entanglement. It is still fragile during en-
tanglement distribution over noisy channels. Additionally,
the QECC is generally adopted to prevent unknown states
from being damaged [82,83]. Moreover, the requirements of
the QECC are strict and the error tolerance threshold of this
method is rather low [82, 83]. By contrast, the target entan-

https://doi.org/10.1007/s11433-022-2065-x
phys.scichina.com
springerlink.bibliotecabuap.elogim.com
https://doi.org/10.1007/s11433-022-2065-x
mailto:{shengyb@njupt.edu.cn}


P.-S. Yan, et al. Sci. China-Phys. Mech. Astron. May (2023) Vol. 66 No. 5 250301-2

gled state of EPPs is known [82, 83] and the error tolerance
threshold is higher than that of QECC [87,88]. Furthermore,
the EPP is a powerful tool to distill fewer high-quality entan-
gled states from a large number of less-quality copies with
local operations and classical communication [51], which is
a key role in quantum repeater because it determines the com-
munication efficiency in long-distance quantum communica-
tion [37, 90-94] and quantum network [95-97].

In this review, we focus on the development of EPPs. We
review the conventional EPPs based on the controlled-not
(CNOT) gates or similar logical operations for bipartite sys-
tems in sect. 2. Then, we introduce some EPPs for mul-
tipartite systems in sect. 3. In sect. 4, the hyperentangle-
ment EPPs including purification for the polarization degree
of freedom (DOF) using other DOFs and the EPP for non-
local hyperentangled systems will be introduced. In sect. 5,
we introduce a novel EPP named measurement-based EPP
(MBEPP). In sect. 6, we discuss some possible future devel-
opment of EPPs.

2 EPPs based on the CNOT gates or similar log-
ical operations for bipartite systems

In this section, we mainly focus on the EPPs based on the
CNOT gates or similar logical operations for bipartite sys-
tems. The first EPP was proposed by Bennett et al. [51],
in which the CNOT gates are acted on two identical Werner
states. After performing the CNOT operations, the source
pair is retained if the measurement outcomes of the target
pair are the same. Otherwise, one can discard the source
pair. In this way, the high-quality entangled state is ob-
tained provided that the initial fidelity is larger than 0.5. Se-
quently, Deutsch et al. [52] extended the EPP to the case
of arbitrary mixed states thereby improving efficiency of the
EPP. In 2001, Pan et al. [53] proposed an efficient EPP to
purify mixed states with ideal sources in linear optics. In
2003, Pan et al. [54] performed the first entanglement purifi-
cation experiment using spontaneous parametric down con-
version (SPDC) sources. In 2008, Maruyama et al. [56]
used two-spin operations for an isotropic Heisenberg inter-
action to realize CNOT gate to purify the polluted entan-
glement. In the same year, Sheng et al. [58] proposed
an efficient polarization-entanglement purification protocol
based on the SPDC sources with the cross-kerr nonlinear-
ity. In 2011, Wang et al. [61] proposed an EPP to purify
the electron-spin entanglement. Subsequently, they investi-
gated the hybrid-EPP in the coupling systems [62]. In 2013,
Sheng et al. [63] proposed the hybrid-EPP for the hybrid
entanglement in linear optics. In 2015, Wang et al. [64] re-
sorted a parity-checking and qubit amplifying (PCQA) gate

in linear optics to against the transmission loss and the de-
coherence in a high-efficient method. In 2017, Zhang et al.
[69] investigated an EPP for nonlocal microwave photons by
employing the cross-Kerr effect in circuit quantum electro-
dynamics. In the same year, a nested EPP for quantum re-
peater was experimentally reported, which not only enlarges
the communication distance but also eliminates the double-
pair emissions from the SPDC sources [70]. In ref. [73], an
efficient EPP for d-level systems was proposed and the ro-
bustness and efficiency of the EPP will be improved with an
increased dimension. In 2020, Zhou et al. [75] discussed
the EPP with non-identical mixed states. They found that
the discarding components in the conventional EPPs [51, 52]
may have residual entanglement and can be reused in a next
round, which increases the efficiency of entanglement purifi-
cations.

In this section, we mainly introduce the original EPP based
on the CNOT gates [51] and the EPP based on the polariza-
tion beam splitters (PBSs) [53]. Additionally, we will also
review experimental EPPs in linear optics [54, 70].

2.1 The EPP based on the CNOT gates

We describe the first EPP based on the CNOT gates [51].
Suppose that Alice and Bob intend to share the state |ϕ+n ⟩ab,
which is one of the four Bell states

|ϕ±n ⟩ab =
1
√

2
(|0⟩a|0⟩b ± |1⟩a|1⟩b),

|ψ±n ⟩ab =
1
√

2
(|0⟩a|1⟩b ± |1⟩a|0⟩b).

(1)

However, the maximally entangled state will collapse to the
mixed state due to the inherent noise in quantum channels,
yielding

ρab =F|ϕ+n ⟩ab⟨ϕ+n | + A|ϕ−n ⟩ab⟨ϕ−n |
+ B|ψ+n ⟩ab⟨ψ+n | +C|ψ−n ⟩ab⟨ψ−n |, (2)

where F + A + B + C = 1. Any mixed state likes eq. (2)
can be transformed to the Werner state by the combinations
of bilateral rotations and unilateral rotations. Thus, we can
obtain

ρ′ab =F|ϕ+n ⟩ab⟨ϕ+n | +
1 − F

3
(|ϕ−n ⟩ab⟨ϕ−n |

+ |ψ+n ⟩ab⟨ψ+n | + |ψ−n ⟩ab⟨ψ−n |). (3)

As shown in Figure 1, two noisy copies ρa1b1 and ρa2b2 with
the same form as eq. (3) are required to perform the purifi-
cation. The whole system ρa1b1 ⊗ ρa2b2 can be described as
follows. It is in the state |ϕ+n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 with the probabil-
ity of F2. With an equal probability of (1−F)2

9 , the system is in
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|ϕ−n ⟩a1b1 ⊗ |ϕ−n ⟩a2b2 , |ψ+n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 , and |ψ−n ⟩a1b1 ⊗ |ψ−n ⟩a2b2 .
For the other cases, the whole system is in the cross combi-
nations with a specific probability.

As depicted in Figure 1, the photon pair a1b1 is the source
pair and a2b2 is the target pair. After passing through the
CNOT gates, the target qubit remains unchanged if the con-
trol qubit is |0⟩. If the control qubit is |1⟩, the bit-flip opera-
tion should be taken place on the target qubit, i.e., |0⟩ ↔ |1⟩.
Thus, the initial photon pairs a1b1 and a2b2 will become

|ϕ±n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 → |ϕ±n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 ,

|ϕ±n ⟩a1b1 ⊗ |ϕ−n ⟩a2b2 → |ϕ∓n ⟩a1b1 ⊗ |ϕ−n ⟩a2b2 ,

|ϕ±n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 → |ϕ±n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 ,

|ϕ±n ⟩a1b1 ⊗ |ψ−n ⟩a2b2 → |ϕ∓n ⟩a1b1 ⊗ |ψ−n ⟩a2b2 ,

|ψ±n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 → |ψ±n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 ,

|ψ±n ⟩a1b1 ⊗ |ϕ−n ⟩a2b2 → |ψ∓n ⟩a1b1 ⊗ |ψ−n ⟩a2b2 ,

|ψ±n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 → |ψ±n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 ,

|ψ±n ⟩a1b1 ⊗ |ψ−n ⟩a2b2 → |ψ∓n ⟩a1b1 ⊗ |ϕ−n ⟩a2b2 .

(4)

Then, one can measure the target pair with the Z-basis. If
the measurement outcomes of Alice and Bob are the same,
it indicates a successful purification. Therefore, we retain
the source pair. Otherwise, the source pair will be discarded.
Hence, the new mixed state can be written as:

ρ′′ab =A1|ϕ+n ⟩ab⟨ϕ+n | + B1|ϕ−n ⟩ab⟨ϕ−n |
+C1(|ψ+n ⟩ab⟨ψ+n | + |ψ−n ⟩ab⟨ψ−n |), (5)

where A1 =
1
N [F2 + 1

9 (1 − F)2], B1 =
2

3N F(1 − F), C1 =
2

9N (1 − F)2 and N = F2+ 5
9 (1 − F)2+ 2

3N F(1−F). If F > 0.5,
the fidelity of the resultant state is higher than that of initial
one. After one round of this EPP, the rate of bit-flip errors is
reduced simultaneously improving the rate of phase-flip er-
rors. To address this issue, bilateral and unilateral rotations
should be acted on qubits to transform the state as eq. (5)
to the Werner state before each round of purification. As a
result, the efficiency of the EPP based on the CNOT gates is
rather low [51]. To this end, Deutsch et al. [52] added unitary
operations to the input state such as:

|0⟩a →
1
√

2
(|0⟩a − i|1⟩a),

|1⟩a →
1
√

2
(|1⟩a − i|0⟩a),

|0⟩b →
1
√

2
(|0⟩b + i|1⟩b),

|1⟩b →
1
√

2
(|1⟩b + i|0⟩b).

(6)

Subsequently, the next step as ref. [51] can be adopted. In
this way, this EPP enables to purify the arbitrary mixed states
and the efficiency of the EPP can be significantly enhanced.

2.2 The EPP based on the PBSs

It is known that a deterministic CNOT gate is hard to be re-
alized in linear optics, which seems to an obstacle for entan-
glement purification. To solve this problem, the first EPP in
linear optics was proposed in 2001 [53], which used the PBS
to play a role of the CNOT gate between the polarization and
the spatial mode. Consequently, one can merely employ the
PBSs to carry out the purification instead of the CNOT gates.
This EPP requires each of output modes precisely contains
one photon, named “four mode” case, to herald a successful
purification. Let’s suppose that the initial mixed state is

ρ′′′ab = F|ϕ+⟩ab⟨ϕ+| + (1 − F)|ψ+⟩ab⟨ψ+|, (7)

where

|ϕ±⟩ab =
1
√

2
(|H⟩a|H⟩b ± |V⟩a|V⟩b),

|ψ±⟩ab =
1
√

2
(|H⟩a|V⟩b ± |V⟩a|H⟩b).

(8)

Here |H⟩ and |V⟩ respectively denote the horizontal polariza-
tion and the vertical polarization of a photon. As shown in
Figure 2, ρ′′′a1b1

⊗ ρ′′′a2b2
is made up of four pure states such

as: |ϕ+⟩a1b1 ⊗ |ϕ+⟩a2b2 , |ϕ+⟩a1b1 ⊗ |ψ+⟩a2b2 , |ψ+⟩a1b1 ⊗ |ϕ+⟩a2b2 ,
and |ψ+⟩a1b1 ⊗ |ψ+⟩a2b2 with the probability of F2, F(1 − F),
(1 − F)F, and (1 − F)2, separately. After the PBSs, the state

0/1

Alice Bob

Classical communication

S1

S2

a1 b1

a2 b2
0/1

Figure 1 (Color online) The schematic diagram of the EPP based on the
CNOT gates [51]. Two sources S 1 and S 2 generate two pairs of entangle-
ment. We assume that a1b1 (a2b2) is control pair (target pair). After the
CNOT gates, if the control qubit is |0⟩, the target qubit remains unchanged.
If the control qubit is |1⟩, it is essential to perform bit-flip operation on the
target qubit, i.e., |0⟩ ↔ |1⟩. Subsequently, the target pair is measured with the
Z-basis and the source pair will be retained as long as the same measurement
outcome is obtained. Otherwise, we discard the source pair.

S1

S2

a1 b1

a2 b2

a3

a4

b3

b4
PBS PBS+/- +/-

Figure 2 (Color online) The schematic diagram of the EPP based on the
PBSs [53]. The PBS totally transmits the photon in polarization |H⟩ and
reflects the photon in polarization |V⟩. The successful purification requires
each output mode a3, b3, a4, and b4 precisely contains one photon, which is
named “four mode” case. Then, one needs to measure the photons in modes
a4 and b4 with the basis {|+⟩, |−⟩}, where |±⟩ = 1√

2
(|H⟩ ± |V⟩). Finally, the

fidelity of mixed state can be increased.
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|ϕ+⟩a1b1 ⊗ |ϕ+⟩a2b2 evolves to

|ϕ+⟩a1b1 ⊗ |ϕ+⟩a2b2

→ 1
2

(|H⟩a3 |H⟩b3 |H⟩a4 |H⟩b4+|H⟩a4 |H⟩b4 |V⟩a4 |V⟩b4

+ |V⟩a3 |V⟩b3 |H⟩a3 |H⟩b3+|V⟩a3 |V⟩b3 |V⟩a4 |V⟩b4 ). (9)

Obviously, the two items |H⟩a3 |H⟩b3 |H⟩a4 |H⟩b4 and
|V⟩a3 |V⟩b3 |V⟩a4 |V⟩b4 make each of output modes contain one
photon. While the other components |H⟩a3 |H⟩b3 |V⟩a4 |V⟩b4

and |V⟩a3 |V⟩b3 |H⟩a4 |H⟩b4 fail to satisfy the “four mode” case.
Thus, they can be washed out automatically. Then, we utilize
the basis {|+⟩, |−⟩} to measure the photons in modes a4 and
b4. If the measurement results are |+⟩|+⟩ or |−⟩|−⟩, the re-
sultant state is |ϕ+⟩a3b3 . If the measurement results are |+⟩|−⟩
or |−⟩|+⟩, the resultant state is |ϕ−⟩a3b3 . In this case, an ad-
ditional phase-flip operation σz = |H⟩⟨H| − |V⟩⟨V | should
be performed on one of two photons. With the same prin-
ciple, the state |ψ+⟩a1b1 ⊗ |ψ+⟩a2b2 collapses to |ψ+⟩a3b3 after
measuring the photons in modes a4 and b4. However, the
cross combinations |ϕ+⟩a1b1 ⊗ |ψ+⟩a2b2 and |ψ+⟩a1b1 ⊗ |ϕ+⟩a2b2

can be removed automatically because they only satisfy the
“three-mode” case. For instance,

|ϕ+⟩a1b1 ⊗ |ψ+⟩a2b2

→ 1
2

(|H⟩a3 |H⟩a4 |H⟩b4 |V⟩b4+|H⟩a4 |V⟩a4 |H⟩b4 |H⟩b3

+|H⟩a3 |V⟩a3 |V⟩b3 |V⟩b4+|V⟩a3 |V⟩a4 |V⟩b3 |H⟩b3 ), (10)

which shows that the items of eq. (10) lead to the coincidence
detections on a3a4b4 or b3a4b4 or a3b3b4 or a3b3a4, indicat-
ing the “three-mode” case. Hence, it can be automatically
eliminated. Consequently, we can obtain a new mixed state
written as:

ρa3b3 = F1|ϕ+⟩a3b3⟨ϕ+| + (1 − F1)|ψ+⟩a3b3⟨ψ+|, (11)

with the fidelity F1 =
F2

F2+(1−F)2 . The success probability of

this EPP is F2+(1−F)2

2 .
The EPP in ref. [53] is designed for the ideal entangle-

ment sources. However, the current available entanglement
source such as the SPDC source works in a probability way
and it seems that the SPDC source is unsuitable for entan-
glement purification. Interestingly, the SPDC source is not
an obstacle to be implemented for entanglement purification
[54]. The schematic diagram is depicted in Figure 3. The
pump pulse passes through the beta barium borate (BBO1)
and generates the state as [55]:

|Φ+⟩ = |vac⟩ + √p|ϕ+⟩ + p|ϕ+⟩⊗2, (12)

which is entangled in modes a1b1. Additionally, the pulse
is reflected by a mirror to pass through the BBO1 again to

produce the entanglement in modes a2b2 like eq. (12). The
bit-flip error occurs on the desired state with the probabil-
ity of 1 − F during the entanglement distribution, yielding a
mixed state as:

ρ′ = F|Φ+⟩⟨Φ+| + (1 − F)|Ψ+⟩⟨Ψ+|, (13)

with

|Ψ+⟩ = |vac⟩ + √p|ψ+⟩ + p|ψ+⟩⊗2. (14)

In this EPP, the “four mode” case is also used to herald a
successful purification. Two photon state that both SPDC
sources emit single-pair entanglement can be washed out.
Each SPDC source emits single-pair entanglement, which is
the same as ref. [53]. Thus, we only analyze the double-pair
emissions generated from one SPDC source and the other one
SPDC source emits the vacuum state in the following parts.

For the state |ϕ+⟩⊗2
a1b1

, it remains unchanged with the prob-
ability of F p2 and becomes |ψ+⟩⊗2

a1b1
with the probability of

(1 − F)p2. Hence, after passing through the PBSs, the state
|ϕ+⟩⊗2

a1b1
and |ψ+⟩⊗2

a1b1
will separately evolve to

1
2

(|H⟩a4 |H⟩a4 |H⟩b4 |H⟩b4 + |V⟩a3 |H⟩a4 |V⟩b3 |H⟩b4

+ |V⟩a3 |H⟩a4 |V⟩b3 |H⟩b4 + |V⟩a3 |V⟩a3 |V⟩b3 |V⟩b3 ), (15)

and

1
2

(|H⟩a4 |H⟩a4 |V⟩b3 |V⟩b3 + |V⟩a3 |H⟩a4 |V⟩b3 |H⟩b4

+ |V⟩a3 |H⟩a4 |V⟩b3 |H⟩b4 + |V⟩a3 |V⟩a3 |H⟩b4 |H⟩b4 ). (16)

It is clear to observe that the item |V⟩a3 |H⟩a4 |V⟩b3 |H⟩b4 makes
each one of output modes contain one photon. Similarly, the
photons of the states |ϕ+⟩⊗2

a2b2
and |ψ+⟩⊗2

a2b2
after the PBSs may

also result in the “four mode” case. Moreover, one can make
|V⟩a3 |H⟩a4 |V⟩b3 |H⟩b4 and |H⟩a3 |V⟩a4 |H⟩b3 |V⟩b4 in a coherent
superposition provided that the amplitudes of these two “four
mode” contributions simultaneously arrive at two PBSs. Fi-
nally, we use the basis {|+⟩, |−⟩} to measure the photons in
modes a4 and b4, yielding

ρ′a3b3
= F2|ϕ+⟩a3b3⟨ϕ+| + (1 − F2)|ψ+⟩a3b3⟨ψ+|. (17)

In ref. [54], the initial fidelity of the mixed state is 3/4.

a1 b1

a2 b2

a3

a4

b3

b4
PBS PBS

Mirror

BBO
1

Figure 3 (Color online) The schematic diagram of the EPP based on the
SPDC source in linear optics [54]. The BBO means the beta barium borate.
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After one round of the successful purification, the fidelity can
reach 13/14. So far, we have reviewed the experiment of the
EPP based on the PBSs. In addition to the purification ex-
periments in optical system, some groups also carried out the
EPP experiments in the atomic systems [57], the solid-states
[72] and the superconducting systems [86], respectively.

2.3 The nested EPP for quantum repeater

The EPP determines the efficiency of long-distance quantum
communication. Consequently, Chen et al. [70] experimen-
tally realized the nested entanglement purification for quan-
tum repeater in linear optics, in which the double-pair noise
from the SPDC sources can be removed by entanglement
swapping. The four photon pairs such as 1 and 2, 3 and 4,
5 and 6, 7 and 8 have the same form as eq. (12), which
are produced from the SPDC sources. After performing the
entanglement swapping and selecting the case that the coin-
cidence detections on T1 and T2 or R1 and R2 as depicted in
Figure 4(a), the state |Φ⟩12 ⊗ |Φ⟩34 evolves to

|ϕ14⟩ =
p
2

(|H⟩1|H⟩4 + |V⟩1|V⟩4 + |H⟩1|H⟩1

− |V⟩1|V⟩1 + |H⟩4|H⟩4 − |V⟩4|V⟩4), (18)

which automatically washes out spurious contributions re-
sulted from the double-pair emissions. Similarly, if the co-
incidence detections on T3 and T4 or R3 and R4, indicating

BBO1

PBS1

CPBS1 CPBS2

BBO2

T1(3) R1(3) R2(4) T2(4)

1 42 3

Mixed state

Mixed state

PBS3 PBS4

1 4

85

a3 b3

a4 b4

(5) (6) (7) (8)(a)

(b)

Figure 4 (Color online) The schematic diagram of the nested EPP for quan-
tum repeater [70]. (a) The pump pulses pass through the BBO1 and BBO2

to generate the entanglement between the photons 1 and 2 (5 and 6), 3 and 4
(7 and 8). Subsequently, the entanglement swapping operations between the
photons 2 and 3, 6 and 7 are respectively performed to eliminate the double-
pair emissions from the SPDC sources provided that we pick out the case
that coincidence detections on T1 and T2 or R1 and R2 (T3 and T4 or R3 and
R4). (b) The photons 1 and 4, 5 and 8 are directed to the PBSs. Moreover,
we select the “four mode” case that each of output modes a3, a4, b3, and
b4 contain one photon. Finally, measurements in modes a4 and b4 with the
basis {|+⟩, |−⟩} make a projection into a high-quality entanglement. The cir-
cular PBS (CPBS) transmits the polarization |+⟩ and reflects the photon in
polarization |−⟩.

that the state |Φ⟩56 ⊗ |Φ⟩78 collapses to

|ϕ58⟩ =
p
2

(|H⟩5|H⟩8 + |V⟩5|V⟩8 + |H⟩5|H⟩5

− |V⟩5|V⟩5 + |H⟩8|H⟩8 − |V⟩8|V⟩8). (19)

The noise in quantum channels makes the state |ϕi,i+3⟩ (i =
1, 5) become a mixed state written as:

ρi,i+3 = F|ϕi,i+3⟩⟨ϕi,i+3| + (1 − F)|ψi,i+3⟩⟨ψi,i+3|, (20)

with

|ψi,i+3⟩ =
p
2

(|HV⟩i,i+3 + |VH⟩i,i+3 + |HH⟩i,i

− |VV⟩i,i + |VV⟩i+3,i+3 − |HH⟩i+3,i+3). (21)

Then, the same method as refs. [53, 54] can be performed in
a next step, i.e., the “four mode” case. Finally, the new mixed
state with a higher fidelity can be obtained as the same form
of eq. (11).

3 The EPP for multipartite systems

This section provides an overview of the EPPs for multipar-
tite systems. The first EPP for Greenberg-Horne-Zeilinger
(GHZ) states was presented by Murao et al. [98] in 1998,
named MMEPP. In refs. [99-101], Dür et al. presented a pro-
posal to purify arbitrary two-colorable graph states including
cluster states, GHZ states, and various error correcting codes.
In ref. [102], Sheng et al. used cross-Kerr nonlinearities
to construct nondestructive quantum nondemolition (QND)
instead of the CNOT gates and sophisticated single-photon
detectors to purify the polluted GHZ states. For simplicity,
we call it SMEPP. After that, Deng [103] further proposed a
high-efficient EPP named DMEPP for the multipartite entan-
glement including two steps. The first step is the same as the
SMEPP. The second step reuses the discarding items in the
SMEPP to generate entanglement. Recently, de Bone et al.
[104] presented a proposal to create and distill the GHZ states
from the noisy Bell states. They employed a dynamic pro-
gramming algorithm to minimize the consumed Bell states
to perform creation and purification.

The remainder of this section will mainly review the
MMEPP based on the CNOT gates [98] as well as the
SMEPP using the QND [102] and the high-efficient DMEPP
[103].

3.1 The MMEPP based on the CNOT gates

The schematic diagram of the MMEPP [98] is depicted in
Figure 5, which is made up of two parts that P1 and P2 re-
spectively denote the corrections for phase-flip errors and bit-
flip errors. Additionally, each party holds the same setup
as Figure 5. Now, let’s take three-particle GHZ states as an
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Figure 5 (Color online) The schematic diagram of the MMEPP [98]. This
EPP can be divided into two steps such as P1 correction for phase-flip errors
and P2 correction for bit-flip errors. Each round of this EPP requires four
pairs of entangled states. The H denotes the Hadamard gate.

example to briefly illustrate the principle of this MMEPP. As-
sume that the desired state is |ϕ+0 ⟩abc, which is one of eight
GHZ states as the form of

|ϕ±0 ⟩abc =
1
√

2
(|000⟩abc ± |111⟩abc),

|ϕ±1 ⟩abc =
1
√

2
(|100⟩abc ± |011⟩abc),

|ϕ±2 ⟩abc =
1
√

2
(|010⟩abc ± |101⟩abc),

|ϕ±3 ⟩abc =
1
√

2
(|001⟩abc ± |110⟩abc).

(22)

Due to the inherent noise in quantum channels, the bit-flip
errors and phase-flip errors will occur on the initial state. For
simplicity, we first consider that the phase-flip error occurs
on the first particle with the probability of 1 − F, yielding

ρ′′p = F|ϕ+0 ⟩abc⟨ϕ+0 | + (1 − F)|ϕ−0 ⟩abc⟨ϕ−0 |. (23)

After performing the Hadamard operations, the states |ϕ+0 ⟩abc

and |ϕ−0 ⟩abc separately become

|ψ+0 ⟩abc =
1
2

(|000⟩ + |011⟩ + |101⟩ + |110⟩),

|ψ−0 ⟩abc =
1
2

(|001⟩ + |010⟩ + |100⟩ + |111⟩).
(24)

In this way, the phase-flip error has been transformed to the
bit-flip error as:

ρ′′b = F|ψ+0 ⟩abc⟨ψ+0 | + (1 − F)|ψ−0 ⟩abc⟨ψ−0 |. (25)

After passing through the CNOT gates, we have

|ψ+0 ⟩a1b1c1 |ψ+0 ⟩a2b2c2 → |ψ+0 ⟩a1b1c1 |ψ+0 ⟩a2b2c2 ,

|ψ+0 ⟩a1b1c1 |ψ−0 ⟩a2b2c2 → |ψ+0 ⟩a1b1c1 |ψ−0 ⟩a2b2c2 ,

|ψ−0 ⟩a1b1c1 |ψ+0 ⟩a2b2c2 → |ψ−0 ⟩a1b1c1 |ψ−0 ⟩a2b2c2 ,

|ψ−0 ⟩a1b1c1 |ψ−0 ⟩a2b2c2 → |ψ−0 ⟩a1b1c1 |ψ+0 ⟩a2b2c2 .

(26)

Then, by measuring the particles in the modes a2, b2, and c2,
we retain the source pair if the even number of |1⟩ is obtained.
Otherwise, we discard the source pair. Consequently, a new
mixed state can be given by

ρa1b1c1 = F1|ψ+0 ⟩a1b1c1⟨ψ+0 | + (1−F1)|ψ−0 ⟩a1b1c1⟨ψ−0 |. (27)

By adding the Hadamard operations on the particles in modes
a1b1c1, we can respectively transform the state |ψ+0 ⟩a1b1c1 and
|ψ−0 ⟩a1b1c1 to |ϕ+0 ⟩a1b1c1 and |ϕ−0 ⟩a1b1c1 .

For the bit-flip error, one can use P2 to directly purify it.
Suppose that the mixed state is

ρ′′ = F|ϕ+0 ⟩abc⟨ϕ+0 | + (1 − F)|ϕ+1 ⟩abc⟨ϕ+1 |. (28)

After performing the CNOT operations, one can obtain

|ϕ+0 ⟩a1b1c1 |ϕ+0 ⟩a2b2c2 → |ϕ+0 ⟩a1b1c1 |ϕ+0 ⟩a2b2c2 ,

|ϕ+0 ⟩a1b1c1 |ϕ+1 ⟩a2b2c2 → |ϕ+0 ⟩a1b1c1 |ϕ+1 ⟩a2b2c2 ,

|ϕ+1 ⟩a1b1c1 |ϕ+0 ⟩a2b2c2 → |ϕ+1 ⟩a1b1c1 |ϕ+1 ⟩a2b2c2 ,

|ϕ+1 ⟩a1b1c1 |ϕ+1 ⟩a2b2c2 → |ϕ+1 ⟩a1b1c1 |ϕ+0 ⟩a2b2c2 .

(29)

If the same measurement result is obtained, we remain the
source pair. Otherwise, we discard the source pair. By far,
we have briefly introduced the MMEPP [98] for the three-
particle GHZ states and the similar analysis can be extended
to the arbitrary multipartite GHZ states.

3.2 The SMEPP based on the QND

The principle of the SMEPP [102] based on the QND is de-
picted in Figure 6. The QND as shown in Figure 7 not only
plays the role of the CNOT gate but also single-photon mea-
surement. To be specific, if two photons are in |HH⟩ or |VV⟩,
the phase shift carried by the coherent state is θ. If they are
in |HV⟩ or |VH⟩, the phase shift carried by the coherent state
is 2θ or 0, respectively.

We first illustrate the principle of correction for bit-flip er-
rors such as Pb. The mixed state is given by

ρb
a1b1c1

= F|ϕ+4 ⟩a1b1c1⟨ϕ+4 | + (1 − F)|ϕ+5 ⟩a1b1c1⟨ϕ+5 |, (30)

where

|ϕ±4 ⟩abc =
1
√

2
(|HHH⟩abc ± |VVV⟩abc),

|ϕ±5 ⟩abc =
1
√

2
(|VHH⟩abc ± |HVV⟩abc),

|ϕ±6 ⟩abc =
1
√

2
(|HVH⟩abc ± |VHV⟩abc),

|ϕ±7 ⟩abc =
1
√

2
(|VVH⟩abc ± |HHV⟩abc).

(31)

After passing through the QND, three parties pick out the
cases that the phase shifts of their coherent states are θ, this
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Figure 6 (Color online) The schematic diagram of the SMEPP [102]. Pb

is the setup for correcting bit-flip errors and Pf is the setup for correcting
phase-flip errors. The QND is shown in Figure 7.
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Figure 7 (Color online) The schematic diagram of QND [102] in Figure 6.
This QND can deterministically distinguish |HH⟩ and |VV⟩ from |HV⟩ and
|VH⟩.

makes the states |ϕ+4 ⟩a1b1c1⊗|ϕ+4 ⟩a2b2c2 and |ϕ+5 ⟩a1b1c1⊗|ϕ+5 ⟩a2b2c2

project into

|ϕ4⟩ =
1
√

2
(|HHHHHH⟩ + |VVVVVV⟩)a1b1c1a2b2c2 , (32)

and

|ϕ5⟩ =
1
√

2
(|VHHVHH⟩ + |HVVHVV⟩)a1b1c1a2b2c2 , (33)

with the probability of F2

2 and (1−F)2

2 , respectively. Moreover,
the cross combinations |ϕ+4 ⟩a1b1c1 ⊗ |ϕ+5 ⟩a2b2c2 and |ϕ+5 ⟩a1b1c1 ⊗
|ϕ+4 ⟩a2b2c2 can be discarded according to the results of the X
homodyne measurements. After that, adding the Hadamard
operations on the photons in modes a2b2c2 followed by mea-
suring these photons with the Z-basis, one can get a new
mixed state with the fidelity of F1 provided that the num-
ber of |V⟩ is even. While if it is odd, an additional phase-flip
operation should be performed on one of the photons. If the
phase-flip error occurs, the mixed state is

ρ
p
abc = F|ϕ+4 ⟩abc⟨ϕ+4 | + (1 − F)|ϕ−4 ⟩abc⟨ϕ−4 |. (34)

After performing the Hadamard operations, ρp
abc becomes

|ψ+4 ⟩abc =
1
2

(|HHH⟩ + |HVV⟩ + |VHV⟩ + |VVH⟩),

|ψ−4 ⟩abc =
1
2

(|HHV⟩ + |HVH⟩ + |VHH⟩ + |VVV⟩).
(35)

Then the same method as Pb can be done in a next step.
The success probability of the SMEPP based on the QND

is F2+(1−F)2

2 . However, if we make θ = π, the 2θ and 0 can
not be distinguished. Hence, the discarding components of
|ϕ+4 ⟩a1b1c1 ⊗ |ϕ+4 ⟩a2b2c2 and |ϕ+5 ⟩a1b1c1 ⊗ |ϕ+5 ⟩a2b2c2 can contribute
to the SMEPP. As a result, the efficiency of the SMEPP can
be doubled provided that θ = π.

3.3 The high-efficient DMEPP

In 2011, Deng [103] proposed a high-efficient DMEPP
scheme for the multipartite entanglement including two
steps. The first step is the same as the SMEPP in ref. [102].
The second step reuses the discarding items in the SMEPP to
produce entanglement. For example, the DMEPP considered
a general mixed state given by

ρ′′′ =F|ϕ+4 ⟩abc⟨ϕ+4 | + F0|ϕ+5 ⟩abc⟨ϕ+5 |
+ F2|ϕ+6 ⟩abc⟨ϕ+6 | + F3|ϕ+7 ⟩abc⟨ϕ+7 |. (36)

After performing the first step of the DMEPP, a new mixed
state can be obtained as:

ρ′′′1 =F′|ϕ+4 ⟩abc⟨ϕ+4 | + F′0|ϕ+5 ⟩abc⟨ϕ+5 |
+ F′2|ϕ+6 ⟩abc⟨ϕ+6 | + F′3|ϕ+7 ⟩abc⟨ϕ+7 |, (37)

with F′ = F2

N , F′0 =
F2

0
N , F′2 =

F2
2

N , and F′3 =
F2

3
N , where

N = F2 + F2
0 + F2

2 + F2
3 .

In the second step, the discarding items can be reused
to generate the GHZ states. Here we take |ϕ+4 ⟩abc|ϕ+6 ⟩abc,
|ϕ+6 ⟩abc|ϕ+4 ⟩abc, |ϕ+5 ⟩abc|ϕ+7 ⟩abc, and |ϕ+7 ⟩abc|ϕ+5 ⟩abc as examples
to illustrate the principle of the second step. If the measure-
ment outcomes of Alice, Bob, and Charlie are even mode,
odd mode, and even mode, |ϕ+4 ⟩abc|ϕ+6 ⟩abc, |ϕ+6 ⟩abc|ϕ+4 ⟩abc,
|ϕ+5 ⟩abc|ϕ+7 ⟩abc, and |ϕ+7 ⟩abc|ϕ+5 ⟩abc separately evolve to

ξ1 =
1
√

2
(|HHH⟩a1b1c1 |HVH⟩a2b2c2 + |VVV⟩a1b1c1 |VHV⟩a2b2c2 ),

ξ2 =
1
√

2
(|HVH⟩a1b1c1 |HHH⟩a2b2c2 + |VHV⟩a1b1c1 |VVV⟩a2b2c2 ),

ζ1 =
1
√

2
(|VHH⟩a1b1c1 |VVH⟩a2b2c2 + |HVV⟩a1b1c1 |HHV⟩a2b2c2 ),

ζ2 =
1
√

2
(|HHV⟩a1b1c1 |HVV⟩a2b2c2 + |VVH⟩a1b1c1 |VHH⟩a2b2c2 ),

(38)

with the probability of FF2
2 , FF2

2 , F0F3
2 , and F0F3

2 . Similarly,
if the measurement outcomes are odd mode, even mode, and
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odd mode, they collapse to

ξ3 =
1
√

2
(|HHH⟩a1b1c1 |VHV⟩a2b2c2

+ |VVV⟩a1b1c1 |HVH⟩a2b2c2 ),

ξ4 =
1
√

2
(|HVH⟩a1b1c1 |VVV⟩a2b2c2

+ |VHV⟩a1b1c1 |HHH⟩a2b2c2 ),

ζ3 =
1
√

2
(|VHH⟩a1b1c1 |HHV⟩a2b2c2

+ |HVV⟩a1b1c1 |VVH⟩a2b2c2 ),

ζ4 =
1
√

2
(|HHV⟩a1b1c1 |VHH⟩a2b2c2

+ |VVH⟩a1b1c1 |HVV⟩a2b2c2 ),

(39)

with the probability of FF2
2 , FF2

2 , F0F3
2 , and F0F3

2 . Subse-
quently, we measure the photons in modes b1, a2, b2, and
c2 with the basis {|+⟩, |−⟩}. If the number of measurement
outcomes |−⟩ is even, we obtain a new mixed state. If the
number of measurement outcomes |−⟩ is odd, it requires an
additional operation σz to be performed on one of the pho-
tons. Hence, we can obtain

ρa1c1 = 2FF2|ϕ+⟩a1c1⟨ϕ+| + 2F0F3|ψ+⟩a1c1⟨ψ+|. (40)

If F > F0 = F2 = F3, we have F
F+F0

> F. Similarly, the
other discarding components such as:

ρa1b1 = 2FF3|ϕ+⟩a1b1⟨ϕ+|+2F0F2|ψ+⟩a1b1⟨ψ+|,
ρb1c1 = 2FF0|ϕ+⟩b1c1⟨ϕ+|+2F2F3|ψ+⟩b1c1⟨ψ+|,

(41)

can be reused to produce entanglement. Interestingly, the
high-fidelity of the GHZ states compared with the initial
one can be produced using these Bell states. For instance,
the system ρa1b1 ⊗ ρa2c2 is made up of four pure states
such as |ϕ+⟩a1b1 |ϕ+⟩a2c2 , |ϕ+⟩a1b1 |ψ+⟩a2c2 , |ψ+⟩a1b1 |ϕ+⟩a2c2 , and
|ψ+⟩a1b1 |ψ+⟩a2c2 with the probability of F2

(F+F0)2 , FF0

(F+F0)2 ,
FF0

(F+F0)2 , and F2
0

(F+F0)2 , respectively. After passing through the
setup shown in Figure 8, if Alice’ s measurement outcome is
in even mode, the four states evolve to

HH

a1

a2

b1

c2

Q

N

D
M

Figure 8 (Color online) The schematic diagram of the second step of the
DMEPP [103].

|Ω1⟩ =
1
√

2
(|HHHH⟩a1b1a2c2 + |VVVV⟩a1b1a2c2 ),

|Ω2⟩ =
1
√

2
(|HHHV⟩a1b1a2c2 + |VVVH⟩a1b1a2c2 ),

|Ω3⟩ =
1
√

2
(|HVHH⟩a1b1a2c2 + |VHVV⟩a1b1a2c2 ),

|Ω4⟩ =
1
√

2
(|HVHV⟩a1b1a2c2 + |VHVH⟩a1b1a2c2 ),

(42)

with the probability of F2

2(F+F0)2 , FF0

2(F+F0)2 , FF0

2(F+F0)2 , and
F2

0

2(F+F0)2 . Otherwise, the four states evolve to

|κ1⟩ =
1
√

2
(|HHVV⟩a1b1a2c2 + |VVHH⟩a1b1a2c2 ),

|κ2⟩ =
1
√

2
(|HHVH⟩a1b1a2c2 + |VVHV⟩a1b1a2c2 ),

|κ3⟩ =
1
√

2
(|HVVV⟩a1b1a2c2 + |VHHH⟩a1b1a2c2 ),

|κ4⟩ =
1
√

2
(|HVVH⟩a1b1a2c2 + |VHHV⟩a1b1a2c2 ),

(43)

with the probability of F2

2(F+F0)2 , FF0

2(F+F0)2 , FF0

2(F+F0)2 , and
F2

0

2(F+F0)2 . Then, after performing the Hadamard operation on
the photon in mode a2 and measuring the photon with the
Z-basis, one can obtain

ρ′a1b1c2
=F′′|ϕ+4 ⟩a1b1c2⟨ϕ+4 | + F′′0 |ϕ+5 ⟩a1b1c2⟨ϕ+5 |
+ F′′2 |ϕ+6 ⟩a1b1c2⟨ϕ+6 | + F′′2 |ϕ+7 ⟩a1b1c2⟨ϕ+7 |, (44)

where F′′ = F2

(F+F0)2 , F′′0 =
F2

0

(F+F0)2 , and F′′2 =
FF0

(F+F0)2 . Here
the fidelity of the resultant state from two pairs of Bell states
F′′ > F if F > 0.25. We consider that F0 = F2 = F3 =

1−F
3 ,

the efficiency of this DMEPP and the conventional EPP for
multiparty systems [98, 102] can be given by 1−2F+4F2

3 and
2−F+2F2

3 , respectively. The fidelity of the conventional MEPP
[98, 102] and the DMEPP can be formulated as 3F2

1−2F+4F2 and
3F2(4+7F−2F2)

(1+2F)2(2−F+2F2)
. Figure 9 plots the curves of efficiency and fi-

delity versus the initial fidelity. It is clear to observe that the
efficiency of the DMEPP [103] outperforms the conventional
MEPP [98, 102] at the cost of fidelity slightly.

4 The hyperentanglement EPP

Hyperentanglement, the simultaneous entanglement in more
than one DOFs, is widely explored in many quantum infor-
mation protocols [105]. For instance, Schuck et al. [106]
reported an experiment that complete polarization Bell-state
analysis (BSA) can be achieved with the help of time-bin en-
tanglement. In 2008, Barreiro et al. [107] employed hyper-
entanglement in polarization-orbital angular momentum to
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Figure 9 (Color online) The fidelities and efficiency of the DMEPP [103]
and the conventional EPP for multiparty systems [98, 102] versus the initial
fidelity. The red and black dotted lines (star lines) represent the efficiency
(fidelities) of the DMEPP and the conventional EPP for multiparty systems.

beat the channel capacity limit for superdense coding. In
2010, Sheng et al. [108] first used cross-Kerr nonlinearities
to unambiguously distinguish the polarization-spatial mode
hyperentanglement. In the later, Ren et al. [109] extended the
results in ref. [108] to the giant nonlinear optics in quantum
dot-cavity systems and Liu et al. [110] resorted the nitrogen-
vacancy in micro-toroidal resonators to deterministically re-
alize a hyperentanglement BSA.

Additionally, hyperentanglement can also be used to per-
form the entanglement purification. In 2002, Simon and Pan
[55] first employed the spatial mode entanglement to purify
the polarization entanglement, named SPEPP. In 2008, Sheng
et al. [58] employed the QND to achieve an efficient EPP.
In 2010, Sheng and Deng [59] proposed the concept of the
deterministic entanglement purification with hyperentangle-
ment. In the same year, one-step deterministic polarization
EPPs resorting to the spatial entanglement in linear optics
were proposed [60, 111]. For multipartite systems, Deng
[112] and Sheng et al. [113] extended the one-step deter-
ministic EPP to correct multipartite polarization entangle-
ment consuming spatial entanglement. In 2014, Sheng et
al. [114] proposed another deterministic EPP in which the
robust time-bin entanglement is regarded as resources to pu-
rify polarization entanglement. In ref. [115], Ren et al. em-
ployed the property of giant optical circular birefringence of
a double-sided quantum dot (QD) cavity system to construct
parity-check gate and quantum state joining method (QSJM)
to realize a two-step hyperentanglement EPP (HEPP), which
increases the fidelity of polarization-spatial hyperentangle-
ment. In 2015, a new HEPP for overcoming the photon loss
and decoherence was proposed with the assistance of the
QND parity-checking measurement and the heralded two-

qubit amplification [116]. Shortly after that, they further pro-
posed an efficient HEPP with imperfect spatial entanglement
resources and relaxed the requirements for the HEPP using
the high-dimensional mode-check measurement [117]. In
2016, Wang et al. [118] proposed a HEPP for three DOFs
of two photons. In 2021, a high-efficient EPP was realized
which uses the noisy spatial entanglement to purify the po-
larization entanglement [119]. In this experiment, the puri-
fied entanglement can be further applied to the entanglement-
based QKD and the secrecy key rate can be improved from 0
to 0.332. Moreover, the efficiency of this EPP is several or-
ders of magnitude higher compared to the conventional EPPs
using two noisy copies. Similarly, the noisy time-bin entan-
glement was exploited to purify polarization entanglement in
experiment [120]. Subsequently, Zhou et al. [121] extended
this EPP to purify the multi-particle entanglement. In ref.
[122], they further employed spatial entanglement and time-
bin entanglement to purify the bit-flip errors and phase-flip
errors of the polarization entanglement, respectively.

In the following parts, we will mainly review the SPEPP
[55], the high-efficient EPP with the QND [58], the one-
step deterministic EPP [60] and the single-copy high-efficient
EPP [119] as well as the HEPP [115].

4.1 The SPEPP in linear optics

This subsection will briefly review the SPEPP which purifies
polarization entanglement at the cost of spatial entanglement
[55]. The schematic diagram of the SPEPP is shown in Fig-
ure 3. It picks out the cases that both the photons come from
both the upper modes or the lower modes. As pointed out in
ref. [55], the Hamiltonian of the SPDC source can be given
by

Hspdc =δ[(a
†
1Hb†1H + a†1Vb†1V )

+ ηeiω(a†2Hb†2H + a†2Vb†2V )] + H.c.. (45)

For simplicity, let η = 1 and ω = 0. Hence, the single-pair
entanglement generated from the SPDC source shown in Fig-
ure 3 can be written as (a†1Hb†1H+a†1Vb†1V+a†2Hb†2H+a†2Vb†2V )|0⟩.
Actually, it is a hyperentangled state in polarization and spa-
tial mode. The SPEPP is a success provided that the photons
emit from the same output mode, that is, the upper mode or
the lower mode.

As shown in Figure 3, if the initial state is not polluted,
it evolves to (a†3Hb†3H + a†3Vb†3V + a†4Hb†4H + a†4Vb†4V )|0⟩ after
the PBSs, which indicates that the photons of Alice and Bob
either come from the upper modes or the lower modes. If
the desired state suffers from noise, i.e., bit-flip errors, it be-
comes (a†1Hb†1V + a†1Vb†1H + a†2Hb†2V + a†2Vb†2H)|0⟩. Thus, it col-
lapses to (a†3Hb†4V+a†3Vb†4H+a†4Hb†3V+a†4Vb†3H)|0⟩ by the action
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of the PBSs. Obviously, one of two photons is in the upper
mode and the other one is in the lower mode. As a result,
bit-flip errors can be perfectly corrected according to the se-
lection rule. However, phase-flip errors cannot be directly
corrected because the spatial-mode entanglement has been
consumed after purification for bit-flip errors. Under this cir-
cumstance, phase-flip errors should be transformed to bit-flip
errors and the same method can be employed in a next step.

For the four-photon cases, that is each SPDC source gen-
erates one photon pair or one SPDC source generates two
photon pairs while the other one produces vacuum state, i.e.,
(a†1Hb†1H + a†1Vb†1V + a†2Hb†2H + a†2Vb†2V )2|0⟩, each output mode
precisely contains one photon indicating a successful purifi-
cation, which is the “four mode” case like the EPPs in refs.
[53, 54].

4.2 The polarization EPP based on the QND with the
SPDC source

In 2008, Sheng et al. [58] presented an efficient EPP, which
employs the QND to play the role of the CNOT gate and
the photon-number detector. The schematic diagram of this
EPP is shown in Figure 10. The SPDC source is similar to
Figure 3, which probabilistically generates two-photon state
with the probability of p and four-photon state with the prob-
ability of p2.

For the two-photon state without encountering with bit-
flip errors and phase-flip errors, the photons of two parties
are in the same polarization. The same phase-shift can be
obtained after the X homodyne measurement shown in Fig-
ure 11. After the action of the coupler shown in Figure
12, they will either appear at the upper modes a1b1 or the
lower modes a2b2. If the bit-flip error occurs on the de-
sired state, (a†1Hb†1H + a†1Vb†1V + a†2Hb†2H + a†2Vb†2V )|0⟩ becomes
(a†1Vb†1H+a†1Hb†1V+a†2Vb†2H+a†2Hb†2V )|0⟩. Clearly, two photons
are in the different polarizations. As a result, the different
phase shifts will be carried by Alice and Bob, indicating the
presence of bit-flip errors. In this case, the bit-flip operation
σx = |H⟩⟨V |+ |V⟩⟨H| is required to be performed on one par-
ticle to recover the initial one. Hence, the bit-flip error of the
two-photon state can be perfectly corrected.

For the four-photon state, i.e., (a†1Hb†1H+a†1Vb†1V+a†2Hb†2H+

a†2Vb†2V )2|0⟩, after photons passing through the QND1, we
have

(a†1Hb†1H + a†2Vb†2V )2|0⟩|αei2θ⟩a|αei2θ⟩b + (a†1Vb†1V

+ a†2Hb†2H)2|0⟩|αei2θ′⟩a|αei2θ′⟩b+2(a†1Hb†1H+a†2Vb†2V )

(a†1Vb†1V + a†2Hb†2H)|0⟩|αei(θ+θ′)⟩a|αei(θ+θ′)⟩b. (46)

It shows that Alice and Bob carry the same phase shift,
i.e., 2θ, 2θ′ or θ + θ′, corresponding to Ω1 = (a†1Hb†1H +

a†2Vb†2V )2|0⟩,Ω2 = (a†1Vb†1V+a†2Hb†2H)2|0⟩, andΩ3 = (a†1Hb†1H+

a†2Vb†2V )(a†1Vb†1V + a†2Hb†2H)|0⟩, separately. Both the states Ω1

and Ω2 are in the same output modes after the coupler and
they can not be identified in the spatial modes, thereby dis-
carding them. However,Ω3 indicates that one pair emits from
the upper mode and the other one emits from the lower mode
which can be retained for quantum communication.

If the bit-flip error occurs on one of two pairs, for ex-
ample, the state becomes (a†1Hb†1H + a†1Vb†1V + a†2Hb†2H +

a†2Vb†2V )(a†1Vb†1H + a†1Hb†1V + a†2Vb†2H + a†2Hb†2V )|0⟩. After the
QND1, it yields

(a†1Hb†1H+a†2Vb†2V )[(a†1Vb†1H+a†2Hb†2V )|0⟩|αei(θ+θ′)⟩a
⊗ |αei2θ⟩b+(a†1Hb†1V+a†2Vb†2H)|0⟩|αei2θ⟩a|αei(θ+θ′)⟩b]

+ (a†1Vb†1V+a†2Hb†2H)[(a†1Vb†1H+a†2Hb†2V )|0⟩|αei2θ′⟩a
⊗ |αei(θ+θ′)⟩b+(a†1Hb†1V+a†2Vb†2H)|0⟩|αei(θ+θ′)⟩a
⊗ |αei2θ′⟩b], (47)

QND1 QND1
BBO

Mirror

a1 b1

a2 b2

a1 b1

b2a2

Pump

QND1 QND1

Figure 10 (Color online) The EPP based on the QND1 with the SPDC
sources [58]. The QND1 plays the role of the CNOT gates and the photon-
number detectors. The principle of the QND1 is depicted in Figure 11.
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Figure 11 (Color online) The schematic diagram of the QND1 [58]. It can
distinguish the state |HH⟩ and |VV⟩ from |HV⟩ and |VH⟩. For example, if
the phase shifts of coherent states for Alice and Bob are the same, the state
is in |HH⟩ or |VV⟩. If Alice and Bob get different phase shifts, the state is in
either |HV⟩ or |VH⟩.

PBS

a1(b1)

a2(b2) a2(b2)

a1(b1)

Figure 12 (Color online) The schematic diagram of the principle of a cou-
pler [58].
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which clearly illustrates that the different phase shifts are ob-
tained for Alice and Bob by the X homodyne measurement.
Hence, these items can be automatically eliminated. In addi-
tion, if the bit-flip error happens on two pairs, the state will
evolve to (a†1Vb†1H + a†1Hb†1V + a†2Vb†2H + a†2Hb†2V )(a†1Vb†1H +

a†1Hb†1V + a†2Vb†2H + a†2Hb†2V )|0⟩. With the same principle, the
QND1 changes the state to

(a†1Hb†1V+a†2Vb†2H)2|0⟩|αei2θ⟩a|αei2θ′⟩b+2(a†1Hb†1V

+ a†2Vb†2H)(a†1Vb†1H+a†2Hb†2V )|0⟩|αei(θ+θ′)⟩a|αei(θ+θ′)⟩b
+ (a†1Vb†1H+a†2Hb†2V )2|0⟩|αei2θ′⟩a|αei2θ⟩b. (48)

Alice and Bob will discard the items when they obtain the
different phase shifts. While, if they get the same phase shift
such as θ+θ′, the state (a†1Hb†1V +a†2Vb†2H)(a†1Vb†1H+a†2Hb†2V )|0⟩
will be retained. Hence, the fidelity of the resultant state is

2p+p2F2

2p+p2[F2+(1−F)2]
.

After the purification, the bit-flip error has been sup-
pressed to some extent. Moreover, the preserved two-photon
state can be distinguished from the four-photon state accord-
ing to the phase shifts. Therefore, one can further improve
the fidelity of the mixed state. Let’s assume the mixed state
has the same form as eq. (7). The principle of this EPP is
shown in Figure 13 and the QND2 shown in Figure 7. If
θ = π, |ϕ+⟩a1b1 ⊗ |ϕ+⟩a2b2 becomes

|ϕ+⟩a1b1 ⊗ |ϕ+⟩a2b2 →
1
2

[(|HH⟩a1b1 |HH⟩a2b2

+ |VV⟩a1b1 |VV⟩a2b2 )|αeiπ⟩a|αeiπ⟩b
+ |HH⟩a1b1 |VV⟩a2b2 |αei2π⟩a|αei2π⟩b
+ |VV⟩a1b1 |HH⟩a2b2 |α⟩a|α⟩b)]. (49)

The phase shifts carried by Alice and Bob are π, which
means that |ϕ+⟩a1b1 |ϕ+⟩a2b2 collapses to |HH⟩a1b1 |HH⟩a2b2 +

|VV⟩a1b1 |VV⟩a2b2 . If the phase shifts are 2π, the state becomes
|HH⟩a1b1 |VV⟩a2b2 + |VV⟩a1b1 |HH⟩a2b2 and an additional opera-
tor σx is essential to be performed on both photons in modes
a2 and b2. Subsequently, the same method as ref. [53] can
be adopted in the next step. The same analysis can be carried
out for the remaining items. Therefore, the fidelity of this
EPP with the QND2 is F1, but the efficiency of this EPP is
twice than that of the EPP in ref. [53].

QND2 QND2

S1

S2

a1

a2

b1

b2

a1

a2

b1

b2

QND2 QND2

S1

S2

Figure 13 (Color online) The EPP based on ideal sources with the QND2

[58]. The QND2 is shown in Figure 6 where θ = π.

4.3 One-step deterministic polarization EPP using spa-
tial mode entanglement

The concept of the deterministic entanglement purification
was first proposed in ref. [59]. This subsection will re-
view the one-step deterministic polarization EPP using spa-
tial mode entanglement [60] as shown in Figure 14, which
was experimentally realized [84]. Moreover, robust time-bin
entanglement can be also employed to achieve the determin-
istic polarization EPP [114], which was also experimentally
realized [85]. As shown in eq. (45), we assume the probabil-
ity of generating one pair of photons from the SPDC source
is small, i.e., p ≪ 1. In this way, the higher-order items can
be omitted. Additionally, let η = 1 and ω = 0, the single-pair
state can be given by

|Ψ⟩ = |ϕ+⟩ab|ϕ+s ⟩ab, (50)

where |ϕ+s ⟩ab is one of the four spatial mode Bell states

|ϕ±s ⟩ab =
1
√

2
(|a1⟩|b1⟩ ± |a2⟩|b2⟩),

|ψ±s ⟩ab =
1
√

2
(|a1⟩|b2⟩ ± |a2⟩|b1⟩).

(51)

During entanglement distribution over noisy channels, the
quality of entanglement will unavoidably suffer from degra-
dation. As discussed in ref. [55], the spatial entanglement
keeps unchanged in noisy channels. Hence, the mixed state
can be written as:

ρ1 =(F|ϕ+⟩ab⟨ϕ+| + F1|ψ+⟩ab⟨ψ+|
+ F2|ϕ−⟩ab⟨ϕ−| + F3|ψ−⟩ab⟨ψ−|)|ϕ+s ⟩ab⟨ϕ+s |. (52)

Let’s first consider the item |ϕ+⟩ab|ϕ+s ⟩ab. After passing
through the PBSs and HWPs which makes transformation
|H⟩ ↔ |V⟩, the state collapses to

|ϕ+⟩ab|ϕ+s ⟩ab →
1
2

(|H⟩c1 |H⟩d1 + |V⟩c2 |V⟩d2

+ |V⟩e1 |V⟩ f1 + |H⟩e2 |H⟩ f2 ). (53)

a1 b1

a2
BBO1

b2

c1

c2

d1

d2

e1

e2

f1

f2
D2

D1 D3

D4

D5

D6

D7

D8

Mirror

HWP HWP

PBS PBS

Figure 14 (Color online) The schematic diagram of one-step determinis-
tic EPP using spatial mode entanglement [60]. After postselection, we can
deterministically obtain the desired entanglement. To be specific, if D2 and
D4 or D5 and D7 click, it means that the photons are in the polarization
entanglement state |ϕ+⟩. If the detectors D2 and D7 or D5 and D4 click, the
photons are in |ψ+⟩ and an bit-flip operation is required on one of the photons
to recover |ϕ+⟩.
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The components |H⟩c1 |H⟩d1 and |V⟩c2 |V⟩d2 make the coin-
cidence detections on D2 and D4. While |V⟩e1 |V⟩ f1 and
|H⟩e2 |H⟩ f2 make the coincidence detections on D5 and D7.
It means that the desired state |ϕ+⟩ is obtained.

If the bit-flip error occurs on |ϕ+⟩ab with the probability
of F1 and after the PBSs and HWPs, the state |ψ+⟩ab|ϕ+s ⟩ab

becomes

|ψ+⟩ab|ϕ+s ⟩ab →
1
2

(|H⟩c1 |V⟩ f1 + |V⟩c2 |H⟩ f2
+ |V⟩e1 |H⟩d1 + |H⟩e2 |V⟩d2 ). (54)

The components |H⟩c1 |V⟩ f1 and |V⟩c2 |H⟩ f2 make the coinci-
dence detections on D2 and D7. The other remaining compo-
nents |V⟩e1 |H⟩d1 and |H⟩e2 |V⟩d2 make the coincidence detec-
tions on D4 and D5. This projects the |ψ+⟩ab|ϕ+s ⟩ab into |ψ+⟩ab.
Hence, we need to operate an additional bit-flip operation σx

on one of the photons to convert |ψ+⟩ab to |ϕ+⟩ab.
Similarly, if the phase-flip error occurs and after the PBSs

and HWPs, the state will evolve to

|ϕ−⟩ab|ϕ+s ⟩ab →
1
2

(|H⟩c1 |H⟩d1 + |V⟩c2 |V⟩d2

− |V⟩e1 |V⟩ f1 − |H⟩e2 |H⟩ f2 ). (55)

Obviously, the same result as eq. (53) can be obtained af-
ter postselection. Additionally, the state |ψ−⟩ab|ϕ+s ⟩ab has the
same result as eq. (54). Thus, the phase-flip error can be
directly corrected. Moreover, the mixed state entangled in
polarization is not essential for this deterministic EPP and it
just requires to satisfy F + F1 + F2 + F3 = 1. To elaborate, if
the mixed entangled state is

ρ2 =(F|HH⟩ab⟨HH|+F1|VV⟩ab⟨VV |
+ F2|HV⟩ab⟨HV |+F3|VH⟩ab⟨VH|)|ϕ+s ⟩ab⟨ϕ+s |. (56)

The two photons of the item |HH⟩ab|ϕ+s ⟩ab emit from the out-
put modes D2 and D4, indicating that the state evolves to
|ϕ+⟩. Additionally, if the measurement results are D5 and D7,
it makes the state |VV⟩ab|ϕ+s ⟩ab project into |ϕ+⟩. Similarly,
the components |HV⟩ab|ϕ+s ⟩ab (|VH⟩ab|ϕ+s ⟩ab) will make the
coincidence detectors D2 and D7 (D4 and D5) separately reg-
ister one photon, which requires a bit-flip operation on one
photon to transform |ψ+⟩ to |ϕ+⟩. In this way, the determinis-
tic EPP has been carried out without requiring entanglement
in polarization. This is different from the conventional EPPs
[51-53, 55], in which the initial fidelity should be larger than
0.5.

4.4 Single-copy high-efficient EPP using hyperentangle-
ment

This subsection will focus on the single-copy high-efficient
EPP using hyperentanglement after distributing the hyper-
entangled state over noisy channels [119]. In this EPP, if

output modes D1 and D2 or D3 and D4 respectively contain
one photon, it means a successful purification. To be spe-
cific, the source as shown in Figure 15 generates one pair of
hyperentanglement written as:

|Φ⟩ = |ϕ+⟩ab ⊗ |ϕ+s ⟩ab. (57)

After distributing photons to Alice and Bob, the state of eq.
(57) becomes

ρ3 =[Fp|ϕ+⟩ab⟨ϕ+| + (1 − Fp)|ψ+⟩ab⟨ψ+|]
⊗ [Fs|ϕ+s ⟩ab⟨ϕ+s | + (1 − Fs)|ψ+s ⟩ab⟨ψ+s |], (58)

which can be described as the mixture of four pure
states. The system is in the state |ϕ+⟩ab|ϕ+s ⟩ab, |ψ+⟩ab|ϕ+s ⟩ab,
|ϕ+⟩ab|ψ+s ⟩ab, and |ψ+⟩ab|ψ+s ⟩ab with the probability of FpFs,
(1 − Fp)Fs, Fp(1 − Fs), and (1 − Fp)(1 − Fs), respectively.
We first consider the item |ϕ+⟩ab|ϕ+s ⟩ab. After the actions of
the PBSs and HWPs on photons, we have

|ϕ+⟩ab|ϕ+s ⟩ab →
1
2

(|V⟩a3 |V⟩b3 + |H⟩a4 |H⟩b4

+ |V⟩a5 |V⟩b5 + |H⟩a6 |H⟩b6 ). (59)

Using the beam displacers (BDs) to couple the photons with
the different polarizations from the different input modes into
the same output mode, thus the state of eq. (59) collapses to

|ϕ+⟩DiDi+1 =
1
√

2
(|H⟩Di |H⟩Di+1 + |V⟩Di |V⟩Di+1 ), (60)

where i = 1, 3. Similarly, the item |ψ+⟩ab|ψ+s ⟩ab makes two
photons emit from modes D1 and D2 or D3 and D4, which
yields

|ψ+⟩DiDi+1 =
1
√

2
(|H⟩Di |V⟩Di+1 + |V⟩Di |H⟩Di+1 ). (61)

Moreover, the other remaining states such as |ψ+⟩ab|ϕ+s ⟩ab and
|ϕ+⟩ab|ψ+s ⟩ab result in each of output modes D1 and D4 or D2

and D3 containing one photon. For example, after the PBSs

S
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HWPHWP
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Figure 15 (Color online) The schematic diagram of the high efficient EPP
using hyperentanglement [119]. The hyperentanglement source S generates
one pair of state |ϕ+⟩ab |ϕ+s ⟩ab. During the entanglement distribution, the hy-
perentangled state will be polluted because of the unavoidable noise, which
will make the polarization entanglement and spatial entanglement evolve to
the mixed state, separately. In addition, the beam displacer (BD) couples |H⟩
and |V⟩ into the same output mode. The coincidence detectors D1 and D2 or
D3 and D4 click indicate that the purification is successful.
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and HWPs, the state |ψ+⟩ab|ϕ+s ⟩ab becomes

|ψ+⟩ab|ϕ+s ⟩ab →
1
2

(|V⟩a3 |V⟩b5 + |H⟩a6 |H⟩b4

+ |V⟩a5 |V⟩b3 + |H⟩a4 |H⟩b6 ). (62)

After passing through the BDs, it further evolves to

|ψ+⟩D1D4 =
1
√

2
(|H⟩D1 |V⟩D4 + |V⟩D1 |H⟩D4 ), (63)

or

|ψ+⟩D2D3 =
1
√

2
(|H⟩D2 |V⟩D3 + |V⟩D2 |H⟩D3 ). (64)

Obviously, it fails to satisfy our selection criterion thereby
washing out it. The similar analysis can be done for
|ϕ+⟩ab|ψ+s ⟩ab. Consequently, the new mixed state can be ob-
tained as:

ρn = Fn|ϕ+⟩ab⟨ϕ+| + (1 − Fn)|ψ+⟩ab⟨ψ+|, (65)

where

Fn =
FpFs

FpFs + (1 − Fp)(1 − Fs)
. (66)

If both Fp and Fs are larger than 0.5, we can obtain Fn >

max(Fp, Fs). According to the mentioned above, this EPP
just uses single pair hyperentanglement to distill the high-
fidelity mixed state entangled in polarization. Moreover, the
purified entanglement can be further employed to improve
the key rate for the entanglement-based QKD [119].

4.5 The HEPP for nonlocal hyperentanglement systems

This subsection introduces the HEPP for a nonlocal system
entangled in polarization and spatial mode [115], which is
different from the polarization EPPs consuming entangle-
ment in other DOFs [55, 58, 111, 119]. The authors em-
ployed the property of giant optical circular birefringence of
a double-sided QD cavity system to construct parity-check
gates and QSJMs to realize two-step HEPP. As shown in Fig-
ure 16(a), a negatively charged exciton X− will be created
provided that one puts a single electron into a QD. Accord-
ing to the rule of the Pauli’s exclusion, it also shows spin-
dependent transitions with circularly polarized lights, which
is illustrated in Figure 16(b).

The Heisenberg equations of motion for the cavity field
operator â and X− dipole operator σ̂− can be employed to
denote the input-output optical property of the double sided
QD-cavity system, yielding

dâ
dt
=−
[
i(wc−w)+κ+

κs

2

]
â−gσ̂−−

√
κâin−

√
κâ′in,

dσ̂−
dt
=−
[
i(wX−−w)+

γ

2

]
σ̂−−gσ̂zâ,

(67)

where wc, w, and wX− separately represent the frequencies of
cavity, input photon, and the transition of X−. The coefficient
g means the coupling strength of the exciton X− with negative
charge and the cavity. γ

2 and κs
2 respectively denote the decay

rates of exciton X− and the cavity field mode to the leakage
mode. In addition, the two input operators are represented by
âin and â′in. If the weak excitation occurs, one can obtain the
expression of the transmission as:

t(w) =
−κ[i(wX− − w) + γ

2 ]

[i(wX− − w) + γ
2 ][i(wc − w) + κ+ κs

2 ] + g2
. (68)

Additionally, the reflection can be given by r(w) = 1 + t(w).
While if the strong-coupling and the resonant case satisfy at
the same time, one can obtain |r| → 1, |r0| → 0, |t| → 0 and
|t0| → 1. Due to the fact that the photonic circular polariza-
tion is determined by the direction of propagation, the photon
is in state |R↑⟩ (|R↓⟩) or |L↓⟩ (|L↑⟩) simultaneously, which is
shown in Figure 16(b). Accordingly, the transmission and
reflection of the photon polarization can be given by

|R↑, i2, ↑⟩→|L↓, i2, ↑⟩, |L↓, i1, ↑⟩→|R↑, i1, ↑⟩,
|R↑, i2, ↓⟩→−|R↑, i2, ↓⟩, |L↓, i1, ↓⟩→−|L↓, i2, ↓⟩,
|R↓, i1, ↑⟩→−|R↓, i2, ↑⟩, |L↑, i2, ↑⟩→−|L↑, i1, ↑⟩,
|R↓, i1, ↓⟩→|L↑, i1, ↓⟩, |L↑, i2, ↓⟩→−|R↓, i2, ↓⟩,

(69)

where i = a, b.
The QSJM is utilized to transfer the polarization state of

the photon A to that of the photon B while it remains the spa-
tial mode of B unchanged. The principle of this QSJM is
shown in Figure 17(a) which is composed of the double-side
QD-cavity. Suppose that the initial states of A and B are

|ϕA⟩ = (α1|R⟩ + α2|L⟩)A(γ1|a1⟩ + γ2|a2⟩),
|ϕB⟩ = (β1|R⟩ + β2|L⟩)B(δ1|b1⟩ + δ2|b2⟩).

(70)

Additionally, we consider that the electron spin is in | + ⟩e =
1√
2
(| ↑⟩ + | ↓⟩)e. Thus, after passing through the setup as in

Figure 17(a), the state | + ⟩e|ϕA⟩ becomes a new state which

(a) (b)

Figure 16 (Color online) (a) A double-sided QD cavity system, where the
QD is in the center of a double-sided cavity [115]. (b) The spin-based opti-
cal transitions of a negatively charged exciton X− with circularly polarized
photons [115].
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Figure 17 (Color online) (a) One QD, two CPBSs and two phase-flip opera-
tions U1(2) = −|R⟩⟨R|−|L⟩⟨L| as well as a bit-flip operation X for polarization
make up of a QSJM [115]. (b) The setup is used to swap the polarization state
and spatial mode of a photon [115]. The CPBS totally transmits the photon
in polarization |R⟩ and reflects |L⟩.

can be described as follows. If the polarization state of the
photon A is in |R⟩, the electron spin is in α1| ↑⟩+α2| ↓⟩. Con-
trarily, the electron spin is in α2| ↑⟩+α1| ↓⟩ provided that the
polarization state of A is in |L⟩. For the two cases, the spatial
mode remains unchanged. To illustrate the principle of the
QSJM, we only consider the case that the photon A is in state
|R⟩, which yields α1| ↑⟩ + α2| ↓⟩. Subsequently, let the pho-
ton B enter the setup as Figure 17(a) after the action of the
Hadamard operation on an electron spin, one can obtain

|ϕBe⟩1 =
1
√

2
[α′1| ↑⟩e(β1|R⟩ + β2|L⟩)B + α

′
2| ↓ ⟩e

⊗ (β2|R⟩ + β1|L⟩)B](δ1|b1⟩ + δ2|b2⟩), (71)

where α′1 = α1 +α2 and α′2 = α1 −α2. Subsequently, we per-
form the Hadamard operations on polarization of the photon
B and the electron spin passes through the circuit shown in
Figure 17(a). Finally, after adding another Hadamard opera-
tion on the electron spin, one can obtain

|ϕBe⟩2 =
1
√

2
[β1| ↑⟩e(α1|R⟩ + α2|L⟩)B + β2| ↓ ⟩e

⊗ (α1|R⟩ − α2|L⟩)B](δ1|b1⟩ + δ2|b2⟩). (72)

The polarization state of the photon A has been transferred to
that of the photon B without changing the spatial mode of B
by measuring the electron spin state. Moreover, if we com-
bine the quantum circuit Figure 17(b) with Figure 17(a) in
sequence, we can achieve the purpose that the spatial mode
state of the photon A can be transferred to polarization state
of the photon B without distributing the spatial mode of B.

The polarization-spatial phase check QND (P-S-QND) is
constructed in Figure 18(a). This quantum circuit can unam-
biguously identify the relative phase for the hyperentangled
state. There are 16 hyperentangled states in polarization and
spatial mode, which can be written as |ϕkl⟩AB = |ϕk⟩PAB|ϕl⟩SAB

with k, l = 1, 2, 3, 4. Here, |ϕk⟩PAB and |ϕl⟩SAB are described as:

|ϕ1⟩PAB =
1
√

2
(|RR⟩ + |LL⟩)AB,

|ϕ2⟩PAB =
1
√

2
(|RR⟩ − |LL⟩)AB,

|ϕ3⟩PAB =
1
√

2
(|RL⟩ + |LR⟩)AB,

|ϕ4⟩PAB =
1
√

2
(|RL⟩ − |LR⟩)AB,

|ϕ1⟩SAB =
1
√

2
(|a1b1⟩ + |a2b2⟩),

|ϕ2⟩SAB =
1
√

2
(|a1b1⟩ − |a2b2⟩),

|ϕ3⟩SAB =
1
√

2
(|a1b2⟩ + |a2b1⟩),

|ϕ4⟩SAB =
1
√

2
(|a1b2⟩ − |a2b1⟩).

(73)

We consider that the electron spins of the QD1 and QD2 are
in |+⟩e1 and |+⟩e2 . We let the photons A and B enter circuit
as shown in Figure 18(a) in turn followed by measuring the
electron spin in the basis |±⟩. If the measurement outcome in
e1 is |+⟩, the polarization state is in |ϕ1⟩PAB or |ϕ3⟩PAB. If the
measurement outcome of e1 is in |−⟩, the polarization state is
in |ϕ2⟩PAB or |ϕ4⟩PAB. Similarly, the spatial mode entanglement
is in |ϕ1⟩SAB or |ϕ3⟩SAB if e2 is in |−⟩. While if e2 is in |+⟩, the
spatial mode entanglement is in |ϕ2⟩SAB or |ϕ4⟩SAB. Thus, it can
be concluded as:

|ϕk1l1⟩AB| + ⟩e1 | + ⟩e2 → |ϕk1l1⟩AB| + ⟩e1 | − ⟩e2 ,

|ϕk1l2⟩AB| + ⟩e1 | + ⟩e2 → |ϕk1l2⟩AB| + ⟩e1 | + ⟩e2 ,

|ϕk2l1⟩AB| + ⟩e1 | + ⟩e2 → |ϕk2l1⟩AB| − ⟩e1 | − ⟩e2 ,

|ϕk2l2⟩AB| + ⟩e1 | + ⟩e2 → |ϕk2l2⟩AB| − ⟩e1 | + ⟩e2 .

(74)

To further distinguish the parity of polarization and spatial
mode, the Hadamard operations are required to act on both
the polarization and spatial modes. So far, the QSJM and
P-S-QND have been briefly illustrated. In the following, we
will explain the HEPP. Suppose that the initial mixed hyper-
entangled state is

ρ4 =[Fp|ϕ1⟩P⟨ϕ1| + (1 − Fp)|ϕ3⟩P⟨ϕ3|]
⊗ [Fs|ϕ1⟩S ⟨ϕ1| + (1 − Fs)|ϕ2⟩S ⟨ϕ2|]. (75)

The two noisy copies ρAB and ρCD have the same form as
eq. (75). Consequently, the whole system consists of 16 hy-
perentangled states. After the actions of Figure 19(a) and
measuring the electron spin, we can unambiguously acquire
the information on parity of photon pairs in the polarization
and spatial mode. There are four different cases which are
discussed in the following parts.
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Figure 18 (Color online) (a) Two QDs, three CPBSs, two phase-flip op-
erations U1(2) = −|R⟩⟨R| − |L⟩⟨L| and a bit-flip operation X for polarization
as well as two operations Z1(2) = −|R⟩⟨R| + |L⟩⟨L| make up of a P-S-QND
[115]. (b) The polarization-spatial parity-check QND is composed of two
Hpss and one P-S-QND [115]. (c) The schematic diagram of the Hps [115].
The BS is a 50:50 beam-splitter. Hp is a Hadamard operation which effects
|R⟩ → 1√

2
(|R⟩ + |L⟩) and |L⟩ → 1√

2
(|R⟩ − |L⟩).

The first case is that the polarization and spatial mode
have the same parity mode for the photon pairs AC and
BD. In this way, the state |ϕ1⟩PAB ⊗ |ϕ1⟩PAB (|ϕ1⟩SAB ⊗ |ϕ1⟩SAB)
and |ϕ3⟩PAB ⊗ |ϕ3⟩PAB (|ϕ3⟩SAB ⊗ |ϕ3⟩SAB) can be discriminated
from |ϕ1⟩PAB ⊗ |ϕ3⟩PAB (|ϕ1⟩SAB ⊗ |ϕ3⟩SAB) and |ϕ3⟩PAB ⊗ |ϕ1⟩PAB
(|ϕ3⟩SAB ⊗ |ϕ1⟩SAB). By measuring the electron spin state, they
evolves to

|Φ1⟩P =
1
√

2
(|RRRR⟩ + |LLLL⟩)ABCD,

|Φ2⟩P =
1
√

2
(|RRLL⟩ + |LLRR⟩)ABCD,

|Φ3⟩P =
1
√

2
(|RLRL⟩ + |LRLR⟩)ABCD,

|Φ4⟩P =
1
√

2
(|RLLR⟩ + |LRRL⟩)ABCD,

|Φ1⟩S =
1
√

2
(|a1b1c1d1⟩ + |a2b2c2d2⟩),

|Φ2⟩S =
1
√

2
(|a1b1c2d2⟩ + |a2b2c1d1⟩),

|Φ3⟩S =
1
√

2
(|a1b2c1d2⟩ + |a2b1c2d1⟩),

|Φ4⟩S =
1
√

2
(|a1b2c2d1⟩ + |a2b1c1d2⟩).

(76)

Obviously, |Φ2⟩P, |Φ4⟩P, |Φ2⟩S , and |Φ4⟩S can be transformed
to |Φ1⟩P, |Φ3⟩P, |Φ1⟩S , and |Φ3⟩S when one adds the bit-
flip operations on the photons C and D. We perform the
Hadamard operations on both polarization and spatial mode
of C and D for states |Φ1⟩P, |Φ3⟩P, |Φ1⟩S , and |Φ3⟩S . Accord-
ing to the measurement results of the detectors, we pick out
the even cases for polarization and spatial mode. Thus, we
can obtain a new mixed state entangled in polarization and

spatial mode with F′p =
F2

p

F2
p+(1−Fp)2 and F′s =

F2
s

F2
s+(1−Fs)2 .

The second case is that both the polarization and spatial
mode have the different parity modes for the photon pairs
AC and BD. For example, |ϕ1⟩PAB ⊗ |ϕ3⟩PAB (|ϕ1⟩SAB ⊗ |ϕ2⟩SAB)
and |ϕ3⟩PAB ⊗ |ϕ1⟩PAB (|ϕ2⟩SAB ⊗ |ϕ1⟩SAB) can be discriminated
from |ϕ1⟩PAB ⊗ |ϕ1⟩PAB (|ϕ1⟩SAB ⊗ |ϕ1⟩SAB) and |ϕ3⟩PAB ⊗ |ϕ3⟩PAB
(|ϕ2⟩SAB ⊗ |ϕ2⟩SAB). By measuring the electron spin using the
P-S-QND, we can obtain

|Φ5⟩P =
1
√

2
(|RRRL⟩ + |LLLR⟩)ABCD,

|Φ6⟩P =
1
√

2
(|RRLR⟩ + |LLRL⟩)ABCD,

|Φ7⟩P =
1
√

2
(|RLRR⟩ + |LRLL⟩)ABCD,

|Φ8⟩P =
1
√

2
(|RLLL⟩ + |LRRR⟩)ABCD,

|Φ5⟩S =
1
√

2
(|a1b1c1d2⟩ + |a2b2c2d1⟩),

|Φ6⟩S =
1
√

2
(|a1b1c2d1⟩ + |a2b2c1d2⟩),

|Φ7⟩S =
1
√

2
(|a1b2c1d1⟩ + |a2b1c2d2⟩),

|Φ8⟩S =
1
√

2
(|a1b2c2d2⟩ + |a2b1c1d1⟩).

(77)

With the same principle, this case can be discarded resulted
from the fact that two parties fail to distinguish the bit-flip
error in polarization and phase-flip error in spatial mode.

The third case is that both the photon pairs AC and BD
are in the same polarization parity mode and different spatial
parity modes. In other words, the polarization states |ϕ1⟩PAB ⊗
|ϕ1⟩PAB (|ϕ1⟩SAB ⊗ |ϕ2⟩SAB) and |ϕ3⟩PAB ⊗ |ϕ3⟩PAB (|ϕ2⟩SAB ⊗ |ϕ1⟩SAB)
can be discriminated from |ϕ1⟩PAB ⊗ |ϕ3⟩PAB (|ϕ1⟩SAB ⊗ |ϕ1⟩SAB)
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Figure 19 (Color online) The schematic diagram of the (a) first step HEPP
[115] and (b) second HEPP [115].
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and |ϕ3⟩PAB ⊗ |ϕ1⟩PAB (|ϕ2⟩SAB ⊗ |ϕ2⟩SAB). By measuring the elec-
tron spin state using the P-S-QNDs, the polarization state
collapses to |Φ1⟩P (|Φ2⟩P) and |Φ3⟩P (|Φ4⟩P) and the spatial
mode becomes |Φ5⟩S , |Φ6⟩S , |Φ7⟩S and |Φ8⟩S . Obviously, the
polarization state can be reused to distill high-fidelity entan-
glement. In this way, one can employ the QSJM to purify in
a second step.

Finally, the last case is that both the photon pairs AC
and BD are in the different polarization parity modes and
same spatial parity mode. For instance, |ϕ1⟩PAB ⊗ |ϕ3⟩PAB
(|ϕ1⟩SAB ⊗ |ϕ1⟩SAB) and |ϕ3⟩PAB ⊗ |ϕ1⟩PAB (|ϕ2⟩SAB ⊗ |ϕ2⟩SAB) can
be discriminated from |ϕ1⟩PAB ⊗ |ϕ1⟩PAB (|ϕ1⟩SAB ⊗ |ϕ2⟩SAB) and
|ϕ3⟩PAB⊗ |ϕ3⟩PAB (|ϕ2⟩SAB⊗ |ϕ1⟩SAB). The measurement outcomes
of electron spin states using the P-S-QNDs make the po-
larization states evolve to |Φ5⟩P (|Φ6⟩P) and |Φ7⟩P (|Φ8⟩P)
and the spatial-mode states become |Φ1⟩S (|Φ2⟩S ) and |Φ3⟩S
(|Φ4⟩S ). In this circumstance, the QSJM is required in a sec-
ond step.

For the third case and last case, four totally identical pho-
ton pairs AB, CD, A′B′, and C′D′ are essential for the second
step purification. Here, the photons A, A′, C, and C′ are hold
by Alice. The remaining photons belong to Bob. Similar to
the first step, the same actions are required to perform for
ABCD and A′B′C′D′. If the measurement outcomes of elec-
tron spin states make the four photon pairs project to the third
and last (last and third) cases, the polarization (spatial-mode)
state of AB and the spatial-mode (polarization) state of A′B′

are combined into an output of photon pair with the QSJM.
In this way, the similar method can be applied to the other
cases.

Consequently, adding a Hadamard operation on the
spatial-mode, we can obtain a new mixed state ρ′AB according
to the two-step HEPP. Here,

ρ′AB =
[
F′p|ϕ1⟩PAB⟨ϕ1| + (1 − F′p)|ϕ3⟩PAB⟨ϕ3|

]
⊗
[
F′s|ϕ1⟩SAB⟨ϕ1| + (1 − F′s)|ϕ3⟩SAB⟨ϕ3|

]
, (78)

with the fidelity of F′pF′s which is shown in Fig-
ure 20. Moreover, the efficiency of this HEPP with
the QSJM is F2

s + (1 − Fs)2 which is larger than that([
F2

p + (1 − Fp)2
] [

F2
s + (1 − Fs)2

])
in the convention HEPP

without the QSJM.

5 The MBEPP

In 1998, the concept of the quantum repeater was proposed
to realize the long-distance quantum communication [37].
However, the building blocks of quantum repeater are needed
to work with sufficiently high accuracy [123], which makes
quantum repeater hard to implement in current technol-
ogy. To this end, the measurement-based quantum repeater

(MBQR) was proposed [123], where only simple BSAs [124]
were required to couple the resource states to input noisy
states instead of performing coherent two-qubit gates. In the
MBQR, the core ingredient is the MBEPP [88]. The research
findings show that the MBEPP can tolerate much more local
noise than the conventional EPPs based on the CNOT gates
or similar logical operations [88]. Subsequently, the feasibil-
ity of the MBEPP in linear optics with the SPDC sources was
investigated [79]. Recently, the authors further studied the
MBEPP for entangled coherent states [80] and investigated
the MBEPP for logical qubit entanglement with imperfect
QND under the photon loss [81].

5.1 The principle of the universal MBEPP

As shown in Figure 21, two pairs of three-particle resource
states prepared off-line in a probabilistic way are coupled
to the noisy pairs via the standard BSAs [124]. The three-
particle resource state can be given by |ϕ+0 ⟩ =

1√
2
(|000⟩ +

|111⟩), which entangles in modes c1c2c3 and d1d2d3, re-
spectively. It needs to be pointed out that the MBEPP can
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Figure 20 (Color online) The fidelity and efficiency of the HEPP [115]
with the QSJM and the conventional HEPP without the QSJM versus the
initial fidelity.
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Figure 21 (Color online) The schematic diagram of the MBEPP [88,123].
The standard BSAs [124] are required to operate on the photons in modes c1

and a1, c2 and a2, b1 and d1, and b2 and d2. The resource states entangled
in modes c1c2c3 and d1d2d3 are prepared off-line in a probabilistic way. As
pointed out in refs. [88, 123], this MBEPP can purify m noisy copies with
m + 1-particle resource states each round of purification.
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purify n noisy copies with n + 1-particle resource states each
time. Additionally, the resource states can be 2D cluster
states. For simplicity, we only consider the case that two
noisy pairs and resource states are used to distill high-fidelity
of the Bell states from low-quality of entanglement. The
noisy pairs ρa1b1 (it is in the state |ϕ+n ⟩a1b1 (|ψ+n ⟩a1b1 ) with the
probability of F (1 − F)) and ρa2b2 (it is in the state |ϕ+n ⟩a2b2

(|ψ+n ⟩a2b2 ) with the probability of F (1 − F)). Thus, the whole
system ρa1b1 ⊗ ρa2b2 combines with the two resource states
|ϕ+0 ⟩c1c2c3 and |ϕ+0 ⟩d1d2d3 can be described as follows. It is in
the state |ϕ+0 ⟩c1c2c3 ⊗ |ϕ+0 ⟩d1d2d3 ⊗ |ϕ+n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 with the
probability of F2. It is in the state |ϕ+0 ⟩c1c2c3 ⊗ |ϕ+0 ⟩d1d2d3 ⊗
|ψ+n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 with the probability of (1 − F)2. It is in
the state |ϕ+0 ⟩c1c2c3 ⊗ |ϕ+0 ⟩d1d2d3 ⊗ |ψ+n (ϕ+n )⟩a1b1 ⊗ |ϕ+n (ψ+n )⟩a2b2

with the probability of F(1 − F). We merely consider the
item |ϕ+0 ⟩c1c2c3 ⊗ |ϕ+0 ⟩d1d2d3 ⊗ |ϕ+n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 to illustrate the
principle of the MBEPP, which is written as:

|ϕ+0 ⟩c1c2c3 ⊗ |ϕ+0 ⟩d1d2d3 ⊗ |ϕ+n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2

=
1
4

(|000⟩ + |111⟩)c1c2c3 (|000⟩ + |111⟩)d1d2d3

⊗ (|00⟩ + |11⟩)a1b1 (|00⟩ + |11⟩)a2b2 . (79)

Then, one can perform the BSAs on the particles in modes
c1a1, c2a2, b1d1, and b2d2. As discussed in ref. [123], the
MBEPP is successful provided that the measurement out-
comes at Alice and Bob are the same. To be specific, if one
obtains the measurement outcomes such as: |ϕn⟩|ϕn⟩|ϕn⟩|ϕn⟩,
|ϕn⟩|ψn⟩|ϕn⟩|ψn⟩, |ψn⟩|ϕn⟩|ψn⟩|ϕn⟩ and |ψn⟩|ψn⟩|ψn⟩|ψn⟩ and we
have even “−” case, i.e., |ϕ−n ⟩|ϕ−n ⟩|ϕ−n ⟩|ϕ−n ⟩, the state as eq. (79)
evolves to

|ϕ+n ⟩c3d3 =
1
√

2
(|00⟩c3d3 + |11⟩c3d3 ). (80)

If the odd “−” case, i.e., |ϕ+n ⟩|ϕ−n ⟩|ϕ−n ⟩|ϕ−n ⟩, is obtained, it col-
lapses to

|ϕ−n ⟩c3d3 =
1
√

2
(|00⟩c3d3 − |11⟩c3d3 ), (81)

and an unitary phase-flip operation σz1 = |0⟩⟨0| − |1⟩⟨1|
should be performed on one of the particles. With the
same principle, the cross combinations |ϕ+n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 and
|ψ+n ⟩a1b1 ⊗ |ϕ+n ⟩a2b2 can be washed out according to the mea-
surement outcomes. Similarly, the state |ϕ+0 ⟩c1c2c3⊗|ϕ+0 ⟩d1d2d3⊗
|ψ+n ⟩a1b1 ⊗ |ψ+n ⟩a2b2 collapses to |ψ+n ⟩c3d3 with or without addi-
tional operations on one of the photons according to the mea-
surement outcomes. As a consequence, the final mixed state
can be obtained as:

ρc3d3 = F1|ϕ+n ⟩c3d3⟨ϕ+n | + (1 − F1)|ψ+n ⟩c3d3⟨ψ+n |. (82)

The other cases and the corresponding unitary operations re-
quired to perform are detailed in Table 1.

5.2 The MBEPP in linear optics

In the practical scenario, the entanglement is usually gener-
ated by the SPDC source. At first glance, the double-pair
emissions emitted from the SPDC source may pose big chal-
lenges in both the preparation of resource states and entan-
glement purification. As shown in Figure 22, the pump pulse
passes through a BBO crystal to generate entanglement as
eq. (12). The bit-flip error may occur with the probability of
1 − F during the entanglement distribution, and the state as
eq. (12) will evolve to the state as eq. (13).

During the preparation of resource states, we employ the
BBO3 (BBO5) and BBO4 (BBO6) to generate resource states
[79]. Additionally, a click on detector D1 (D3) is used to her-
ald a successful generation of the resource state. Let the pho-
tons pass through the PBSs, BSs, and HWPs. The resource

Table 1 The measurement outcomes and corresponding operations per-
formed on output states. The first column denotes the measurement out-
comes on g1a1, g2a2, h1b1, and h2b2. The second column represents the
parity of “−”, i.e., |ϕ−n ⟩c1a1 |ϕ−n ⟩c2a2 |ϕ−n ⟩d1b1 |ϕ−n ⟩d2b2 means even “−” case
and |ψ+n ⟩c1a1 |ϕ−n ⟩c2a2 |ψ−n ⟩d1b1 |ϕ−n ⟩d2b2 means odd “−” case. The third column
means that the additional operations (σx1 = |0⟩⟨1| − |1⟩⟨0|) are required to be
operated

Measurement outcomes Parity of “−” Additional operations

|ϕn⟩c1a1 |ϕn⟩c2a2 |ϕn⟩d1b1 |ϕn⟩d2b2 even “−” I
|ϕn⟩c1a1 |ψn⟩c2a2 |ϕn⟩d1b1 |ψn⟩d2b2

|ψn⟩c1a1 |ϕn⟩c2a2 |ψn⟩d1b1 |ϕn⟩d2b2 odd “−” σz1|ψn⟩c1a1 |ψn⟩c2a2 |ψn⟩d1b1 |ψn⟩d2b2

|ϕn⟩c1a1 |ϕn⟩c2a2 |ψn⟩d1b1 |ψn⟩d2b2 even “−” σx1|ϕn⟩c1a1 |ψn⟩c2a2 |ψn⟩d1b1 |ϕn⟩d2b2

|ψn⟩c1a1 |ϕn⟩c2a2 |ϕn⟩d1b1 |ψn⟩d2b2 odd “−” σx1σz1|ψn⟩c1a1 |ψn⟩c2a2 |ϕn⟩d1b1 |ϕn⟩d2b2
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Figure 22 (Color online) The schematic diagram of the MBEPP in lin-
ear optics [79]. This MBEPP consists of three parts. The first is to use the
BBO1 and BBO2 to produce two noisy copies. The second part is to produce
three-photon resource state. Here, we use clicks on D1 and D3 to herald the
successful generation of resource state. The third part is the standard BSA
[124]. We pick out “twelve mode” case to herald a successful case for the
MBEPP.
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state generated by the BBO3 and BBO4 can be obtained as:

|Res⟩1 =
√

p

2
√

2
(|V⟩h1+|H⟩h4 )+

p
4
|V⟩h1 |H⟩h4

+
p
√

2
(|H⟩h5 |H⟩h1 |V⟩h1+|V⟩h5 |H⟩h4 |V⟩h4 )

+
p
4

(|V⟩h1 |V⟩h1+|H⟩h4 |H⟩h4 )+
p
2
|ϕ+4 ⟩h1h4h5 . (83)

Similarly, the second resource state |Res⟩2 has the same form
as eq. (83). Hence, the system ρa1b1 ⊗ ρa2b2 combined with
|Res⟩1 ⊗ |Res⟩2 can be written as:

ρa1b1 ⊗ ρa2b2 ⊗ |Res⟩1 ⊗ |Res⟩2
= [F|Φ+⟩a1b1⟨Φ+| + (1 − F)|Ψ+⟩a1b1⟨Ψ+|]
⊗ [F|Φ+⟩a2b2⟨Φ+| + (1 − F)|Ψ+⟩a2b2⟨Ψ+|]

⊗
[ √p

2
√

2
(|V⟩h1 + |H⟩h4 ) +

p
4
|V⟩h1 |H⟩h4 +

p
√

2

× (|H⟩h5 |H⟩h1 |V⟩h1 + |V⟩h5 |H⟩h4 |V⟩h4 ) +
p
4

× (|V⟩h1 |V⟩h1 + |H⟩h4 |H⟩h4 ) +
p
2
|ϕ+4 ⟩h1h4h5

]
⊗
[ √p

2
√

2
(|V⟩g1 + |H⟩g4 ) +

p
4
|V⟩g1 |H⟩g4 +

p
√

2

× (|H⟩g5 |H⟩g1 |V⟩g1 + |V⟩g5 |H⟩g4 |V⟩g4 ) +
p
4

× (|V⟩g1 |V⟩g1 + |H⟩g4 |H⟩g4 ) +
p
2
|ϕ+4 ⟩g1g4g5

]
. (84)

The successful operations of four BSAs and the prepa-
rations of resource states are crucial to realize the MBEPP.
Thus, we pick out the “twelve mode” case to herald a suc-
cessful purification. To elaborate, the coincidence detections
on DH1DV1, DH3DV3, DH5DV5, and DH7DV7 indicate that all
measurement outcomes are the same such as |ψ+⟩. Moreover,
the clicks on detectors D1 and D3 are used to herald the suc-
cess preparation for resource states. Furthermore, the pho-
tons in modes h5 and g5 are required to be detected to indicate
a successful MBEPP. Therefore, the “twelve mode” case will
yield a new mixed state with the higher fidelity compared to
the initial one.

Here, we only consider the case that ρa1b1 ⊗ ρa2b2 is in
the state |ϕ+⟩a1b1 ⊗ |ϕ+⟩a2b2 with the probability of F2 p2 and
one pair of resource states is in |ϕ+4 ⟩h1h4h5 and the other is in
|V⟩g5 |H⟩g4 |V⟩g4 . In this case, the state in eq. (84) becomes

1

2
√

2
(|HH⟩ + |VV⟩)a1b1 ⊗ (|HH⟩ + |VV⟩)a2b2

⊗ (|HHH⟩ + |VVV⟩)h1h4h5 ⊗ |VHV⟩g5g4g4 . (85)

Obviously, the mode g1 is always absent of photon, which
fails to satisfy the “twelve mode” case. The analysis for the
other remaining components of eq. (84) can be done with or

without a little modification. As a result, only if the noisy
copies are two photon states and the resource states are ϕ+4 ⟩,
the MBEPP can be successfully operated.

5.3 The MBEPP for logical qubit entanglement

This subsection reviews the MBEPP for logical qubit entan-
glement where the qubit is encoded in quantum parity code
[48,49]. It has three levels such as physical level, block level,
and logical level. As a result, the logical Bell states are writ-
ten as:

|ϕk,l⟩∗ =
1
√

2
[|0, k⟩∗ + (−1)l|1, 1 − k⟩∗], (86)

where “∗”, “k” and “l” (k, l = 0, 1) denote the corresponding
level, the amplitude bit, and the phase bit. In this case, the
higher level Bell states can be represented by the lower level
Bell states, i.e.,

|ϕk,l⟩(m) =
1
√

2m+1

∑
r∈S l,m

m
⊗

i=1
|ϕk,ri⟩,

|ϕk,l⟩(n,m) =
1
√

2n+1

∑
r∈S k,n

n
⊗

i=1
|ϕri,l⟩(m),

(87)

where m and n respectively denote each block contains m
photons and each logical level is made up of n blocks. Ad-

ditionally, S l,m = {r ∈ {0, 1}m|
m∑

i=1
ri ⊕ 2 = l} and S k,n = {r ∈

{0, 1}n|
n∑

i=1
ri ⊕ 2 = k}.

We only take n = m = 2 as an example to illustrate the
principle of the MBEPP for logical qubit entanglement as
shown in Figure 23 [81]. Each oval represents a BSA with
the QND3 in physical level depicted in Figure 24. The logical
resource state is given by

|GHZ⟩ j1 j2 j3=
1
√

2
(|000⟩(n,m)+|111⟩(n,m)) j1 j2 j3 , (88)

where j ∈ {g, h}. Consequently, we can purify the noisy
logical entanglement based on the measurement outcomes
after performing the logical BSAs on the logical qubits
g1a1, g2a2, h1b1, and h2b2. If all the photons remain intact
during the distribution and the perfect QND3 is available,
the similar analysis as the MBEPP for the physical qubit
can be adopted. Specifically, if the measurement outcomes
|ϕk1,l1⟩

(n,m)
g1a1 , |ϕk2,l2⟩

(n,m)
g2a2 , |ϕk3,l3⟩

(n,m)
h1b1

, and |ϕk4,l4⟩
(n,m)
h2b2

satisfy the
condition that

ki+2 = ki ⊕ 2,
4∑

m=1

lm ⊕ 2 = 0. (89)

The resultant state is

ρg3h3 = F1|ϕ0,0⟩(n,m)
g3h3
⟨ϕ0,0| + (1 − F1)|ϕ1,0⟩(n,m)

g3h3
⟨ϕ1,0|. (90)
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Figure 23 (Color online) The schematic diagram of the MBEPP for logical
Bell states with n = m = 2 [81]. Each oval represents a BSA for the physi-
cal Bell states. We use the yellow circles to represent the qubits of resource
states. The blue and red circles respectively denote the qubits hold by Bob
and Alice.
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Figure 24 (Color online) The schematic diagram of the BSA for the physi-
cal level with QND3 [81]. Based on the phase shifts of |α⟩, the physical Bell
states can be divided into two groups (|ϕ0,0⟩, |ϕ0,1⟩) and (|ϕ1,0⟩, |ϕ1,1⟩). Then,
|ϕ0,0⟩ (|ϕ1,0⟩) and |ϕ0,1⟩ (|ϕ1,1⟩) can be identified according to the response of
the photon detectors Di (i=1, 2, 3, 4).

In addition, the new mixed state can be given by

ρZ
g3h3
= F1|ϕ0,1⟩(n,m)⟨ϕ0,1| + (1 − F1)|ϕ1,1⟩(n,m)⟨ϕ1,1|, (91)

under the condition that

ki+2 = ki ⊕ 2,
4∑

m=1

lm ⊕ 2 = 1. (92)

In this case, the additional phase-flip operations are needed to
be done on the first photon and the fifth photon to transform
ρZ

g3h3
to ρg3h3 . If the measurement outcomes are

ki+2 = (ki + 1) ⊕ 2,
4∑

m=1

lm ⊕ 2 = 0, (93)

it yields a new mixed state as:

ρX
g3h3
=F1|ϕ1,0⟩(n,m)⟨ϕ1,0|+(1−F1)|ϕ0,0⟩(n,m)⟨ϕ0,0|. (94)

If the additional bit-flip operations are performed on the sixth
photon and the eighth photon, we can obtain ρg3h3 . Finally, if

the measurement outcomes satisfy the condition that

ki+2 = (ki + 1) ⊕ 2,
4∑

m=1

lm ⊕ 2 = 1, (95)

the resultant state can be given by

ρXZ
g3h3
=F1|ϕ1,1⟩(n,m)⟨ϕ1,1|+(1−F1)|ϕ0,1⟩(n,m)⟨ϕ0,1|. (96)

We can first transform the state ρXZ
g3h3

to the state ρX
g3h3

after the
additional phase-flip operations on the first and fifth photons.
After that, the bit-flip operations on the sixth and the eighth
photons can be performed to obtain the state ρg3h3 .

However, the photon loss is inevitable because of the noisy
environment. As discussed in refs. [48, 49], the logical BSA
can be successfully performed provided that at least one of
the blocks is intact and each block contains at least one pho-
ton. In this way, one can successfully operate the MBEPP for
logical qubit entanglement as long as the photon loss is less
than the tolerance threshold of the QPC and the entanglement
between different blocks still exists. Based on this conclu-
sion, we can obtain the success probability of the MBEPP
for logical qubit entanglement under the photon loss as:

Pg =

nt∑
j=0

4∏
s=1

P js E j(1 − η) jη4mn− jPF , (97)

where PF = F2 + (1 − F)2. If the purification is successful
under the condition that two noisy copies totally lose j pho-
tons, we have E j = 1. Contrarily, E j = 0. P js denotes the
success probability of a logical BSA under the photon loss
and s (s = 1, 2, 3, 4) represents the sth logical BSA. More-
over, nt represents the loss tolerance threshold of ρa1b1 and
ρa2b2 . Figure 25 shows the success probability of the MBEPP
for logical qubit entanglement versus the photon transmis-
sion efficiency η. It obviously illustrates that an increasing η
results in an enhancement on Pg.

In practical scenario, the perfect QND3 is hard to be avail-
able. Thus, the imperfection of QND3 will cause errors occur
on the BSA for the physical Bell states with the probability
of Pe. According to eq. (87) and the selection rule of this
MBEPP, the fidelity can be given by

F2 =
F2P2

4 + 4P2
2P2

3(1 − F)2 + 4P2P3P4F(1 − F)

PF[P2
4 + 4P2

2P2
3] + 8P2P3P4F(1 − F)

. (98)

Here P4 = P2
2 + P2

3, PF = F2 + (1 − F)2, P2 =
n∑

i∈even
Ci

n(1 −

P1)i(P1)(n−i), P3 =
n∑

j∈odd
C j

n(1 − P1) j(P1)(n− j), P1 =
(1−Pe)m

Pm
e +(1−Pe)m

and Ci
n =

n!
i!(n−i)! . Obviously, if Pe = 0, it yields F2 = F1.

One can clearly see from Figure 26 that the fidelity of the
resultant state improves with the initial fidelity F, accord-
ingly. In addition, an increasing Pe will result in a reduction
on fidelity F2 after the MBEPP because the imperfect QND
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leads to ambiguously distinguish the parity of the Bell states
in physical level. Moreover, the imperfection of QND3 leads
to the success probability of MBEPP for logical qubit rewrite
as:

P′g =
nt∑
j=0

4∏
s=1

P′js
E j(1 − η) jη4mn− jPFg(n,m), (99)

with

PFg(n,m)=PF[P2
4 + 4P2

2P2
3]+8P2P3F(1−F)P4, (100)

which indicates that P′g ≤ Pg. Figure 27 shows the ad-
verse effect of imperfect QND3 on the success probability of
MBEPP for logical qubit entanglement. For instance, if we
set n = m = 2 and η = 0.8, we have P′g = 0.18 for Pe = 0.1
and P′g = 0.3 for Pe = 0. Additionally, the success probabil-
ity of P′g accordingly increases with η. Moreover, it exists an
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Figure 27 (Color online) The success probability P′g of the purification
with the imperfect QND3 versus η with F = 0.85 [81].

optimal coding structure to maximize the success probability
of the MBEPP for logical qubit entanglement when the same
total number of photons is adopted.

6 Discussion and conclusions

In this review, we have introduced some typical EPPs, in-
cluding the basic entanglement purification theory, the EPPs
with linear optics, the EPPs with cross-Kerr nonlinearity,
the hyperentanglement EPPs, one deterministic EPP, and the
MBEPPs. Some important progress about entanglement pu-
rification experiments was also briefly introduced. Though
many EPPs were proposed and the several experiments were
also realized, it still remains a big challenge in practical ap-
plications. In the theoretical side, new entanglement purifi-
cation protocols such as the MBEPP were proposed. These
EPPs still require further investigation. In the experimen-
tal side, one can explore the experiments of EPPs in some
other solid quantum systems such as ion traps and quantum
dot systems. In addition, the entanglement of two atoms
via fibres was distributed over dozens of kilometres [125].
Hence, the long-distance entanglement purification in solid
state systems can be investigated in the future. Moreover,
the existing experiments realized the bit-flip error correc-
tion for one round. Actually, the fidelity of the mixed state
can be improved after multi-step purifications. As a con-
sequence, the researchers can pay attention to developing a
high-efficient multi-step EPP to further improve the fidelity
of the mixed state. Furthermore, one can devote to studying
the combination of the entanglement purification, entangle-
ment swapping, and entanglement memory in a meaningful
distance to construct intact quantum repeater. Finally, EPPs
can be used in the entanglement-based quantum communi-
cation such as QKD and QSDC to improve the secure key



P.-S. Yan, et al. Sci. China-Phys. Mech. Astron. May (2023) Vol. 66 No. 5 250301-21

directly, as well as the device-independent QKD and device-
independent QSDC to extend the distance in quantum com-
munication.
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