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Quantum secure direct communication (QSDC) has been demonstrated in both fiber-based and free-space channels using atten-

uated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the problem of photon-number-

splitting attacks caused by the use of attenuated lasers. In this study, we present an analysis of the practical aspects of decoy-state

QSDC. First, we design a two-decoy-state protocol that only requires two decoy states, thereby significantly reducing experi-

mental complexity. Second, we successfully perform full parameter optimization for a real-life QSDC system by introducing

a genetic algorithm. Our simulation results show that the two-decoy-state protocol could be the best choice for developing a

practical QSDC system. Furthermore, full optimization is crucial for a high-performance QSDC system. Our work serves as a

major step toward the further development of practical decoy-state QSDC systems.
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1 Introduction

Secure communication is crucial for economic, political, and

social applications in the current age of information. The

goal of secure communication is to exchange a secret mes-

sage between two remote legal users, such that an eavesdrop-

per (Eve) cannot intercept such a message. Currently, se-

cure communication is guaranteed through public-key cryp-

tography [1], which is mainly based on the computational

difficulty of a specific mathematical problem. However, the

*Corresponding author (email: kjwei@gxu.edu.cn)

security of such cryptographic approaches is at risk of being

compromised owing to the rapid advancements in algorith-

mic [2] and computational power, and most notably, in quan-

tum computing [3-5].

Quantum secure direct communication (QSDC), which

was first proposed by Long and Liu [6] in 2000, has been in-

troduced to allow users to directly transmit secret messages

without any restrictions brought on by the Eve’s comput-

ing power. Through significant effort, QSDC has developed

remarkably both in theory and experimentally [7]. So far,

security of QSDC has been proven by using Wyner’s wire-

tap channel theory [8]. Several theoretical QSDC protocols
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have been proposed to resolve technical challenges [9-12] or

enhance efficiency [13]. Recently, semi-device [14-18] and

device-independent schemes [19] have been reported to close

the loopholes caused by the imperfections of practical com-

ponents [20, 21]. Despite the point-to-point protocols, mul-

tiuser QSDC schemes have been developed, and their perfor-

mance has been verified [22-25]. Recently, numerous novel

quantum resources [26-28], such as the superposition of a

single photon [28], have been introduced to perform QSDC.

When it comes to experiments, Hu et al. [29] reported the

first experimental demonstration of QSDC using frequency

coding. Subsequently, the feasibility of the entanglement-

based QSDC protocol was proven through the help of atomic

quantum memory [30]. Then the transmission distance was

extended to an adequate distance of 0.5-km fiber [31]. Qi et

al. [32] developed a practical QSDC system and further ex-

tended the transmission distance to 1.5-km fiber. Recently, a

fully operational system for free-space QSDC was reported,

and a secure key rate (SKR) of 500 bits per second (bps) over

a 10-m free space was achieved [33].

Generally, many exciting experiments mentioned above

employed weak-coherent pulses (WCPs), which occasion-

ally emit multiphoton signals, as the sources. This attribute

opens the door for sophisticated eavesdropping attacks, such

as photon-number-splitting (PNS) attacks, whereby the Eve

blocks all the single-photon signals and splits the multipho-

ton signals, thereby keeping one copy for measuring and re-

sending the remains to a receiver, Bob. Fortunately, this prob-

lem has recently been solved by introducing the so-called

decoy-state method [34, 35], whereby different intensities of

WCPs are used to estimate the contribution of single-photon

signals [33].

However, to ensure the practical application of decoy-state

QSDC, several challenges must be addressed. First, although

the decoy-state protocol was studied in the work of the ref.

[33], it required five different intensities (one signal state and

four decoy states) for parameter estimation, which increased

the complexity of the experimental settings and the cost of

random numbers. Second, the parameter optimization, in-

cluding the intensities of the signal and decoy states as well

as the probability of sending them, was ignored in previous

studies owing to non-trivial technical challenges. Note that

full parameter optimization, which has been extensively ex-

ploited in other branches of quantum cryptography [36-40],

has proven to be essential in obtaining a high-performance

system.

In this study, we provide solutions to address the imple-

mentation issues mentioned above. We design a practical

decoy-state QSDC protocol, which only requires two decoy

states, thereby significantly reducing experimental complex-

ity. By simulating a real-life experiment, we find that our

proposed two-decoy-state protocol always outperforms the

four-decoy-state protocol, and the only exception occurs at

significantly short distances. Furthermore, we use a genetic

algorithm (GA) to successfully perform a full parameter op-

timization for QSDC. Through optimal parameters, both the

secrecy capacity and the secure distance are significantly

improved by more than two times compared with the non-

optimization results.

The remainder of this paper is organized as follows: In

sect. 2, we introduce the decoy-state protocol for QSDC. In

sect. 3, we present the two-decoy-state QSDC scheme. In

sect. 4, we perform full optimization on all experimental pa-

rameters. In sect. 5, we present the simulation results. Fi-

nally, we present the conclusion in sect. 6.

2 General decoy-state QSDC

Pan et al. [33] conducted a rigorous security analysis for a

practical DL04-QSDC system under a general collective at-

tack on a single photon and a PNS attack on multiple photons.

Specifically, the work exploited the Wyner’s wiretap channel

theory and achieved a lower bound of the secrecy capacity of

the QSDC system, which is expressed as follows:

Cs =QBAB
μ

[
1 − h

(
EBAB
μ

)]
− QBAE

μ,n=1h
(
2eBA

1

)

− QBAE
μ,n=2

[
1

2
h
(
2eBA

2

)
+

1

2

]
− QBAE

μ,n≥3 · 1, (1)

where QBAB
μ and EBAB

μ represent the overall gain and the

overall (quantum bit error rate) QBER of signal state μ at

Bob, eBA
1 (eBA

2 ) represents the detection quantum bit error

rate (DQBER) of a single (two) photon signal, QBAE
μ,n rep-

resents the n-photon signal gain at the Eve, and h(x) =

−x log2 x − (1 − x) log2(1 − x) represents the binary Shannon

entropy.

Seven key variables are required in eq. (1). QBAB
u and

EBAB
u are directly measured from the experiment, whereas the

remaining variables must be estimated using sophisticated

techniques. Therefore, Pan et al. [33] introduced a well-

established decoy-state method for QSDC to accurately esti-

mate the remaining variables. In other words, besides the sig-

nal state μ, Bob randomly prepares m weak intensities states

(decoy states, represented as ν1, ν2, ν3, . . . , νm) and sends

them to Alice. Alice randomly chooses part of the received

states to perform a decoy analysis to estimate the remaining

variables. In other words, Bob publishes the pulses that are

decoy states, and Alice receives their corresponding gain QBA
x

and QBER EBA
x , as follows:

QBA
x =

∞∑
n=0

YA
n

e−x

n!
xn = YA

0 + 1 − e−η
BA x,
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EBA
x QBA
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∞∑
n=0

eBA
n YA

n
e−x
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xn = e0YA

0 + eBA
det

(
1 − e−η

BA x
)
, (2)

where Yn denotes the yield of an n-photon signal, and x ∈
{μ, ν1, ν2, ν3, . . . , νm} represents the intensities for different

states. In principle, when m → ∞, we can mathematically

deduce the exact values of QBA
μ,n≥1 and eBA

n≥1. Moreover, we

can estimate QBAE
μ,n from the value of QBA

μ,n, as presented in the

work of Pan et al. [33], as follows:

QBAE
μ,n = p(n, μ)YE

n ≤
[
QBA
μ,n − p(n, μ)YA

n

]
max

{
1,
γE

γA

}
, (3)

where γA represents the overall transmission for the photons

received and measured by Alice, and γE represents the over-

all transmission of the Eve after Alice encodes her received

photons.

For practical implementation, Pan et al. also proposed

a four-decoy-state protocol because it is impossible to pre-

pare infinite decoy states. Moreover, they demonstrated that

a decoy QSDC can be secure over 5 dB channel attenua-

tion for the free-space QSDC setup. Further details on the

four-decoy-state protocol are summarized in Appendix A2.

Nonetheless, we remark that the four-decoy-state protocol

may still be practically inefficient because it would increase

experimental complexity as well as random number con-

sumption during state preparation.

3 Two-decoy-state QSDC

In this section, we propose a two-decoy-state protocol for

QSDC. In other words, we use a vacuum state and a weak

state to estimate variables. Before conducting our analysis,

we provide a key theoretical observation on Wyner’s wire-

tap secrecy capacity, which was achieved by Pan et al. As

shown in eq. (1), it is necessary to estimate the DQBER of

eBA
2

caused by two photons to ensure the rigorous bounding

of the leaking information to the Eve. Therefore, four decoy

states are required in Pan’s four-decoy-state protocol. How-

ever, we note that for a weak coherent state, the proportion

of two photons is far smaller than that of a single photon,

indicating that the leaking information from two photons is

negligible compared with that from a single photon. There-

fore, for practical implementation, we propose using a weak

version of Wyner’s wiretap secrecy capacity result, which is

expressed as follows:

Cs = QBAB
μ

[
1 − h

(
EBAB
μ

)]
− QBAE

μ,n=1h
(
2eBA

1

)
− QBAE

μ,n≥2 · 1, (4)

where we simply assume that the Eve receives all the secret

information of the multiple photons (n ≥ 2). Such a formula

does not require an evaluation of eBA
2

, and fewer decoy sates

can be sufficient for variable estimation. To describe our two-

decoy-state protocol, we must model a real-life QSDC sys-

tem. In this study, we consider a practical QSDC system that

is similar to that presented in ref. [33]. The system model

is generalized from the work of Ma et al. [41], and it is pre-

sented in Appendix A1.

We assume that in a two-decoy-state protocol, the average

photon numbers of the signal state and the two decoy states

(weak and vacuum) are μ, and ν1 and ν2, respectively, which

satisfies the following requirements:

0 ≤ ν2 ≤ ν1,
ν1 + ν2 < μ.

(5)

As shown in the work of ref. [41], the lower bound of YBA
1

and the upper bound of eBA
1

can be estimated as follows:

YBA
1 ≥YBA,L,ν1,ν2

1
=

μ

μν1 − μν2 − ν21 + ν22
×
⎛⎜⎜⎜⎜⎝QBA
ν1

eν1 − QBA
ν2

eν2 − ν
2
1 − ν22
μ2

(
QBA
μ eμ − YA

0

)⎞⎟⎟⎟⎟⎠ , (6)

eBA
1 ≤ eBA,U,ν1,ν2

1
=

EBA
ν1

QBA
ν1

eν1 − EBA
ν2

QBA
ν2

eν2

(ν1 − ν2) YBA,L,ν1,ν2
1

. (7)

In this study, YA
0 denotes the background rate, and it can

be estimated using the vacuum state, which is expressed as

follows:

YA
0 � YA,L

0
= max

{
ν1Qν2 eν2 − ν2Qν1 eν1

ν1 − ν2 , 0

}
. (8)

Combined with eq. (3), a lower bound of QBAE
μ,n=1

and

QBAE,L
μ,n=1

is obtained as follows:

QBAE,L
μ,n=1

≤
[
QBA,L
μ,n=1
− p(n = 1, μ)YA

0

]
max

{
1,
γE

γA

}

= p(n = 1, μ)
(
YBA,L,ν1,ν2

1
− YA

0

)
max

{
1,
γE

γA

}
. (9)

4 Full parameter optimization

In practical QSDC implementations, when considering the

decoy-state protocol, the intensity choices of the signal and

decoy states as well as the probabilities of sending these

states are crucial in achieving improved system performance.

From eq. (4), we note that the secrecy capacity of QSDC

has the same sense with the key rate formal of QKD. So, the

physical meaning of the optimal intensities for decoy-state

QSDC protocol are similar with that of QKD. That is the op-

timal value of signal state μ is maximize the gain of QBAB
μ ,

which is the only source for the final secrecy capacity. The

optimal values of decoy states ν1 and ν2 is to be improving

the estimation of YBA
1

and eBA
1

.
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To find the optimal values {μ, ν1, ν2} based on given exper-

imental parameters, such as optical misalignment, data size,

and channel attenuation, we can get optimal functions be-

tween optimal values and experimental parameters by solv-

ing

∂Cs

∂μ
= 0,

∂Cs

∂ν1
= 0,

∂Cs

∂ν2
= 0, (10)

which are rather complicatedly mathematical problems. In-

stead, we do it by using full numerical optimization.

Generally, such full optimization is completed using a

brute-force global search, which is challenging owing to

limited computational power. This might be a major rea-

son why parameter optimization has been neglected in pre-

vious decoy-state QSDC. For example, for the four-decoy-

state protocol [33], seven parameters must be optimized, i.e.,

the signal state intensity μ, the intensity of the three decoy

states ν1, ν2, and ν3, the probability of sending the signal

state P, and that of the decoy states Pν1 , Pν2 , and Pν3 . If we

employ a brute-force global search using a standard desk-

top (Intel(R) Core(TM) i7-10700F CPU @2.90 GHz; GPU:

NVIDIA GeForce GT 1030), simply searching over a signif-

icantly crude 10-sample resolution for each parameter would

take over ≥ 400 h. Moreover, because the secrecy capac-

ity function is nonconvex with respect to parameter space,

some well-established optimization methods, such as local

search algorithms, cannot execute parameter optimization for

QSDC.

To solve this problem, we propose a method based on a

GA, which is a well-known algorithm in the field of com-

puter science. A GA is a general-purpose search algorithm,

which can exploit the accumulated information regarding an

initially unknown search space to guide subsequent searches

into useful subspaces. This key feature enables the GA to

efficiently find QSDC optima, even in cases involving com-

plex, large, and poorly understood search spaces. As a result,

the GA enables one to efficiently perform full optimization

on all experimental parameters.

We apply the GA on QSDC and show the results com-

pared with those of non-optimization, as shown in Figure 1.

It can be observed that parameter optimization using the GA

can significantly increase the secrecy capacity and extend the

secure distance. Further details regarding this method are

provided in Appendix A3.

5 Simulation

In all the simulations presented below, we used the experi-

mental parameters that are mainly extracted from the free-

space QSDC experiment provided in ref. [33], i.e., Alice and

Bob use the superconducting single-photon detector with de-

tection efficiency ηA
d
= ηB

d
= ηd = 70% and background de-

tection events YA
0 = YB

0 = Y0 = 8×10−8, the intrinsic detector

error rates are e0 = 1/2, eBA
d
= 1.31% and eBAB

d
= 0.26%.

5.1 Secrecy capacity comparison between full optimiza-
tion and non-optimization

In previous studies on decoy-state QSDC [12, 33], re-

searchers used empirical parameters without optimization. In

this study, we compare our optimized secrecy capacity with

those using typical parameters in ref. [33]. Figure 1 shows

the comparison results. The orange-colored solid (purple

dotted) curve represents the secrecy capacity using our two-

decoy protocol with optimized (empirical) parameters. For

comparison purposes, the yellow dotted curve shows the se-

crecy capacity, which results from using the parameters pre-

sented in the work of Pan et al. [33]. It can be observed

that the optimized secrecy capacity using the GA for the two-

decoy protocol is much higher than that of the non-optimized

results, as well as that of the non-optimized results of the

four-decoy protocol. Therefore, parameter optimization us-

ing the GA not only increases the secrecy capacity but also

extends the secure distance. These results highlight the im-

portance of parameter optimization in practical decoy-state

QSDC.

5.2 Secrecy capacity comparison of the two-decoy-state
and four-decoy-state protocols

Figure 2 shows the comparison results of the two-decoy-state
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Figure 1 (Color online) Optimized and non-optimized secrecy capacity

Cs for infinite data with different numbers of decoy states. The orange solid

and purple dotted curves represent the secrecy capacity using our two-decoy

protocol with optimized and empirical parameters (μ = 0.1, ν1 = 0.05, and

ν2 = 0.02). The yellow dotted curve shows the results of using the parame-

ters (μ = 0.1, ν1 = 0.07, ν2 = 0.0445, and ν3 = 0.03) presented in the work

of ref. [33].
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and the four-decoy-state in the case of infinite data. The se-

crecy capacity Cs and the optimized parameters for differ-

ent channel attenuations α are listed in Table 1. At a low-

attenuation regime (< 3 dB), the secrecy capacity of the four-

decoy-state protocol is higher than that of the two-decoy-

state protocol. However, the two-decoy-state protocol out-

performs the four-decoy-state protocol over long distances.

The improvement mainly results from the fewer constraints

on the chosen parameters in the two-decoy-state protocol.

Therefore, it is easy to find optimized parameters for obtain-

ing improved performance in the two-decoy-state protocol.

As shown in Table 1, the secrecy capacity using two decoy

states is approximately 300% higher than that using four de-

coy states at a channel attenuation of 6 dB. Furthermore, at

a channel attenuation of 9 dB, no secrecy capacity can be

obtained using four decoy states. In contrast, the two-decoy-

sate protocol produces a positive secrecy capacity.

Intuitively, the four-decoy-state protocol provides a higher

secrecy capacity in quantum cryptography. On the other
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Figure 2 (Color online) Comparison results of the two decoy states and

the four-decoy states in the case of infinite data. The orange-colored and

the blue-colored solid curves represent the secrecy capacity with optimiza-

tion using our proposed two-decoy protocol and the four-decoy protocol pre-

sented in the work of ref. [33].

Table 1 Secrecy capacity comparison and corresponding parameters at

channel losses of 6 and 9 dB. The two-decoy-sate protocol involves only two

decoy states, so ν3 does not exist. When the channel attenuation is 9 dB, the

secrecy capacity cannot be obtained using the four decoy states, and there is

no optimal parameter

Parameters
Two decoy states Ref. [33]

6 dB 9 dB 6 dB 9 dB

μ 0.0411 0.0119 0.0335 –

ν1 0.0346 0.0078 0.0251 –

ν2 0.0064 0.0040 0.0129 –

ν3 – – 2.49 × 10−8 –

Cs 1.34 × 10−4 7.22 × 10−6 3.27 × 10−5 –

hand, in QSDC, the four-decoy-state protocol is only use-

ful for significantly short distances, and the two-decoy-state

protocol always outperforms the four-decoy-state protocol at

long distances. In the first case, the four-decoy-state protocol

can obtain a satisfactory estimation of eBA
2

, thereby provid-

ing a higher secrecy capacity. However, in the second case,

the two-decoy-state protocol has relatively fewer constraints

(this can be observed by comparing eq. (5) with eq. (a9) ) on

the choice of the signal and decoy intensities. Therefore, the

two-decoy-state protocol obtains a higher secrecy capacity.

6 Conclusion

In summary, in this study, we propose a practical decoy-state

QSDC protocol that only uses two decoy states. Our simula-

tion results show that our proposed decoy-state protocol out-

performs previous four-decoy-state protocols in the high-loss

regime. In addition, we introduce a GA to perform parameter

optimization, and we prove that parameter optimization can

significantly increase the secrecy capacity and extend the se-

cure distance for decoy-state QSDC. Considering the simple

components for two decoy states, the two-decoy-state proto-

col would be the best choice for developing a practical decoy-

state QSDC system.
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Appendix

A1 System model

In this study, we considering a free-space system as ref. [33].

In this system, Bob sends different intensities of light pulses

to Alice using a laser source. The light pulses transmits over

a forward quantum channel BA to Alice. One part of pulses

are directly measured by Alice to check Eve and the other

part are encoded and reflected to Bob over a backward quan-

tum channel BAB. The forward quantum channel and back

ward quantum channel are the same. In order to analyze per-

formance of a real-life QSDC experimental system, we must

first model the source, channel and detection.

A1.1 Source

The laser source can adopt the weak coherent light model.

Assuming that the phase of each pulse is completely random

and the average photon number μ of each pulse follows the

Poisson distribution, then the probability of the weakly co-

herent light source generating n-photon signal is given by

Pμ(n) =
e−μ

n!
μn. (a1)

A1.2 Channel

In QSDC, there are two quantum channel, a forward chan-

nel BA and a backward channel BAB. We defines the loss

of quantum channel as αi, where i ∈ {BA, BAB}. Hence, the

channel transmittance is expressed as follows:

ti = 10−
αi
10 . (a2)

A1.3 Detection

The overall transmission are expressed as ηi, which represent

the probability of a single-photon signal being successfully

detected by Alice and Bob,

ηi = tiηi
optη

j
d
, (a3)

where η
j
d

represents the detection efficiency at j ∈ {A, B} sta-

tion. The subscript A and B denotes Alice and Bob, respec-

tively. ηi
opt is the intrinsic optical loss of the device.

Generally, threshold detectors are placed in Bob and Al-

ice. A threshold detector can only report click or non-click
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events. That is to say, it cannot distinguish the photon num-

ber of received signal. Therefore, the transmittance of the

n-photon state ηi
n is given by

ηi
n = 1 − (1 − ηi)

n, (a4)

for n = 1, 2, 3, · · · .

A1.4 Yield

Let Y j
n and denote as the yield of n-photon signal at station

j. In other word, it represents the conditional probability of

the detection event at Alice’s (Bob’s) detector when sending

n-photon state. Y j
n can be expressed by

Y j
n = Y j

0
+ ηi

n − Y j
0
ηn

i ≈ Y j
0
+ ηi

n. (a5)

The overall gains are the product of the probability that

produces n-photon signal and the conditional probability

that n-photon signal (and background count) cause detection

event,

Qi
x =

∞∑
n=0

Px(n)Y j
n = Y j

0
+ 1 − e−η

i x. (a6)

where x ∈ {μ, ν1, ν2, ν3, . . . , νm} represents the intensities

for different states.

A1.5 Error rates

The quantum bit error rates (QBER) are given by

Ei
x =

e0Y j
0
+ ei

d

(
1 − e−ηi x

)
Qi

x
, (a7)

where x ∈ {μ, ν1, ν2, ν3, . . . , νm} represents the intensities

for different states.

The error rate of the n-photon signal is

ei
n =

(
e0Y j

0
+ ei

d
ηi

n

)
Y j

n

, (a8)

where e0 =
1
2

is the background error rate of detector dark

count and other background contribution, ei
d

represent the er-

ror rates characterizing the alignment and stability of the op-

tical system, which is generally assumed to be a constant.

A2 Four-decoy-state

Ref. [33] used a four-decoy-state protocol (one vacuum state

and three weak decoy states (ν1, ν2, ν3)) to estimate eBA
2

in

eq. (1). The mean photon numbers μ, ν1, ν2 and ν3 need to

satisfy the following requirements:

0 < ν3 < ν2 ≤ 2

3
μ < ν1 ≤ 3

4
μ,

ν1 + ν2 > μ,

ν2 + ν3 < μ,

ν1 − ν2 −
ν3

1
− ν3

2

μ2
= 0.

(a9)

The dark number of the system can be estimated by the vac-

uum decoy state, QBA
vac = Y0 and EBA

vac = e0 =
1
2
. The upper

bound of single-photon DBER and two-photon DBER are

given by

eBA,U
1
=

EBA
ν3

QBA
ν3

eν3 − e0YA
0

YBA,L
1
ν3

, (a10)

eBA,U
2
=

2
(
EBA
ν2

QBA
ν2

eν2 − ν2
ν3

EBA
ν3

QBA
ν3

eν3 + ν2−ν3
ν3

e0YA
0

)
YBA,L

2
ν2 (ν2 − ν3)

, (a11)

where

YBA,L
1
=
μ2
(
QBA
ν2

eν2 − QBA
ν3

eν3
)
−
(
ν2

2
− ν2

3

) (
QBA
μ eμ − YA

0

)
μ (ν2 − ν3) (μ − ν2 − ν3)

,

(a12)

YBA,L
2
=

2μ
(
QBA
ν1

eν1 − QBA
ν2

eν2
)
− 2 (ν1 − ν2)

(
QBA
μ eμ − YA

0

)
μ (ν1 − ν2) (ν1 + ν2 − μ) .

(a13)

A3 Genetic algorithm

Our full-parameter optimization method is primarily based

on a GA, which uses a population of candidate solutions and

then through four biological genetic steps: parent selection,

crossover, mutation and replacement, so that the population

evolves to explore the search space. A GA is capable of ex-

ploiting the information accumulated about an initially un-

known search space to guide subsequent searches into useful

subspaces without any restriction on the target function. This

key feature, inherited from the GA, enables our method to

overcome the limitations of LSAs and efficiently find QSDC

optima.

Here, we take the our two-decoy-state protocol as an ex-

ample, where we search for the optimal decoy intensities μ

and ν1. The optimization was conducted using the built-in

GA of MATLAB R2016b. The procedure is illustrated in

Figure a1 and is summarized as follows.

(1) Initialization The algorithm starts with a random

population of candidate solutions (called individuals). For

the three-intensity protocol, we set the population size to 100

and used a range of common values for μ ∈ (0, 1), ν1 ∈ (0, 1),
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Figure a1 (Color online) Illustration of the proposed method for optimization in decoy-state QSDC protocol. The target is to search for the optimal μ and

ν1. The red points denote successive solutions in each generation. (a) In the 1st generation, the possible solutions are covered over all search spaces. (b), (c)

Fitter solutions are selected through steps of selection and genetic operators. (d) After 100 generations, the algorithm is terminated at a point very close to the

optimal one.

P ∈ (0, 1). As shown in Figure a1(a), the entire range of pos-

sible solutions (the search space) is allowed in the 1st gen-

eration, and the solutions may occasionally be “seeded” in

areas where optimal solutions are likely to be found despite

the function being discontinuous.

(2) Selection In each iteration (or successive genera-

tion), a portion of the existing population (called the parents)

is selected to breed a new population through a fitness-based

process, which is determined by a fitness function. Here,

we use the roulette selection method to select individuals,

which uses the fitness function value of the parent individual

to determine the probability of the individual being selected.

In general, individuals with high fitness function values are

more likely to be selected for the next step (i.e., crossover

and mutation).

(3) Genetic operators The next step is to generate

second-generation solutions to the population from those se-

lected through a combination of genetic operators: crossover

and mutation. For each new solution to be generated, a

pair of “parent” solutions is chosen for breeding from the

previously selected pool. By using crossover and mutation

to generate a “child” solution, a new solution that usually

has many of the characteristics of the “parent” is created.

New parents are selected for each new child, and the pro-

cess continues until a new population of solutions of appro-

priate size (we chose 100) is generated. The crossover and

mutation operations are performed with a certain probabil-

ity; we set the crossover and mutation probabilities to 0.8

and 0.02, respectively. For the crossover operation, a multi-

point crossover method is used, where the parent exchanges

genes at several randomly selected gene points. For the

mutation operation, a random mutation method is adopted,

where each gene of an individual has a probability of

mutation.

The average fitness of the population will generally be in-

creased by this procedure because only the best organisms

from the first generation are selected for breeding, as shown

in Figure a1(b). After several generations, a fitter population

of solutions is obtained, as shown in Figure a1(c).

(4) Stopping Repeat the above process until one of the

stopping criteria is reached. We used two stop criteria: (1)

the number of iterations being greater than 1000, (2) the aver-

age value of the maximum function value difference between

100 successive generations is less than the function tolerance

ε = 10−20. Once one of the two stopping criteria is reached,

the algorithm is terminated. Usually, well-optimized param-

eters will be obtained by the time one of these criteria is

reached, as shown in Figure a1(d).


