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This paper shows hidden information from the plastic deformation of metallic glasses using machine learning. Nig;Nbsg (at.%)
metallic glass (MG) film and Zrg4.13Cu;s575A119Nij0.12 (at.% ) BMG, as two model materials, are considered for nano-scratching
and compression experiment, respectively. The interconnectedness among variables is probed using correlation analysis. The
evolvement mechanism and governing system of plastic deformation are explored by combining dynamical neural networks and
sparse identification. The governing system has the same basis function for different experiments, and the coefficient error is
< 0.14% under repeated experiments, revealing the intrinsic quality in metallic glasses. Furthermore, the governing system is
conducted based on the preceding result to predict the deformation behavior. This shows that the prediction agrees well with the

real value for the deformation process.
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1 Introduction

The plastic flow of metallic glasses is reported to initiate
from certain loosely packed atomic-scale regions or soft
spots [1-3], which are often correlated by long-range elas-
tic interactions. After plastic yielding, the plastic strain
is highly localized into shear bands [4, 5]. The shear
banding process could profoundly affect their macroscopic
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mechanical behavior. One direct consequence is that a shear
band tends to become runaway with the work softening dur-
ing deformation [6], resulting in catastrophic failure [7-9].
Therefore, the understanding of the physical mechanism of
plasticity serves as a prominent topic for predicting the dy-
namics of deformation, failure of metallic glasses, and devel-
oping applications using these materials.

Previous theoretical analyses of plastic deformation in
metallic glasses fall into two categories. First, researchers
aim to quantitatively analyze the dynamics using time-series
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or statistical analysis such as Lyapunov exponents, multifrac-
tals or mean-field theory. The representative dynamical be-
haviors including self-organized criticality [10-12], fractals
[13-17], and chaotic behavior [18-20] are presented. Sec-
ond, constitutive models are developed to describe material
deformation and failure, depending on shear transformation
zone (STZ) theory [21-25]. In the STZ theory, plastic de-
formation occurs when localized regions rearrange because
of applied stress; furthermore, the density of these regions
is determined by a dynamically evolving effective disorder
temperature [3,26,27]. Certain factors at STZ can cause lo-
cal configuration changing. Once the configuration change,
the STZ is no longer available for additional transformations
in the original shear direction [28].

These pioneering studies increase our understanding of
plastic deformation in metallic glasses; however, the quanti-
tative analysis for certain experimental data, generally maybe
not be thorough and lack systematization. Furthermore, the
constitutive model is macroscopic and may not describe cer-
tain specific phenomena in experiments. How to bridge the
gap between systematization and particularity? In this study,
we intend to balance them by extracting governing sys-
tems from experimental data using machine learning (ML)
to present systematic and objective description. A mathe-
matical equation that can describe a physical phenomenon or
law is known as the governing system of the physical phe-
nomenon or law. Governing system in plastic deformation
has different representations as per different conditions.

ML is an effective tool for data analysis [29-31]. Vari-
ous ML algorithms have been proposed and discussed for the
past decades: linear regression [32], logistic regression [33],
elastic net [32], ridge regression [34], Bayesian regression
[35], decision tree [36], k-nearest neighbors [32], support
vector machines [37], sparse representation [32, 38], Gaus-
sian process regression [39], neural networks [40], random
forest [32], bagging [41], stacking [42]. Among these meth-
ods, sparse identification can accurately show the data inden-
tifying the fewest terms in the dynamic governing systems
[43,44]. Dynamical neural networks is a common approach
to learn the black-box models, which reproduce the observ-
able input-output behavior of the target system and reveal in-
ternal physical mechanisms [45]. Accordingly, we employ
sparse identification and dynamical neural networks to exca-
vate governing systems and evolvement mechanism.

In this study, we consider Nig,Nbsg (at.%) metallic glass
(MG) film and ZI‘64.13CU15_75A110N110'12 (at.%) BMG as
model materials. First, we determine relevant variables using
correlation analysis, for selecting input data in the dynamical
neural network. Then, we explore the deformation mecha-
nism by dynamical neural networks and obtain the governing
systems corresponding to the black-box using sparse identifi-
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cation. To explore the dynamic variation during deformation,
the largest Lyapunov exponent is presented for the preceding
experimental data. Our results show that the identified parsi-
monious models can accurately describe the deformation be-
havior in nano-scratching and compression experiments. The
extracted governing systems have the same basis function in
different experiments. The coefficient error is < 0.14% under
repeated experiments. Moreover, using governing system to
predict the deformation behavior is applicable.

2 Method and results

The Nig;Nbsg MG films under unrelaxed glassy states were
deposited on a cleaned monocrystalline silicon wafer with a
size of 10 mm X 10 mm X 0.5 mm in a high-vacuum chamber
(a base pressure of 5 x 107 mbar (1 mbar = 10? Pa)) with a
load-lock system, and a probe handler using a direct current
(DC) planar magnetron sputtering device (Shenyang ZKY
Technology Development Co., JGP-450). The thickness of
the Nig;Nbsg MG film was ~ 2 um, obtained from a cross-
section view observed by high-resolution scanning electron
microscopy (SEM) (Phenom world, Phenom Proxy). Nano-
scratching experiments were conducted in a Triboindentor
TI-900 machine (Hysitron, Inc.). The nanoscratch indentor
was a conic diamond with a tip radius of 1 mm and a half-
angle of 7t/6. The scratch length was 20 mm, and the mov-
ing speed of the nanoindenter was 2 mmy/s. For Nig,Nbsg
(at.%) MG, nano-scratching with a scratch time of 5 s, load-
ing forces of 2000 and 500 puN were performed. At each
loading force, at least three scratches were repeatedly per-
formed. Under repeated experiments, the scratches were con-
ducted on a single sample in different locations.

Figure 1(a)-(d) show signals with a scratch time of 5 s,
loading force of 2000, and 500 uN in horizontal and ver-
tical directions, including the lateral force (LF), lateral dis-
placement (LD), normal force (NF), and normal displace-
ment (ND)-time, respectively. The nanoscratching has not
really started between 0 to 12 s, which is preparatory work
before the experiment. Then, the nanoscratching process,
which is the subject of investigation, occurs from the time
duration from 12 to 17 s. Therefore, the time axis starts
from 12 to 17 s in Figure 1(a)-(d). Note that the curve of
LF versus time comprises several serration events. Each ser-
ration event includes force-increasing and force-decreasing
processes. In the force-increasing process, the structural
strengthening in the atomic scale occurs, thereby facilitat-
ing the accommodation of the plastic shear strain. How-
ever, the force-decreasing process corresponds to a force re-
laxation and usually causes a shear separation of the MG
surface.
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(Color online) (a), (b) Normal force and displacement as functions of scratch time under loading forces of 2000 and 500 uN with a scratch time of

5s8; (c), (d) lateral force and displacement as functions of scratch time under loading forces of 2000 and 500 uN with a scratch time of 5 s.

2.1 Variable correlation analysis

A correlation analysis is conducted to select input data in the
dynamical neural networks and sparse identification. As dis-
cussed in ref. [16], stick-slip behavior reflects a surface dam-
age process during friction associated with an intermittent
deformation process underlying LF. The investigation of LF
during the nanoscratching process may provide valuable in-
formation to understand the damage process of metals; there-
fore, the primary objective of this study is LF. Assume that
noncontinuous deformation can be expressed by a dynamic
system

Z(k+ 1) = f(Z(k); P), ey

where Z(k) = (z1(k),...,z,(k)) is observed data, i.e., time-
series data of deformation, which are variables describing
the dynamical state of the system; P contains parameters rep-
resenting variable factors, such as temperature, deformation
time, or strain rate, which drive the deformation from one
state to another; and f = (fi,...,f,) comprises generally
of nonlinear functions of Z(k) with fixed point Z = Z. The
Pearson correlation coefficient among variables is given by

COV(Z,’, Zj)
VVar(z) Var(z;)’

where Var(z;) = Cov(z;, ), 1 <i,j < n.

PCC(z,zj) =

Figure 2(a) shows the correlation for each pair among LF,
LD, NF, and ND as a function of time during the nano-
scratching process under 500 uN-5 s. Then, we present a
correlation matrix among four variables to obtain specific re-
lation. From the correlation matrix shown in Figure 2(b), we
obtain that LD or NF has a high correlation with LF. This in-
dicates that, LD or NF can be selected as input data if we con-
sider LF as training data using dynamical neural networks.

Figure 2(c) and (d) show the correlation analysis for each
pair among four indicators under 2000 uN-5 s. As per
the mutual correlation in Figure 2(d), we obtain that LF
has high correlation with LD. This indicates that, LD can
be selected if we take LF as training data. Moreover, we
obtain that the absolute value of correlation for each pair
of variables ([PCC(LF,LD)|, [PCC(LENF)|, [PCC(LFE,ND)|,
[PCC(LD,NF)|, [PCC(LELD)|, and |[PCC(NF,ND)|) drasti-
cally increases to 1 before plastic deformation in Figure 2(a)
and (c). We will explain this phenomenon as follows.

Assuming that there is a value P, in the system (1), such
that at least one of the eigenvalues of the Jacobian matrix
2 (6ZZ’P ) |, at Z = Z, which characterizes the change rate of
the orbit of a system around fixed points, equals 1 in modulus
or absolute value. This indicates that the system undergoes
Neimark-Sacker bifurcation, flip bifurcation, or fold bifurca-
tion at fixed points when P reaches the critical value P.. The

transition from elastic deformation to plastic deformation can




L. Yu, et al.

Sci. China-Phys. Mech. Astron.

June (2022) Vol. 65 No. 6

264611-4

o
—

——PCC(ND,LD)

PCC(ND,LF)
—— PCC(NF,LD)
—— PCC(NF,LF)
——PCC(LD,LF)
—— PCC(ND,NF)

o

Pearson correlation coefficient ©

-1.0 -~
12 13 14 15 16 171
Time (s)
(¢) 1.0 0.6
: f
2
S =
% 05 [ -0.7
3
c
kel
% 0 | ——PCC(NFLF) -0.8
= —— PCC(LD,LF),
8 —— PCC(ND,N!
c
3 -05 -0.9
[
jo)
o
-1.0 -1.0
12 13 14 15 16 17

Time (s)

-0.7

06 (b 1.0
ND 08
_ 0.6
0.4
_ : 0.2
0
-0.2
' LE -0.4
-0.6
ND NF LD LF

-0.8

Variables
z
=

-
o

Variables

() 1.0

ND

0.5

o NF
<@
e}
8
= b 0

LF -0.5

ND NF LD LF
Variables

Figure 2 (Color online) Curves of Pearson correlation coefficient for the variables against time and correlation matrix with a scratch time of 5 s, loading force
of 500 uN ((a), (b)), and loading force of 2000 uN ((c), (d)). The green right y-axis corresponds to the correlation between ND and NF. (b), (d) The matrix
confirms that LF has a positive correlation with LD, NF, and a negative correlation with ND.

be viewed as a bifurcation in dynamic system. Following the
analyses [46,47], the dynamic system (1) can be linearized at
Z = Z as follows:

df(Z, P.)

Zk+1)=Z
(k+1) =

l7(Z(k) =~ 2) + 0o(Z(k) - 2).  (2)
If we introduce Y(k) = S~'(Z(k) — Z), of which the trans-
formation S comprises the corresponding eigenvectors, the
system can be transformed to

Y(k+1) = A(P)Y (k) + &(k), 3

where A(P) is the diagonalizable matrix of %bzz,
and &(k) = (&1(k),...,&x(k)) are Gaussian noise with zero
means and covariances k;; = Cov(§;,¢;). Here, A(P) =
diag(4;(P),..., 4,(P)), with each |1;| between 0 and 1 cor-
responding to the stable point. With the parameter P tending
to be P, if the largest eigenvalue in modulus, say A;, which
we call the dominant eigenvalue, approaches 1, and then bi-
furcation occurs.

Without loss in generality, suppose that Y(k) has zero
mean, and the covariance and Pearson correlation coefficient
are given by [46,47]

kij

Cov(y;,y;) = 1_—/le,
il

kij YA =1 =23
N 1= 2:4; ’
Note that Var(y;) = Cov(y;,y;) — +oo for the eigenvalue
|41] — 1, while Cov(y;,y;) for i # j and Var(y;) for i # 1
show no drastic change (bounded). PCC(y;,y;) — 0 for any
j # 1 when |4;| — 1, i.e., the variable y; is related to the
dominant eigenvalue A;.

For variables Z whose values are directly measured by

PCC(yi,y)) =

n
Zi = 2, 8ijyj+Z, where s;; is the (i, j) element of linear trans-
J=1

formation S. The covariance trend can be obtained when the
parameter P tends to P, using the following expressions

Cov(zi,zj) = siusjVar(yr) + - -+ + 88 Var(y,)
n

+ ), Covhkym),

k,m=1,k£m
Cov(zi, z;)

+/ Var(z;) Var(z ) ’

where Var(z;) = Cov(z;,z), 1 < i,j < n. With the results
from the space Y, we can obtain that if z; and z; are related to
y1, 0 s;1 and s;; are nonzero, Cov(z;, z;) will tend to co and
[PCC(z;,z;)| — 1 drastically if |4;] — 1 on the observable
space Z. This is the reason that the absolute value of corre-
lation drastically increases to 1 before plastic deformation in

PCC(zi, zj) =
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Figure 2(a) and (c), which may be considered as a predicting
index for discussion in future.

2.2 Dynamical neural networks

Before learning the black-box models, a reconstructed phase
space is necessary. As described by Strogatz [48], an un-
known dynamic system has an equivalent topological prop-
erty with the model in the reconstructed phase space. The
basic idea is to unfold dynamics through a phase space
reconstruction by embedding the time series in a higher-
dimensional space using a suitable time delay [49, 50].
Assume the original one-dimensional signal, denoted as
x(@),i=1,2,...,N, the point of the reconstructed phase
space, Y (i, j), is

x(1) x(2) - x(N—-(m-1)1)
x(1+71) x(2+ 1) - xX(N — (m - 2)1)
x(1+(m-D1) x2+(m—- D7) --- x(N)

where N is the length of time series; 7 is the time delay, cal-
culated using the mutual information method [51]; m is em-
bedding dimension using the Cao method [52]. The number
of points in the reconstructed phase space is N — (m — 1)r.

Considering the increasing trend in the correlation curves,
we present the largest Lyapunov exponent [53],

o< LW

h Z tn L(ti1)’

tyM — 1t pay

where L(t,_;) or L'(t) is the Euclidian module between
Y(i, j) and its nearest neighbor point in the reconstructed
phase space, see details in ref. [25]. The largest Lyapunov
exponent, A, is a parameter to characterize the rate of the
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divergence of the trajectories in the phase space. A positive
value of A shows chaotic dynamic behavior, whereas, a neg-
ative value of 1 shows a stable dynamic behavior. Figure 3
shows the largest Lyapunov exponent as a function of defor-
mation time. As shown in Figure 3(a) and (b), the Lyapunov
exponent has a large variation (drastically increases to 0) be-
fore plastic deformation under 500 uN-5 s and 2000 uN-
5 s, indicating the undulation of dynamic behavior in a pre-
transition stage. The fluctuation of the largest Lyapunov ex-
ponent agrees with the trend of Pearson correlation coeffi-
cient before plastic deformation in Figure 2(a) and (c), which
can be combined as a predicting index.

Combining the preceding correlation analysis and phase
space reconstruction, we use dynamical neural networks to
train data, and identify a black-box model. A two-layer feed-
forward network with sigmoid hidden neurons and linear
output neurons can arbitrarily fit multidimensional mapping
problems, given the consistent data and a sufficient number
of neurons in its hidden layer. The input matrix P is consti-
tuted by an m-dimensional observational variable

(1) x1(2) -+ x1(N)
x() x22) - x(N)

-xm(]) xm(z) e -xm(N)
Moreover, the target matrix Q is in the reconstructed phase
space
xk(M)
X (M + 1)

x(1)
X (1 + 1)

xx(l+m—-D1) -+ x;(M + (m - 1)7)

where M = N —(m— 1),k =1,2,...,m. Generally, 70% of
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Figure 3 (Color online) Largest Lyapunov exponent as a function of deformation time for Nig;Nbsg MG film during a nanoscratch process under (a) 500 puN-
5 s and (b) 2000 uN-5 s. The green right y-axis corresponds to the largest Lyapunov exponent. The largest Lyapunov exponent goes from negative to positive

in (a) and (b) before the transition of plastic deformation.
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the samples are used to train the network; 15% of the samples
are used to validate the trained network; and the remaining
15% of samples are used to test the network.

As per the correlation analysis, we set LF and LD as input
vectors, and reconstructed LF as target vector to confirm the
correlation. The number of samples points is 15000, and the
corresponding algorithm is presented in Algorithm 1.

Figure 4(a) and (b), compare testing data and real data to
estimate the efficiency of dynamical neural networks under
500 uN-5 s and 2000 pN-5 s (the blue line is real data; the red
line is testing data. The subfigure is a magnification of the re-
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gion in the square box). To obtain additional evidence about
testing, Figure 4 (c) and (d) show group of new experimental
data (the second experiment) under the same condition with
50% of samples used to train the network; and 25% of sam-
ples for testing. Moreover, the mean squared error (MSE)
of the variable, x; is considered as the criteria standards to
evaluate the validity of the algorithm,

1 < _
MSE(x) = 2 > (M + j) = %M + )Y
j=1

where x; (M + j) is the original value, and xx(M + j) is the

Algorithm 1 Algorithm for dynamical neural networks

Input: The combined variable of lateral displacement and lateral force, X(i),i = 1,2,...,N;

Output: The training, validation and testing of Y (i, j);

1. Reconstruct the variable of lateral force y(i),i = 1,2, ..., N, denote as Y(i, j);

2. Data normalization, [Y7,Ys]=mapminmax(Y), [X;,Xs]=mapminmax(X);
3. Dividing data, [trainsample.Y(X), valsample.Y(X), testsample.Y(X)]
=dividerand(Y(X),0.7,0.15,0.15);

4. Create network, net=newff(minmax(Y),[10,1],tansig purelin,“traingdm”);

5. Set network parameters, net.trainParam.epochs=1000;

net.trainParam.goal=1x1 077; net.trainParam.Ir=0.01; net.trainParam.mc=0.9;

6. Train network, net.trainFcn="trainlm”, [net,tr]=train(net,trainsample.Y ,trainsample.X);

7. Training result, validation and testing, [normoutput,Perf]=sim(net,sample.Y,[],[],sample.X);

8. Reversely normalized, output=mapminmax(“reverse”, normoutput,Yy).
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Figure 4 (Color online) Explore the physical mechanism of deformation process by dynamical neural networks. Performance of LF for NigyNb3g MG film
under (a) and (c) 500 uN-5 s with 15% and 25% of samples used for testing, (b) and (d) 2000 uN-5 s with 15% and 25% of samples used for testing. The

subfigure is a magnification of the region in the square box.
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testing data. Table 1 lists the errors under the condition of
15% and 25% of samples for testing. The smaller the er-
ror value, the better the algorithm effect. The results show
that neural networks can train and test the deformation data.
Furthermore, with the augment of the proportion of samples
for testing, we obtain that MSE decreases under 2000 puN;
however, it increases under 500 puN. This elucidates the de-
formation during the nanoscratching process to be stochastic.

2.3 Sparse identification
Generally, a dynamic system has the following form:
X(1) = f(X(1)), “)

where X (1) = (x1(2), X2(8), . . ., X,,(1)), X (¢) € R" are the state
of a system at time ¢, and the function f(X(7)) is the dynamic
constraints that define the equations of motion of the system.
As discussed in ref. [43], if we rewrite the system as:

X(1) = f(X(1) = OX)E, &)

where E = {£1,&,...,&,} is the sparse matrix of coefficients,
and O(X) is a basic library function with the combination of
X, including constant, polynomial, and trigonometric terms,

0X) =1 X PX) sin(X) cos(X) ...]|.

P(X) is the polynomial of X, e.g., quadratic polynomial can
have C? combination

P(X) = {x7(0), X1 (DX (D), . . ., Xp(DX-1 (1), Xo(1)}.

Our aim is to formulate appropriate ®(X) and sparse matri-
ces E. As per the phase space reconstruction theorem [54],
the evolution of variate (x,(2), Xx(t + 7), X (t + 27),--- ),k =
1,2,...,m, is topology equivalent to the dynamic evolution
of system. Unlike considering the derivative of the variable,
we define operator R to implement the variate phase space
reconstruction. Then, the left-hand side derivative of system
(4) can be replaced by the operator, R(x;) = f(x;), to dis-
cover the governing systems from a black-box. The related
algorithms are presented in Algorithm 2.

Table 1 MSE of dynamical neural networks under 500 and 2000 uN-5 s

Sci. China-Phys. Mech. Astron.

MSE (uN) Training Validation Testing

500 (15%) 1.2255x107! 1.1744x107! 1.1266x107!
2000 (15%) 2.4581x107! 3.0303x107! 2.9091x107!
500 (25%) 1.4472%107! 1.4140%107! 1.4046x107!
2000 (25%) 9.4809x1072 9.3158x1072 9.9836x1072

June (2022) Vol. 65 No. 6 264611-7

Algorithm 2 Sparse identification

Input: State variable space, X, Sparsity threshold, A;

Output: Sparse coefficient matrix, =;

1. Solve the numerical derivative, dX/d¢ based on X;

2. Construct the base function library, ® based on X;

3. Find the sparse matrix by the least squares method, Z;

4.fork=1:10do

5. Find small coefficient, smallinds=(abs(Z) < 1);

6 Assign the small coefficient to 0, ZE(smallinds) = 0;

7 for ind = 1 : n, n is state space dimension do

8. Biginds =~ smallinds(:, inds);

9 Do the regression for the remaining terms and continue to solve the
sparse matrix, Z(biginds, ind) = @(:, biginds) dX/d(:, ind);

10. end for

11. end for

12. Return sparse matrix, =.

In this algorithm, we first use the least squares algorithm
to preliminarily estimate the sparse matrix =. Then, we look
for the small coefficient in the sparse matrix to determine
whether the small coefficient is less than the sparsity thresh-
old A, and assign these coeflicients to zero. The remaining
non-zero coefficient matrix is substituted back into the orig-
inal problem to form a new sparse solution problem. Then,
the sparsity threshold condition A is continuously used for fil-
tering until all non-zero coefficients converge. The sparsity
threshold condition is helping for solving sparsity, making it
possible to quickly converge to the sparse solution after cer-
tain iteration steps.

In our study, for Nig;Nbsg in the nano-scratch process
under 500 and 2000 puN-5 s, we attempt to extract a two-
dimensional system, where x; represents LD and x, is LF.
We consider reconstructed LF as input to obtain = using the
least squares method. Table 2 shows the corresponding 2-
dimensional identify systems. As shown in Table 2, Systems
1 and 2 represent 500 uN-5 s and 2000 uN-5 s, respectively;
moreover, R and R, are the columns of the reconstructed
LF in the phase space. The difference between columns of
the governing system can be equally as one type of deriva-
tive, thus revealing an inner connection between plastic de-
formation and LF rate. This is consistent with the conclusion
of ref. [17], which shows the chaotic attractor by LF and
LF rate. Table 2 shows the system coefficient errors for re-
peated experiments. The fluctuation of the system coefficient
is < 0.14% in repeated experiments under the same condi-
tions, thus comfirming that coefficient is stable and repeat-
able. Figure 5 shows the curves of the identified system and
original data. The blue line corresponds to the original data,
and the red-dotted line corresponds to the model data. This
shows that, the model data agree with the real value for the



L. Yu, etal.  Sci. China-Phys. Mech. Astron.

Table 2 Sparse coefficients of identified systems with LF and LD as input
vectors, and reconstructed LF as output vector. Systems 1 and 2 represent
500 uN-5 s and 2000 uN-5 s, respectively. The error from the repeated ex-
periments under the same condition

System 1 System 2
Element
‘R| ‘Rz sR] ‘RZ

1 0 0.3662+4%107° 0 0.4812+4%107°

X| 0 —0.0423+1x1073 0 0.1007+1.4x1073

X3 1 1.0000£8%1078 1 1.0011+3%x10~°

x? 0 0.0007+1x1073 0 0.0093+4x1078
X1X2 0 0.0008+1x107° 0 ~0.0010+1x1078

x2 0 -0.0002+0 0 0.0000+0

deformation process. The results demonstrate that a sim-
ple polynomial can describe the deformation dynamics. The
concise models confirm that there exists a governing system
for training data of neural networks that can capture system
dynamics.

Based on the governing system, we can determine the evo-
lution of LF over time. The curve of LF versus time com-
prises serration events induced by the stick-slip movements.
From the system coefficient, we obtain that the combination
of LF and LD (i.e., the right-hand side of the system) posi-
tively influences the serration events during the nanoscratch-
ing process under a loading force of 500 uN. Moreover, it
has a negative impact under a loading force of 2000 uN. Fur-
thermore, along with refs. [16, 55], shear branching is the
main mechanism that dominates the scratching process of the
nanoindenter, which forms a shear-band-structure-like state.
The single-shear band sliding in repetitive patterns leads to
considerable ductility, and the simultaneous nucleation of nu-
merous shear bands and their interactions contribute to plas-
ticity. Thus, controlling the governing system parameters
may have the same effect on plasticity with changing extrin-
sic conditions.

As discussed in ref. [16], increasing the loading force

(a) 100
——500 uN-5's
= = =~ Model data
Z 50
=2
[0
o
S 50
= N
© \ N \
a O \
5 45 N\ \WAN
40
5 55 6
-50
0 5 10 15 20

Lateral displacement (um)

Figure 5

(Color online) Performance of the sparse identification of nonlinear dynamic algorithm.
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gradually increses the amount of deformation on the surface
underneath the nanoindenter tip with increasing indentation
depth. Multiple clusters with low shear modulus indepen-
dently develop in the contact area between the nanoindenter
tip and surface, which are the fundamental units of shear de-
formation in MG. At a higher loading force, the motion of
LF corresponds to the operation of shear branching during
the nanoscratching process. At a smaller loading force, the
adsorption of surface atoms on the nanoindenter tip leads to
certain forces that influence the LF. The local properties of
LF at a smaller loading force are more complex than those at
a higher loading force, which is demonstrated by the results
in Table 2. This shows that the system under the loading
force of 500 uN has additional nonlinearity than that under
the loading force of 2000 uN.

Using the governing system, we obtain an obvious correla-
tion between LF and LD used to compare with certain exper-
imental phenomena. For example, we may speculate shear-
separation activity in the stick-slip behavior by continuously
observing the fluctuating amplitude of the LF rate from the
governing system. The larger fluctuating amplitude of the
LF rate, shows a more significant shear-separation activity
in the stick-slip behavior. Moreover, to confirm the basis
function, we consider Zrgy 13Cu;575Al19Nijo.12 (at.%) BMG
compressed at the temperature 183 K with a strain rate of
2.5 x 107 57! to test the basis function. We conducted com-
pressive tests using a legacy dynamics and fatigue system
model 8652 electric actuator (Instron) equipped with an envi-
ronmental box. To exclude the influence of data-acquisition
frequency on stress fluctuation sensitivity, we selected data
acquisition frequencies of 0.5, 1.0, 10.0, and 100.0 points/s
with an increase in strain rates.

Figure 6(a) shows the compressive nominal stress-time
curve. Each stress drop is associated with the nucleation
of a band of localized plastic deformation, which propagates
along the sample under certain conditions. After the stress in-

(b) 400
300
z
S 200
P 90
1<
L 100
©
9 0 280
= ——2000 uN-5's
100 = = =Model data
270
5 55 6 6.5
-200
0 5 10 15 20

Lateral displacement (um)

Nig;Nbzg MG film under (a) 500 uN-

5's, and (b) 2000 uN-5 s. The blue line corresponds to the real data, and the red-dotted line corresponds to the model data. The subfigure is a magnifi-

cation of the region in the square box.
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creases beyond the yield stress, the plastic deformation com-
Figure 6(b) and (c) show the correlation analy-
sis between strain, stress, stress rate and deformation energy.
As shown in Figure 6(b) and (c), the strain or energy is rel-
atively closely connected with stress. This indicates strain
or energy can be selected as input if we consider stress as
the training data using dynamical neural networks. Figure
7(a) shows the testing result by considering the normal stress
and normal strain as input and reconstructed stress as output
vector. The blue line corresponds to the real data and the
red line corresponds to the testing data. In this process, the
number of the sample points is 19189, and the MSE of train-
ing, validation, and testing are 7.2513%1072, 6.9528x1072,
7.4081x1072 respectively. If 50% of the samples are used
to train the network and 25% of the samples are applied
to test the data, the MSE reduces instead (6.6648x1072,
6.8206x1072, 6.9650x1072). Table 3 presents sparse co-
efficients of identified systems for Zres 13Cu;575A110Nijo.12
(at.%) BMG, where x; represents the normal strain in Sys-
tem 1 or energy in System 2, and X, is the normal stress. Fig-
ure 7(b) shows the performance of the sparse identification

mences.
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of nonlinear dynamics algorithm. The subfigure is a magni-
fication of the region in the square box. This indicates that
the simple polynomial can depict deformation dynamics in
compression experiments.

The MSE of the variable between real data and model data
from sparse identification under three conditions (500 uN,
2000 puN and 183 K, 2.5 x 107* s7!) are 2.439x107!,
7.578%107", 3.966x107", respectively. The results show that
simple polynomial can have high accuracy and reliability for

Table 3 Sparse coeflicients of identified systems for Zrgs 13Cu;575Al10-
Nijo.12 (at.%) BMG, where x| represents the normal strain in System 1 or
energy in System 2, and Xx; is the normal stress

Element System 1 System 2
Ri R, R R
1 0 -0.8530 0 0.5147
X 0 2.5454 0 -0.0163
X2 1 0.9894 1 0.9995
x? 0 -0.2555 0 0.0000
X1X2 0 0.0011 0 0.0001
X3 0 0.0000 0 0.0000
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Figure 6 (Color online) (a) Stress-time curves for Zrgs,13Cuy575A110Nij0.12 BMG deformed at 183 K with strain rate of 2.5 X 1074 s71. (b), (c) Curves of

Pearson correlation coefficient for the variables against time, and the correlation matrix, which clearly show the relationship between stress, strain, energy, and
stress rate (denote as velocity in the figure).
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process by dynamical neural networks; (b) the performance of the sparse identification of nonlinear dynamic algorithm. The subfigure is a magnification of the
region in the square box.
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describing deformation dynamics. Naturally, if we consider
all variables as input to obtain a 4-dimensional governing
system, the system will be more complex with higher accu-
racy error. This method provides a principled approach to
maximally leverage the data to capture the hidden system.

2.4 Prediction by governing system

In this section, by considering Nig,Nbsg (at.%) MG film as
an example, we employ the governing system to predict the
deformation process under 2000 uN-5 s and 500 puN-5 s.
Denote the variable for LF and LD as x(i) and y(i), where
1,2,3,...,N, N is the length of the data. We take
x(id : id +7t—1) and y(id : id + v — 1) as initial value
where 7 is the time delay of the reconstructed phase space.
Then, we substitute the initial value into the loop as per the
governing system to obtain a new value and store it (see the
corresponding algorithm in Algorithm 3). During the calcu-
lation for 2000 uN-5 s, id and step are considered as 2000
and 5600, respectively, in Figure 8(a). The red line corre-
sponds to the real data, and the blue line corresponds to the
predicted data from the governing equation. The prediction
is consistent with the real value at the beginning, and then
the curve emerges from separation as time goes on. This is
because the largest Lyapunov exponent goes from negative to

i =
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2
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positive with time. The system dynamics behavior is unsta-
ble, stochastic, and sensitive to the variation of external con-
ditions. As shown in Figure 8(b), we move the initial value
back to x(9712 : 9712 + 7 — 1) and y(9712 : 9712 + 7 — 1),
and present the prediction for the following points. We ob-
tain that the trend of the predicted data is consistent with the
trend of the real data, and the predicted value agrees with the
real value.

Algorithm 3 Predicted algorithm by governing system

Input: The variable for the lateral force and lateral displacement,
x(i), y(i),i = 1,2,3,..., N and sparse matrix, =;

Output: Return predicted values;

1. Fix the initial value, yb = y(id : id + 7 — 1,:), xb = x(id : id + T — 1,)
and circulation step;

4. for k = 1: stepdo

tmp = [xb, yb];

® = poolData(tmp, r, polyorder, usesine);

yy=0=x*Z;

pre = yy(:, 2);

yb = [yb(2 : end); pre], xb = [xb(2 : end); x(id + T — 1 + k,)];

10. Pred = [Pred;pre];

11. end for

12. Return predicted values, Pred.

A

(b)
—e—Real data
277.7 - v-Predicted data
2775
277.3
12.325 12.335 12.345 12.355
Lateral displacement (um)
52.3 —e—Real data
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51.9 M
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Lateral displacement (um)

(Color online) Prediction based on the governing system for NigpNbsg under 2000 uN-5 s ((a), (b)) and 500 uN-5 s ((c), (d)). (a) Taking

x(2000 : 2000 + 7 — 1) and ¥(2000 : 2000 + 7 — 1) as initial values, and step=5600; (b) taking x(9712 : 9712+t —1) and y(9712 : 9712 + 7 — 1) as initial values,
and predicting the following points; (c) taking x(1400 : 1400+7—1) and y(1400 : 1400+ 7—1) as initial values, and step=1300; (d) taking x(8893 : 8893 +7—1)
and y(8893 : 8893 + 7 — 1) as initial values, and predicting the following points.
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Furthermore, we extract the coefficient matrix of 500 puN-
5 s from the first experiment to predict the real data of the
second experiment. Setting x(1400 : 1400 + 7 — 1), (1400 :
1400+7—-1) as initial values, and step=1300, the result is plot-
ted in Figure 8(c). We obtain that the curves overlap at the
beginning, and then slowly separate from each other, which
is similar to Figure 8(a). The result shows the reliability of
the governing system in repeat experiments. As shown in
Figure 8(d), we fix initial value as x(8893 : 8893 +7—1) and
¥(8893 : 8893 + v — 1), and predict following points. This
shows that the following steps prediction is very close to the
actual value. Based on the above mentioned results, we ob-
tain that the predicted value from governing system matches
better at long-term time series under the stable state; how-
ever, it is efficient at short-term time series under unstable
state.

3 Summary

As per the sparse identification algorithm [43], we set LF
and LD as a combination of X(#) corresponding to neural
network. Then, we employ the fourth-order central differ-
ence scheme to obtain the derivative. The ordinary differen-
tial equation, X(1) = O(X)Z, can be derived using ODE45
algorithm [56] after calculating the base function ®(X) and
sparse matrix =. However, additional studies are required
because of the ineffectiveness of the identified system ob-
tained. Therefore, we adopt an alternative method to select
reconstruction as an operator to replace the fourth-order cen-
tral difference scheme. The results indicate that this approach
with sparse coefficient provides an outstanding description of
the deformation behavior, which can yield substantial infor-
mation on the nature of the underlying process. Therefore,
the sparse dynamics can resolve drastically different phe-
nomena with a small amount of information.

Considering the spatial distribution and temporal motion
discontinuity, the deformation behaves as a complex dynami-
cal system, characterized by instability, irregular distribution,
catastrophic, and unpredictable motion. Thus, the research
of deformation, including influencing factor, correlation, and
inner mechanisms, is important. Unlike previous work, our
target is to discover a governing system underlying a dynam-
ical system from data measurements. Based on the results of
correlation analysis, the evolutionary mechanism is explored
by adopting dynamical neural networks. The general explicit
equation is reported by the contribution of the sparse iden-
tification. The governing system in the nanoscratching pro-
cess shows the response of LF and LD under varing loading
forces, while the governing system under the compressive
test describes the relationship between normal stress and nor-
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mal strain. The excavating results show that the second-order
polynomial can have high accuracy and reliability in describ-
ing system dynamics, including nanoscratching process and
compression experiments. In particular, it can be conducted
to predict the deformation process. Considering the field ef-
fects, the cause of dependencies from different driving fac-
tors (e.g., temperature and strain rate) is divergent. The sub-
ject includes the influence of different factors on deforma-
tion variables, and the applications of other material fields
are worthy of further study.
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