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A disformal rotating black-hole solution is a black-hole solution in quadratic degenerate higher-order scalar-tensor theories. It
breaks the circular condition of spacetime different from the case of the usual Kerr spacetime. This study investigated the dy-
namic behaviors of the motion of timelike particles in such disformal black-hole spacetime with an extra deformation parameter.
Results showed that the characteristics of the particle’s motion depend on the sign of the deformation parameter. For the positive
deformation parameter, the motion is regular and orderly. For the negative one, as the deformation parameter changes, the motion
of the particles undergoes a series of transitions between the chaotic motion and the regular motion and falls into the horizon or
escapes to spatial infinity. This means that the dynamic behavior of timelike particles in the disformal Kerr black-hole spacetime

with noncircularity becomes richer than that in the usual Kerr black-hole case.
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1 Introduction

Geodesics around black holes have been extensively studied
as it could help understand the properties of black holes, the
geometric structure of spacetimes, and the motion of parti-
cles. Especially, timelike geodesics with a back reaction can
also be applied to simulate the inspiral of black-hole bina-
ries with extreme mass ratio due to gravitational wave emis-
sion [1-5]. Negative energy geodesics are always used to
estimate the energy absorbed by particles passing through
the ergoregion of a rotating black hole using the Penrose
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process [6,7]. Moreover, null geodesics are also relevant for
studying the shadow of a black hole that was observed in the
direct imaging of the supermassive black hole M87* by the
Event Horizon Telescope [8]. In general relativity, it is ex-
pected that an astrophysical black hole in the universe should
be a Kerr black hole in terms of the well-known no-hair the-
orem. The geodesic motion of particles in the Kerr black-
hole spacetime is integrable because the geodesic equation
is variable-separable, and the number of integrals of motion
in the dynamic system is equal to its degree of freedom [9].
Then, the geodesic motion of particles is regular and orderly
in such black-hole spacetimes. However, in some alternative
theories of gravity, the geometries of black holes could be-
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come more complicated so that the geodesic equation is not
variable-separable, and chaos may emerge in the geodesic
motion of particles. One of the fascinating alternative theo-
ries of gravity is the so-called degenerate higher-order scalar-
tensor (DHOST) theories [10-14], which contain the higher-
order derivative of the scalar field and satisfy with a certain
set of degeneracy conditions. For a higher derivative theory,
some auxiliary variables are introduced to replace the higher-
order time derivatives of the Lagrangian with first-order time
derivatives. Then, a so-called kinetic matrix [10, 13] is ob-
tained using the coefficients of the terms quadratic in time
derivatives. If the kinetic matrix is invertible, the system in-
cludes the extra degree of freedom associated with the Os-
trogradsky ghost. The so-called degeneracy conditions are
conditions that make the kinetic matrix degenerate (i.e., the
matrix determinant is zero) so that the extra degree of free-
dom related to ghosts can be eliminated. In DHOST the-
ories, the degeneracy conditions on Lagrangian ensure that
the Ostrogradsky ghost is absent even if there exist higher-
order equations of motion, which means that the degeneracy
of Lagrangian is crucial for higher-order theories with only
a single scalar degree of freedom [10, 11]. In general alter-
native theories of gravity, it is difficult to obtain exact solu-
tions for black holes because of the more complicated field
equations. However, in DHOST theories, some new black-
hole solutions were obtained recently [12-17]. These solu-
tions can be classified into two types. One is the so-called
stealth solution, whose metric is the same as those in general
relativity, and the extra scalar field does not emerge in the
spacetime metric. The other is the nonstealth solution, where
the parameters of the scalar field appear in the metric, and its
metric form deviates from that in Einstein’s theory. DHOST
theories can be classified in terms of the concrete forms of
degeneracy conditions [10, 18], which depend on the func-
tions A; (i = 1,2, ...,5) and F in the action (1). The quadratic
DHOST Ia theory [10, 18] is characterized by the property
Ay +A; =0and F + XA, # 0 (where X is the kinetic term
of the scalar field in the DHOST theory). The usual quartic
Horndeski theory is a special case in the quadratic DHOST Ia
theory [10, 18]. Interestingly, disformal and conformal trans-
formations can lead from some DHOST Ia theory to some
other specific DHOST Ia theory [13]. Thus, when a disfor-
mal transformation is made on a known “seed” metric g, in
the DHOST Ia theory, a new solution g, can be obtained
in another specific DHOST Ia theory. With such a tech-
nique, a disformal rotating black-hole solution in quadratic
DHOST theories was obtained recently [18, 19]. This dis-
formal solution is nonstealth and has three parameters. The
mass, the spin, and the deformation parameter described the
deviation from the Kerr geometry. The scalar field attached
to the disformal solution is time-dependent with a constant
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kinetic density. Although it is a nonstealth solution, the dis-
formed Kerr solution is still asymptotically flat and has a
single curvature singularity as in the usual Kerr case. How-
ever, the scalar field makes the disformal spacetime no longer
Ricci flat. Especially, the presence of the metric function
g also leads to the noncircularity [20-22] in the disformal
Kerr spacetime [18, 19]. These spacetime properties could
modify the geodesic motion of particles and yield new ob-
servational effects different from those in the Kerr case. A
recent study indicated [23] that the shadow of a disformal
rotating black hole heavily depends on the deformation pa-
rameter, and some eyebrow-like shadows with self-similar
fractal structures appear as the deformation parameter lies
in certain special ranges. Moreover, the deformation pa-
rameter in the disformal Kerr black hole was constrained by
quasi-periodic oscillations with the observation data of GRO
J1655-40 [24] and the noncircularity of the spacetime was
examined by Sagittarius A* with orbiting pulsars [25]. The
post-Newtonian motion of stars orbiting the disformal Kerr
black hole was analyzed using the osculating orbit method
[26]. This paper aimed to investigate the chaotic motion of
particles around the disformal Kerr black hole in DHOST
theories. The paper is organized as follows: sect. 2 briefly in-
troduces a disformal Kerr black-hole solution with noncircu-
larity in quadratic DHOST theories and presents the geodesic
equation of a test timelike particle. In sect. 3, the noncircu-
larity makes the equation of motion not variable-separable,
leading to the chaotic phenomenon that occurred in the cor-
responding particle’s dynamic system. With techniques such
as the Poincaré section, Lyapunov exponents, and bifurcation
diagram, this study also investigated the effects of the defor-
mation parameter and the black-hole spin parameter on the
chaotic motion for a chosen timelike particle. Finally, this
paper ends with a summary.

2 Geodesic equation of particles around a disfor-
mal Kerr black hole in quadratic DHOST theories

This section briefly introduces a disformal Kerr black-hole
solution in quadratic DHOST theories. It belongs to non-
stealth rotating solutions due to an extra deformation param-
eter. The most general action in quadratic DHOST theories
can be expressed as [18, 19]:

S=fd4x\/—_g

X

5
P(X,$)+Q(X, $)0¢ + F(X, )R+ > A(X, )L; |, (1)
i=1

where R is the usual Ricci scalar, and the functions A;, F,
0, and P depend on the scalar field ¢ and its kinetic term



X. Zhou, et al.

X = ¢u¢", where ¢, = V,¢. L; are the Lagrangians contain-
ing quadratic in the second derivatives of the scalar field ¢,
which are defined by

L= ¢”V¢IJV’ L, = (D¢)2’
Ly = o p,  Ls = (¢I¢¢”V¢V)

Ly = "0,
3 ;#’%d’D(ﬁ @)

where ¢, = V,V,¢ denotes the second covariant derivatives
of ¢. In quadratic DHOST theories (1), to avoid Ostrograd-
sky instabilities and ensure only an extra scalar degree of
freedom besides the usual tensor modes of gravity, the func-
tions F and A; must satisfy the degeneracy conditions, which
result in the kinetic matrix determinant being zero. The zero-
value determinant of the kinetic matrix yields an expression
of the form [10]:

Do(X) + Di(X)U? + D,(X)U! = 0, 3)

where quantity U, is related to the auxiliary field U, = V,¢.
The functions Dy(X), D;(X), and D,(X) depend on the six
arbitrary functions F and A;. For simplicity, the formulas for
Dy(X), D1(X), and D,(X) are not listed, and the readers are
referred to the literature [10] for the detailed D;(X). By solv-
ing these three conditions D;(X) = 0,i = 0, 1,2, all DHOST
theories can be classified. The quadratic DHOST I theory
[10, 18] is characterized by the property A; + A, = 0. The
subclass Ia satisfies F + XA, # 0, which means that the de-
generate theories in class Ia depend on three arbitrary func-
tions A,, Az, and F. Another subclass (Ib) meets F+XA, =0
and A3 = 2(F —2XFx)/X?* (where Fy is the partial derivative
of F with respect to X), and the functions A4, As, and F are
arbitrary. The famous quartic Horndeski theory is a special
case in the quadratic DHOST Ia theory [10, 18]. It is well
known that a new solution in the DHOST Ia theory can be
obtained from a “seed” known solution by performing a dis-
formal transformation. The disformal transformation of the
metric can be expressed as [10, 18]:

g/lv = A(¢’ X)guv - B(¢’ X)¢/4¢v, (4)

where g, is the “disformed” metric and g,, is the original
“seed” one. A(X,¢) and B(X, ¢) are conformal and disfor-
mal factors, respectively. To obtain a nonstealth solution, the
functions A and B must satisfy certain conditions so that the
two metrics are not degenerate. Starting from the usual Kerr
metric in general relativity and adopting the transformation
with A(X, ¢) = 1 and B(X, ¢) = By, the disformal Kerr metric
in Boyer-Lindquist coordinates [18, 19] can be obtained.

A 2 p?
ds* = - = (dt — asin? Gdtp) + %drz +p?de?
p

sin” @

o (adt - (r2 + az) d<,0)2
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2
+a(dt+ \12Mr(r2+a2)/Adr) , 5)

with

a= —Bomz, A=r—2Mr+d, p2 =r? +d?cos? 6, 6)

where M and a are the general black-hole mass and the spin
parameter, respectively. « is the deformation parameter of
black hole that is related to the rest mass m of the scalar field.
The determinant of the metric (5) is g = (a — 1)p* sin® 6, and
the metric becomes degenerate when @ = 1. Moreover, to
maintain its Lorentz signature, one must have @ < 1. The
choice of A(X, ¢) = 1 can simplify the metric coefficients in
the disformal black-hole solution [18]. Here, the scalar field
is taken as only a function of the coordinates ¢t and » with a
form [18,19]:

~ ~ VR
ot,ry=—-mt+S,(r), S,= —der, @

R = 2Mm2r(r2 + az), A=r*+d®-2Mr.

Obviously, the scalar field is divergent as /r at large r, which
is nonetheless a less appealing feature of this solution. How-
ever, this is not a physical problem, as the scalar field ¢ inter-
acts with gravity only through its gradient [16] from eq. (4)
with A(X,¢) = 1 and B(X,¢) = By, and the form of the
scalar field (7) can avoid the pathological behavior of the
disformal metric at spatial infinite. Like in the Kerr black-
hole case, the disformal Kerr metric (5) also has an intrinsic
ring singularity at p = 0, and the spacetime is asymptoti-
cally flat. However, note that the disformal Kerr metric (5)
is not Ricci flat, i.e., R,, # 0, which is different from the
general Kerr case. Moreover, the drdf term yields the lack of
circularity in the disformal Kerr spacetime [18, 19], and the
spacetime cannot be foliated by two-dimensional meridional
surfaces everywhere orthogonal to the Killing field £ = 9,
and = 94 [20-22]. This is qualitatively different from the
usual Kerr spacetime in general relativity. The absence of
circularity modifies the structure of black-hole horizons so
that the horizons depend on the polar angle 6 and cannot be
given by r = const in Boyer-Lindquist coordinates. The cor-
responding surface gravity is no longer a constant [18, 19].
In a curved spacetime, the Lagrangian of a timelike particle
moving along the geodesic is

.,
L= Eg,uvxyx

=5 (80 + 8ri” + goolP + 8o ®® + 281010 + 284ri7),  (8)

where the dots denote derivatives with respect to the proper
time 7. Obviously, the metric functions in the disformal Kerr
spacetime (5) are independent of the coordinates ¢ and ¢. It
means that ¢ and ¢ are cyclic coordinates for the Lagrangian
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(8), and there exist two conserved quantities for a timelike
particle in the disformal Kerr spacetime (5), i.e., the energy
E and the z-component of the angular momentum L,

E= —Pr = _gtli =&l — gl«p‘p’ L= Py = gtgoi + gtpga‘p- 9)

With these two conserved quantities, the geodesic equation
for the disformal Kerr black-hole spacetime can be written
as:

i 8ooE + 8oL + 8ir8op” . GipE + gul + gur8ip? (10)
gz%; _gtlggOLp ' gttgtpcp _gtzsa |
and
: 88
grri2+g€0€2 = Veff(r»H;EsL)» grrz grr+ztr—W:|»
81p — 81t8pp

(11)

with the effective potential

E’g,, +2ELg, + L?
Ve (1,0 E, L) = —2%% BT 28y, (12)

g;%,; = 81t8pp

Moreover, the timelike particles in the disformal Kerr space-
time (5) must obey the constraint condition:

h = gui® + 8 + 8000 + 8o + 281,10+ 28, i+ 1 = 0. (13)

In the case with the nonzero deformation parameter a # 0,
the dynamic system is nonintegrable because the condition
(13) is not variable-separable, and the system admits only
two integrals of motion £ and L. This implies that the mo-
tion of the particle could be chaotic in the disformal Kerr
black-hole spacetime (5). The next section will investigate
the effect of the deformation parameter @ on the geodesic
motion of a timelike particle around a disformal Kerr black
hole (5).
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3 Chaotic motion of timelike particles moving in
the disformal rotating Kerr black-hole spacetime

To probe chaotic behaviors of timelike particles in the dis-
formal Kerr black-hole spacetime (5), numerically differ-
ential equations must be solved eqs. (10) and (11). This
study adopted the corrected fifth-order Runge-Kutta method
wherein high precision can be effectively ensured [27-30].
In the disformal Kerr black-hole spacetime (5), the mo-
tion of the particle is entirely determined by the black-hole
background parameters {M, a, @}, the particle’s parameters
{E, L}, and the corresponding initial conditions of the particle
{r, 6,76}

In principle, the choice for these parameters and initial
conditions of the particle is arbitrary. For convenience, this
study set the particle’s parameters £ = 0.94 and L = 0.8 and
probed the chaotic motion of the chosen particle in the disfor-
mal Kerr black-hole spacetime (5). First, the range of black-
hole parameters where the particle motion is allowed must be
analyzed. Eqs. (11) and (12) show g, > 0 and ggg > 0. Thus,
the boundary of the particle’s motion region is determined by
the condition that the effective potential Vg (7,0; E, L) = 0.
Figure 1 shows the boundary of the particle’s motion region
with £ = 0.94 and L = 0.8 in the disformal Kerr black-hole
spacetime (5) with the spin parameter a = 0.998. The al-
lowed motion region of the given particle decreases with the
decrease of the deformation parameters @. Especially, as «
decreases down to a threshold value a, = —0.42195, the al-
lowed particle’s motion region vanishes, which means that a
particle’s motion of given E and L exists only for @ > a..
Moreover, Figure 2 numerically presents the dependence of
a. on parameters a, E, and L in the disformal rotating Kerr
black-hole spacetime. For the fixed E and L, «, increases
with the spin parameter. As the spin parameter a becomes
zero, the a, approaches negative infinity. For fixed a = 0.998,
a. monotonously decreases with the particle’s energy E for

(Color online) Effect of the deformation parameter  on the particle’s motion region with E = 0.94 and L = 0.8. The left and right panels present

the boundary of the particle’s motion of the particle with different & for fixed a = 0.998.
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the smaller L, but it first increases and then decreases with
E for the larger L. For the fixed E, with increasing angu-
lar momentum L of the particle, «, first increases and then
decreases.

It is well known that the Poincaré section is an effective
tool to identify chaotic motion, which projects trajectories of
a continuous dynamic system on a given hypersurface with a
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pair of conjugate variables in the phase space. The intersec-
tion point distribution in the Poincaré section [31] reflects the
intrinsic dynamic properties of particles’ motions. For ex-
ample, the periodic and quasi-periodic motions correspond
to a finite number of points and a series of close curves in
the Poincaré section, respectively. However, chaotic motions
correspond to strange patterns of dispersed points with com-

° 00} ] 0.0} ' ' ]
|
=5r -05/ ] -0.2¢ ]
/ 10} 1 -0.4
$-10f S , S
! 15L -06
| . =0.3, a= ©  E=0.9, a=0.998
; [ _ — E=0.3,a=0.998 \ =0.9, a=0 ]
- | —E=094,1208, o0l — E=0.8,a=0.998 ] ‘ —— E=094,a=0998
" | e L2 -~ E=12, a=0.998 \ / ---- E=0.98, 2=0.998
i // ----E=15,1=0.8 % _10f ]
20—l L . . -25 . . N . , .
00 02 04 06 08 10 0.0 05 10 15 20 0.0 05 1.0 15
E L

Figure 2

(Color online) Dependence of the threshold value o, on the parameters a, E, and L in the disformal rotating Kerr black-hole spacetime

. Regions I

and II denote the regions where the motion of the given particle exists and does not exist, respectively, in the corresponding parameter panels.
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Figure 3

(Color online) Change of the Poincaré section (6 = 72—T) with the deformation parameter @ for the motion of timelike particles in disformal Kerr

black-hole spacetime with the fixed parameters a = 0.998, E = 0.94, and L = 0.8.
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plex boundaries. Figure 3 shows the change in the Poincaré
section (68 = 7—2‘) with the deformation parameter « for the
timelike particle’s motion in the disformal Kerr black-hole
spacetime (5) with fixed parameters a = 0.998, E = 0.94,
and L = 0.8. The characteristics of the particle’s motion de-
pend on the sign of the deformation parameter . For positive
a, the motion is regular and orderly, and the particle’s motion
region increases with a. For negative @, with the increase of
the absolute value of a, the particle’s motion region first de-
creases, and the chaotic motion appears gradually, and the
corresponding particle’s motion region increases. With the
further increase in ||, the chaotic motion of particles van-
ishes, and the particle’s motion region decreases. Finally, as
a decreases to a threshold value @, = —0.42195, the parti-
cle’s motion region disappears as the motion of particles with
given £ = 0.94 and L = 0.8 does not exist as shown in the
previous analysis. Moreover, this study also shows the effect
of the spin parameter a on the particle motion for the fixed
parameter @ = —0.28.

Figure 4 shows that the spin parameter a increases the
chaotic motion region for the chosen particle. The spin pa-
rameter a > 0.9 is selected. The main reason is as @ = —0.28,
the motion of particles with given £ = 0.94 and L = 0.8 ex-
ists only in the case of the rapidly rotating black hole. The
chaos in the timelike particle’s motion in the disformal Kerr
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black-hole spacetime (5) is detected by analyzing the Lya-
punov exponent of the dynamic system. The Lyapunov ex-
ponent [32-35] describes the growth or decline rate of the de-
viation vector AX between two nearby trajectories, reflecting
actually whether the motion is highly sensitive to the initial
conditions. In general relativity, the largest Lyapunov expo-
nent is defined as:

. .1 JAX ()]
LE = lim y(t)= lim —-In ———,
|AXo|

T—+00 T—o+00 T
where the length [AX(7)| = /igwa”Ax"| and Ax“(7) is the

deviation vector between two nearby trajectories at proper
time 7. In practical numerical calculations, it is impossi-
ble to take 7 — +oco. However, the curve Iny(7) versus
InT can be plotted in a longer range in a proper time. If
the curve has a constant negative slope, the system is reg-
ular. If it presents an inflection of the slope that comes close
to 0 and the plot converges to a certain value of y(7), then
the system is chaotic [32-35]. Figure 5 presents the change
In y(7) of In7 with different « for the particle with parame-
ters £ = 0.94, L = 0.8, and the initial conditions {r(0) = 3.5;
7(0) = 0; and 6(0) = T} in the disformal Kerr black-hole
spacetime (5) with a = 0.998. As @ = —0.2 or —0.3, the
curve has a negative constant slope, which means that the
motion of the particle is orderly. As a = —0.28, it presents

(14)

a=0.9 a=0.95 a=0.96
0.4 0.4 0.4
0.2 0.2+ 0.2
~ 00 ~ 00 ~ 00
-0.2 -0.2 -0.2
-04 t -0.4 -0.4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
r r r
a=0.98 a=0.99 a=1

Figure 4 (Color online) Change in the Poincaré section (6 = %) with the spin parameter a for the motion of timelike particles in disformal Kerr black-hole

spacetime with the fixed parameters @ = —0.28, E = 0.94, and L = 0.8.
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a=-0.20
a=-0.28

Ing(r)

o 2 4 8 8 10
Int

Figure 5 (Color online) Lyapunov exponents with different @ for the par-
ticle with the parameters £ = 0.94 and L = 0.8 and the initial conditions
{r(0) = 3.5; i(0) = 0; and #(0) = Z}. Here, a = 0.998.

an inflection of the slope that comes close to 0 and converges
to a certain value of y(7), implying that the largest Lyapunov
exponent is positive and the corresponding motion is chaotic.
Figure 6 also presents the Poincaré section for the particle
motion in the above three cases.

In @ = -0.2, the phase path of the particle motion is
a quasi-periodic Kolmogorov-Arnold-Moser (KAM) torus,
and the corresponding motion is regular. As @ = —0.3, there
is a chain of islands composed of three secondary KAM tori
belonging to the same trajectory. However, as @ = —0.28,
the KAM torus is broken, and there are many discrete points
distributed randomly in the Poincaré section, and the corre-
sponding motion is chaotic. The dynamic properties of the
particle with the chosen initial conditions agree with those
obtained by analyzing the Lyapunov exponent in Figure 5.

The dependence of the dynamic behaviors of the system

May (2022) Vol. 65 No. 5 250411-7

on the black-hole parameters can also be visualized in the
form of a bifurcation diagram. Figures 7 and 8 plot the bifur-
cation diagram of the radial coordinate r(7) with the defor-
mation parameter @ and the spin parameter a for the particle
motion with parameter £ = 0.94, L = 0.8, and the initial
conditions {r(0) = 3.5; #(0) = 0; and 6(0) = T} in the dis-
formal Kerr black-hole spacetime (5). This study shows the
results only for a > 0.90, as no stable orbit for the above par-
ticle with the chosen initial conditions in the slow rotation
black-hole case can be found. In @ = 0, the radial coordi-
nate r(7) is a periodic function, and there is no bifurcation
for the dynamic system as the metric (5) reduces to the Kerr
one and the corresponding dynamic system of the particle is
integrable because the condition (13) is variable-separable in
this case.

In a # 0, there obviously exist periodic, chaotic, and es-
caped solutions that depend on the deformation parameter
a and the spin parameter a. Moreover, as the parameters
a and a change, the motion of particles transforms among
single-periodic, multiple-periodic, and chaotic motions. It
means that the effects of the parameters « and a on the parti-
cle’s motion are very complex, which is the typical feature of
the bifurcation diagram in the usual chaotic dynamic system.
Moreover, in Figures 7 and 8, the range of « for the existence
of the oscillation solution increases with the spin parameter
a. With the decrease in a, the range of a for the existence
of the oscillation solution becomes more complicated. This
means that the dynamic behavior of timelike particles in the
disformal Kerr black-hole spacetime (5) becomes richer than
that in the usual Kerr black-hole case.

4 Summary

This study investigated the dynamic behaviors of the motion

=-0.2 «=-0.3
04} | | | | 1 04} | | | | i 04} i
0.2+ 1 0.2+ ﬂ 1 0.2+ 1
~ 00 ~ 00} D { '~ o0} 1
0.2+ 1 0.2+ b 1 0.2+ 1
0.4 1 0.4 4 0.4} ]
1 2 3 4 1 2 3 4 1 2 3 4
r r r

Figure 6 (Color online) Poincaré surface of section (6 = %) with different « for the particle motion in Figure 5.
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Figure 7 (Color online) Bifurcation with the deformation parameter « for the motion of the timelike particle with the parameters £ = 0.94, L = 0.8, and the
initial conditions {r(0) = 3.5; #(0) = 0; and 6(0) = %} in the disformal Kerr black-hole spacetime (5).

of timelike particles in the disformal rotating black-hole
spacetime with noncircularity in quadratic DHOST theories.
First, the motion of particles only exists, as the deforma-
tion parameter « is larger than a certain threshold value ..
For the particle with given E and L, threshold value a, in-
creases with the spin parameter a. As the spin parame-
ter a tends to be zero, the a. approaches negative infin-
ity. Moreover, the particle’s motion characteristics depend
on the sign of the deformation parameter @. For positive
a, the motion is regular and orderly, and the particle’s mo-
tion region increases with . For negative @, with the in-
crease in the absolute value of «, the particle’s motion re-

gion first decreases, the chaotic motion appears gradually,
and the corresponding particle’s motion region increases.
With the further increase in |a|, the chaotic motion of par-
ticles vanishes, and the particle’s motion region decreases.
Finally, as a decreases to a threshold value a., the parti-
cle’s motion region disappears, and the particle’s motion with
given E and L does not exist in the black-hole spacetime
with given a. The presence of chaos in the particle’s mo-
tion means that the dynamic behavior of timelike particles in
the disformal rotating black-hole spacetime with noncircu-
larity becomes richer than that in the usual Kerr black-hole
case.
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Figure 8

(Color online) Bifurcation with the spin parameter a for the motion of the timelike particle with the parameters E = 0.94, L = 0.8 and the initial

conditions {r(0) = 3.5; #(0) = 0; and 6(0) = T} in the disformal Kerr black-hole spacetime (5).
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