
SCIENCE CHINA
Physics, Mechanics & Astronomy

September 2021 Vol. 64 No. 9: 290311

https://doi.org/10.1007/s11433-021-1734-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 phys.scichina.com link.springer.com

. Article .

Hybrid quantum-classical convolutional neural networks

Junhua Liu1,2, Kwan Hui Lim1,2, Kristin L. Wood3, Wei Huang4, Chu Guo5*, and He-Liang Huang6,7,8*

1Information Systems Technology and Design, Singapore University of Technology and Design, Singapore 487372, Singapore;
2Forth AI, Singapore 487372, Singapore;

3College of Engineering, Design and Computing, University of Colorado Denver, Colorado 80208, USA;
4Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China;

5Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic
Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China;

6Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology
of China, Hefei 230026, China;

7Shanghai Branch, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics,
University of Science and Technology of China, Hefei 201315, China;

8Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou 450000, China

Received April 13, 2021; accepted June 15, 2021; published online August 4, 2021

Deep learning has been shown to be able to recognize data patterns better than humans in specific circumstances or contexts. In

parallel, quantum computing has demonstrated to be able to output complex wave functions with a few number of gate operations,

which could generate distributions that are hard for a classical computer to produce. Here we propose a hybrid quantum-classical

convolutional neural network (QCCNN), inspired by convolutional neural networks (CNNs) but adapted to quantum computing

to enhance the feature mapping process. QCCNN is friendly to currently noisy intermediate-scale quantum computers, in terms

of both number of qubits as well as circuit’s depths, while retaining important features of classical CNN, such as nonlinearity

and scalability. We also present a framework to automatically compute the gradients of hybrid quantum-classical loss functions

which could be directly applied to other hybrid quantum-classical algorithms. We demonstrate the potential of this architecture

by applying it to a Tetris dataset, and show that QCCNN can accomplish classification tasks with learning accuracy surpassing

that of classical CNN with the same structure.

quantum computing, quantum machine learning, hybrid quantum-classical algorithm, convolutional neural network

PACS number(s): 03.67.-a, 03.67.Ac, 03.67.Lx

Citation: J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang, Hybrid quantum-classical convolutional neural networks, Sci. China-Phys.

Mech. Astron. 64, 290311 (2021), https://doi.org/10.1007/s11433-021-1734-3

1 Introduction

With the rapid progress in quantum computing hardware,

we are entering the era of developing quantum software

*Corresponding authors (Chu Guo, email: guochu604b@gmail.com; He-Liang

Huang, email: quanhhl@ustc.edu.cn)

to perform useful computational tasks using the noisy

intermediate-scale quantum (NISQ) computers [1, 2]. It has

been shown in 2019 that the current 53-qubit quantum com-

puter could already solve random quantum circuit sampling

problems more efficiently than the best supercomputers in

the world [3]. Theoretically, this success originates from the

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-2

fact that a quantum computer could output wave functions

with a polynomial number of quantum gate operations, which

could nevertheless generate statistical distributions that are

very hard for a classical computer to produce [4-6]. The

53-qubit 20-depth random quantum circuit sampling prob-

lem has recently been successfully simulated classically [7],

however, simulating larger-scale quantum circuits is still a

huge challenge. If a quantum computer could easily pro-

duce complex distributions, it is also natural to postulate

that it is able to learn patterns from certain data distribu-

tions which could be very difficult for classical comput-

ers [8]. Quantum machine learning (QML) attempts to uti-

lize this power of quantum computers to achieve computa-

tional speedups or better performance for machine learning

tasks [8-14], and parameterized quantum circuits (PQCs) of-

fer a promising path for quantum machine learning in the

NISQ era [15-17]. Compared with traditional quantum algo-

rithms [12,18-20] such as Shor’s algorithm [18,21,22], PQC-

based quantum machine learning algorithms are naturally

robust to noise [23] and only require shallow quantum cir-

cuits, which is highly desirable for near-term noisy interme-

diate scale quantum devices. Compared with classical neural

networks, PQC-based quantum machine learning algorithms

have two major potential advantages, stronger expressive

power [24-29] and stronger computing power [30], originat-

ing from the superposition principle of quantum mechanics.

Those advantages and the potential applications of PQCs on

near-term quantum devices have stimulated a large number

of related algorithms and experiments, including variational

quantum eigensolvers (VQE) [31], the quantum approxi-

mate optimization algorithm (QAOA) [32], quantum genera-

tive adversarial networks [30,33-36], and quantum classifiers

[28, 37]

For QML to solve real world problems, the first step is

to translate classical data, which is usually represented as a

multi-dimensional array, into a quantum state. A standard

way is to use a kernel function to map each element of the

array into a single-qubit state, which is often referred to as

qubit-encoding. The kernel function could, for example, be

chosen as:

θ j → cos(θ j)|0〉 + sin(θ j)|1〉, (1)

which maps a real number into a single-qubit quantum state.

For an input array of size L, the mapping would result in

an L-qubit quantum state, which lives in a Hilbert space of

size 2L. For real world data with a large size, this mapping

would soon become impractical for current quantum comput-

ers with less than 100 qubits. The same problem also exists

in classical deep learning, which is often built from interlac-

ing layers of linear and nonlinear functions. A straightfor-

ward way to implement the linear function is the so-called

fully connected layer, which can be represented as a dense

matrix connecting each neuron of the output to all the neu-

rons of the input. When the input size is large, this approach

would become inefficient due to the large matrix size. The

convolutional neural network (CNN) [38, 39] is a very popu-

lar scheme which tries to solve this problem by replacing the

fully connected layer with a convolutional layer. The convo-

lutional layer only connects each neuron of the output to a

small region (window) of the input which is referred to as a

feature map, thus greatly reducing the number of parameters.

CNN has demonstrated itself as one of the most successful

tools in the area of computer vision [40-44], and more re-

cently, it also found applications in natural language process-

ing [45-50].

Inspired by CNN, we propose a hybrid quantum-classical

convolutional neural network (QCCNN). We note that re-

cently, a pure quantum analogy of CNN, named QCNN,

was proposed to solve certain quantum many-body prob-

lems [51]. Similar to other QML algorithms, QCNN uses

as many qubits as the size of the input, which makes it un-

likely to be implemented on current quantum computers to

solve real world problems. The central idea of QCCNN is

to implement the feature map in the convolutional layer with

a parametric quantum circuit, and correspondingly, the out-

put of this feature map is a correlational measurement on the

output quantum state of the parametric quantum circuit. In

the following, we refer to this new structure as a quantum

convolutional layer. As a result, the number of qubits re-

quired by this approach is only related to the window size

of the feature map, which often ranges from 3 × 3 to 9 × 9

and is well within the capability of current quantum com-

puters. Moreover, since the output of our quantum convolu-

tional layer is a classical array, it is straightforward to adapt

the multi-layer structure as in CNN. Therefore, our QCCNN

could utilize all the features of classical CNN, and at the same

time, it is able to utilize the power of current NISQ comput-

ers. In addition, we propose a framework to automatically

compute the gradients of arbitrary hybrid quantum-classical

loss functions using a hybrid quantum-classical computer. To

demonstrate the representative power of our QCCNN, we ap-

ply it for classifying the synthetic Tetris dataset and com-

pare its learning accuracy to classical CNN with the same

architecture.

The paper is organized as follows. In sect. 2, we introduce

our hybrid quantum-classical Convolutional Neural Network

architecture. In sect. 3, we show a framework which can

be used to automatically compute the exact gradients of any

hybrid quantum-classical neural networks. In sect. 4, we

demonstrate our method with the Tetris dataset and show that

it can reach a higher accuracy compared to classical CNN.

Finally we conclude in sect. 5.

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-3

2 Hybrid QCCNN

To better describe our design of QCCNN (see Figure 1(a)),

we first briefly outline some basic features of CNN. CNN

consists of interlaced convolutional layers and pooling lay-

ers, and ends with a fully connected layer. The primary pur-

pose of the convolution layer is to extract features from the

input data using a feature map (or filter), which is the most

computational intensive step of CNN. After the convolutional

layer, it is common to add a pooling layer to reduce the di-

mensionality of the data and prevent overfitting. A single fil-

ter maps small regions (windows) of the input to single neu-

rons of the output, and is parameterized by an array P which

has the same shape as the window. The windows are often

chosen as follows. Assuming the input is a two-dimensional

array A of size v×h, and the predefined window size is m×n,

then the first window is located at the upper left conner of A,

namely A1:m,1:n (here a : b denotes the range from a to b).

Then the mapping is done by the linear function

A1:m,1:n →
∑

1≤i≤m,1≤ j≤n

Ai, jPi, j. (2)

Then the next window slides to the right with a stride value

s, which is often chosen to be 1, until it reaches the right

edge. After that it hops down to the (left) beginning of the

image with the same stride value s and repeats the process

until the entire image is traversed. As a result, after the evo-

lution, the output will be a two-dimensional array of size
v−m+1

s × h−n+1
s . Moreover, in general one could have sev-

eral filters in the same layer and the input could be a three-

dimensional array. For example, for a three-dimensional ar-

ray of size v × h × d, and if we have k filters with size m × n,

assuming the stride s, then the output array would have the

shape v−m+1
s × h−n+1

s × (dk). Generally after a convolutional

layer, the output would become thinner but longer. In some

situations, one would like to prevent the data to become thin-

ner, by adding zeros around the edges of input, which is re-

ferred to as padding.

In our quantum convolutional layer, the filter is redesigned

to make use of the parametric quantum circuit, which is

shown in Figure 1(b), and we refer to it as a quantum filter.

A quantum filter takes windows of shape m × n, maps them

into quantum states |ψi(Ap:(p+m−1),q:(q+n−1)〉 of N = mn qubits

0.4 0.8

0.3 0.5

U

Quantum filter

...

Cat
Dog

..
.

..
.

..
.

Sheep

Input Convolution Pooling Flatten Fully-connected SoftMax

Feature learning Classification

Input Quantum filter Output feature maps

0.4

C
o

rr
e

la
ti
o

n
 m

e
a

s
u

re
m

e
n

t

R
Y
()

N layer

R
Y
()

R
Y
()

R
Y
()0

0

0

0

=0.4*π/2
1

Data encoding Single-qubit gate two-qubit gate

1 layer

Measurement

1

2

3

4

(a)

(b)

0.8

0.3 0.5

=0.8*π/2
2

=0.3*π/2
3

=0.5*π/2
4

ψ
ψ Z

4

Figure 1 (Color online) (a) Hybrid QCCNN. The input demonstrated here is a two-dimensional array, which is sent to a quantum convolutional layer of 6

filters. Each filter takes a 2 × 2 window, translating it into a separable 4-qubit quantum state, and evolves this state with a parametric quantum circuit. For

images encoded as three-dimensional arrays, the filter only works on the first two dimensions. After that a correlational measurement is made on the output

quantum state and a scalar is obtained. Gathering the scalar outputs, the final output of the quantum convolutional layer is a 3-dimensional array. Then a

pooling layer is used to reduce the dimensionality of the data. This process could be repeated and finally ends with a fully connected layer. (b) Details of our

design of parametric quantum circuit, which is made of interlaced single-qubit layer and two-qubit layers. The single-qubit layer consists of Ry gates, each

containing one tunable parameter. The two-qubit layer consists of CNOT gates on nearest-neighbour pairs of qubits.

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-4

using eq. (1), and then evolves the quantum state with the

parametric quantum circuit C(θ), such that the output quan-

tum state |ψo〉 is

|ψo〉 = C(θ)|ψi(Ap:(p+m−1),q:(q+n−1))〉. (3)

After the evolution, we take the expectation value of the ob-

servable Z⊗N , thus the feature map can be written as:

Ap:(p+m−1),q:(q+n−1) → 〈ψo|Z⊗N |ψo〉. (4)

Eq. (4) is nonlinear and thus in our quantum convolutional

layer, we do not need an additional nonlinear function such as

ReLU to explicitly bring in nonlinearity. It is also clear from

eq. (4) that in our approach, the minimal number of qubits

required is equal to the window size. For the next window

of our quantum convolutional layer, these qubits could be

reused. Thus, the quantum convolutional layer is experimen-

tally friendly and suitable for NISQ scenarios because only a

few qubits are needed and no additional usage of qRAM is re-

quired. And the quantum correlational measurement has the

potential to better capture the cross-correlation inside each

window. In our architecture, the pooling layers as well as the

final fully connected layer are kept in the same way as CNN

since they are computationally cheap, and can further induce

nonlinearities.

The parametric quantum circuit we use contains interlaced

single-qubit layers and two-qubit layers. The total number of

gate operations of a parametric quantum circuit, denoted as

L, grows only polynomially with the number of qubits N,

namely L ∼ poly(N) gates. In our setup, the two-qubit layer

consists of CNOT gates while the single qubit layer consists

of rotational Y gates (Ry), which is defined as:

Ry(θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
cos(θ) − sin(θ)

sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎦ . (5)

Here we have used Ry gate instead of other single-qubit rota-

tional gates since then we could represent the quantum state

as well as the parametric quantum circuit using real numbers

for simplicity. Each layer of rotational gates is counted as

one depth, as a result the total number of parameters in one

parametric quantum circuit will be the window size times the

circuit depth. For optimization problems, it is usually help-

ful to provide the gradient of the loss function. The easiest

way to approximately compute the gradient in our case is to

use the finite difference method, which only requires forward

evaluation of the loss function.

To this end, we stress that although in Figure 1 we have

focused on classical input data (pictures), our QCCNN ar-

chitecture could also be adapted to train quantum input data.

For example, for an input quantum state on a square lattice of

n × n qubits, our quantum filter could directly work on each

2 × 2 sub-lattice without the classical-to-quantum encoding

stage, while the rest of the architecture remains the same. As

a result, QCCNN could be used, for example, as a variational

ansatz for the ground state of quantum many-body systems,

or to classify quantum states as in ref. [51].

3 Hybrid auto-differentiation framework

In the following we present a framework to compute the gra-

dient of a hybrid quantum-classical loss function using auto-

differentiation, assuming that the “quantum” sub functions

involved in the loss function have the form of eq. (4). We

starting by showing how to compute the gradient of the quan-

tum feature map, namely eq. (4). There are two cases: (1)

The input A is constant and the derivative against A is not re-

quired and (2) the input A is the output of previous steps and

the derivative against A is required for the following back-

ward propagation process. In the second case, we can add a

single-qubit layer of Ry into the parametric circuit, whose pa-

rameters correspond to the values of A, and then the problem

reduces to the first case. Therefore, it is enough to consider

the gradient of the function in eq. (4), which is well-known

to be [52]

∂〈ψo|Z⊗N |ψo〉
∂θ j

=
1

2

(
〈ψi|C†(θ+j)Z⊗NC(θ+j)|ψi〉

−〈ψi|C†(θ−j)Z⊗NC(θ−j)|ψi〉
)
, (6)

where θ±j means to shift the j-th parameter of θ, θ j by ±π
2

re-

spectively. Now we assume for simplicity that there is a loss

function F(θ) which can be written as:

F(θ) = f
(
〈ψo|Z×N |ψo〉

)
, (7)

where f is some classical function. One may attempt to com-

pute the gradient of F(θ) by computing F(θ+j) and F(θ−j) and

then do ∂F(θ)/∂θ j = (F(θ+j) − F(θ−j))/2 similar to eq. (6),

which however is incorrect in general except a few cases

where f is extremely simple. Other than the way to analyti-

cally derive the gradient of eq. (7) by hand, a correct and ele-

gant way is to integrate it into the auto-differentiation frame-

work, for which one needs to provide the adjoint function for

eq. (4) as a standard practice to extend auto-differentiation to

a user-defined function. The adjoint function of eq. (4) is

z→ z × ∂〈ψ
o|Z⊗N |ψo〉
∂θ j

, (8)

which maps an input scalar z to an output array with the same

size as θ. Simply speaking, eq. (8) takes as input the gradient

z from the outer function f and multiplies it with the gra-

dient of the current function, the output of which is further

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-5

passed to its inner function if there exists. Once the correct

adjoint functions for each of the elementary functions of the

loss function have been defined, the computer will be able

to derive the gradient for the loss function using the auto-

differentiation framework [53, 54]. The only difference here

is that the adjoint function in eq. (8) depends on the output

from a quantum computer. Therefore one needs to embed

eq. (8) into the back-propagation process, just as one embeds

eq. (4) as a sub function into the classical neural network.

Then the gradient of a hybrid quantum-classical loss func-

tion would be able to be derived automatically using a hybrid

quantum-classical computer. In this work the whole process

is simulated using a classical computer.

Training our hybrid quantum-classical CNNs works in the

same way as a regular neural network. Various gradient-

based optimization techniques, such as stochastic, batch, or

mini-batch gradient descent algorithms, can be used to opti-

mize the parameters of the hybrid quantum-classical CNNs.

Once the model has been trained, it can be then used to pre-

dict outputs for given inputs.

4 Numerical results and discussions

We demonstrate the potential of our QCCNN by applying it

to the Tetris dataset. We create a Tetris image dataset that

consists of 800 gray-scale images with shape 3 × 3, in which

each gray-scale image is a simulated Tetris brick (refer to

Figure 2 for some samples). Concretely, the foreground pix-

els are represented by random floating numbers ranging from

0.7 to 1, whereas the background are small floating numbers

ranging from 0 to 0.1. There are 4 classes, namely S, L,

O, and T, each of which represents a type of Tetris bricks.

The dataset is further processed by randomly splitting into

a training set and a testing set that contain 80% and 20% of

the images, respectively. We benchmark our QCCNN against

CNN with two particular structures, namely one with a sin-

gle convolutional layer and another with two convolutional

layers. To see the performances with a different number of

classes, we create another dataset by only picking the two

classes S, T out of the original training and testing data. For

the single-layer structure, we use a single (quantum) convo-

lutional layer with 5 filters with no padding, plus a pooling

layer also with no padding. For the two-layer structure, we

use two (quantum) convolutional layers with 2 and 3 filters

respectively, plus a pooling layer in between with padding 1.

The window shape for all the layers is 2 × 2, and the stride

value s = 1. Therefore the number of qubits fed to the quan-

tum filter is 4. The depth of each parametric quantum circuit

is set to 4 to ensure high expressibility, as a result the total

number of parameters in a quantum feature map is 16. In

comparison, the number of parameters in a classical feature

map is 4, which is the same as the window size. The effect of

different circuit depths in a quantum feature map will be dis-

cussed later. We use the mean square loss as our loss function

Fq, defined as:

Fq(a) =
1

Ntrain

Ntrain∑

j=1

(
f q(x j) − y j

)2
, (9)

where a is a list of all the parameters, f q means the QCCNN

which is dependent on a and outputs a vector whose size is

equal to the number of labels, x j represents the j-th input im-

age, y j is an integer which represents the label corresponding

to x j, and y j is the one-hot vector converted from y j. Ntrain is

S L O T

Figure 2 (Color online) Some samples of the Tetris dataset. The dataset contains 1000 gray-scale images with shape 3 × 3. In the dataset, there are four

types of Tetris bricks labeled with S, L, O, T, which have 8, 16, 4 and 8 possible configurations in the gray-scale images, respectively. For each image, the

foreground pixels are represented by random floating numbers ranging from 0.7 to 1, whereas the background is small floating numbers ranging from 0 to 0.1.

The gray-scale images are plotted using matplotlib.pyplot.imshow as pseudocolor images, so that the pixels with larger numbers are represented with bright

colors.

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-6

the size of the training set. The accuracy Aq on the testing set

is defined as:

Aq(a) =
1

Ntest

Ntest∑

j=1

(
argmax(f q(x j)) == y j

)
, (10)

where the function argmax(v) outputs the position of the

largest element in the input vector v, and Ntest is the size of

the testing set. The loss function and accuracy in the classical

case are defined in the same way, with QCCNN replaced by

CNN in f q. During 1000 iterations, we compute the accu-

racy on the testing data and store the values of the loss func-

tion, which is chosen as mean square loss. In Figure 3(a) and

(c), we plot the accuracy and loss values for the 2-label case.

While in Figure 3(b) and (d) [55] we plot the accuracy and

loss values for the 4-label case. We can see that QCCNN can

reach almost 100% accuracy for both the two structures we

have used, and it can reach lower loss values for both cases

compared to its classical counterpart. Benefiting from the

high-dimensional nature of the quantum system, the advan-

tages of QCCNN become more transparent when the number

of classes increases from 2 to 4. We can also see that the 4-

label case takes more iterations to converge than the 2-label

case, and that QCCNN with a two-layer structure converges

faster than the single-layer structure, especially in the 4-label

case, which indicates that for complex problems, better per-

formance could be achieved by deeper architectures.

To gain deeper insight into our QCCNN, we tune the depth

of the parametric quantum circuit (thus changing the num-

ber of parameters) to see its effect on the training accuracy.

Concretely, for the two-layer QCCNN, we change the circuit

depth to be 1, 2, 4 (the number of parameters in each quan-

tum feature map is thus 4, 8, 16), and the training accuracies

are show in Figure 4(a) with gray lines from lighter to darker.

For comparison, in Figure 4(a) we also show the simulation

results of the corresponding two-layer CNN in green dotted

line and a modified two-layer CNN in green solid line for

which the window size of the first layer is enlarged to 3 × 3

such that we could have more parameters. We can see that the

QCCNN with 1-depth quantum circuit could already reach a

higher accuracy than CNN (they contain exactly the same

number of parameters), and that QCCNN performs better

with larger circuit depth, which is reasonable since it needs

enough depth to fully entangle all the qubits. The perfor-

mance of CNN could also be better when the number of pa-

rameters increase since it could explore a larger space in the

first layer (space of dimension 9 instead of 4), which how-

ever is still slightly worse than QCCNN with circuit depths

2 and 4. Since current quantum devices subject to noises,

we also study the effects of noisy quantum circuits on the

training performance. Concretely, in Figure 4(b) we show

the training accuracy for a perfect (yellow dashed line) and

noisy (green dashed line) one-layer QCCNN, where in the

noisy quantum circuits we have considered the decoherence

time T1, T2 as well as the measurement errors. We can see

that the performance is quite resilient to such errors, and a

training accuracy 1 could still be reached in the noisy case.

Till now we have mainly focused on the training accuracy

of QCCNN, and we have shown that QCCNN could poten-

0.6

0.8

1.0

A
c
c
u

ra
c
y

(a)

0.2

0.4

0.6

0.8

1.0(b)

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

L
o

s
s

(c)

0 250 500 750 1000
Iterations

0.00

0.25

0.50

0.75

1.00(d)

Figure 3 (Color online) Accuracy and loss as a function of the number of iterations. In all the figures, the blue line represents the result of one-layer CNN

and the black line represents the result of two-layer CNN, the blue dashed line represents the result of one-layer QCCNN and the black dashed line represents

the result of two-layer QCCNN. We have used the optimizer ADAM [55] and an initial learning rate of 0.01 and 1000 iterations. The results are averaged over

10 random simulations. (a) Accuracy in case of 2 classes; (b) accuracy in case of 4 classes; (c) loss in case of 2 classes; (d) loss in case of 4 classes.

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-7

0 50 100 150 200

Iterations

0.4

0.6

0.8

1.0

A
c
c
u

ra
c
y

(a)

100 200

0.90

0.95

1.00

0 50 100 150 200

Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0(b)

Figure 4 (Color online) (a) Accuracy as a function of the number of iterations for the two-layer QCCNN with quantum feature maps of depths 1, 2, 4, which

are shown in gray lines from lighter to darker, and for the two-layer CNN which is shown in dotted green line. The solid green line represents the accuracies

computed with a modified two-layer CNN, in which the first convolutional layer uses a window size 3×3 with padding 1, followed by a pooling layer also with

a window size 3 × 3 and padding 1. The rest of the modified two-layer CNN keeps the same as before. The inset shows the accuracies starting from the 50-th

iteration. The accuracies are averaged over 10 random initializations and four output labels are used. (b) Accuracy as a function of the number of iterations for

the noisy (green dashed line) and perfect (yellow dashed line) one-layer QCCNN with quantum feature map of depth 2. Here 2 output labels are used, and a

single initialization with random seed 100 is simulated due to the simulation efficiency in case of noisy quantum circuits and limited computational resources.

We have assumed a single-qubit gate operation time of 100 ns, a CNOT gate operation time of 300 ns, and a measurement time of 1000 ns. The decoherence

time T1 and T2 for the 4 qubits are randomly chosen from normal distributions with mean 50 and 70 μs, respectively. We have used the ADAM optimizer with

an initial learn rate 0.05 and 200 iterations.

tially achieve a higher classification accuracy than CNN. We

note that for the same window size N, the quantum feature

map requires O(Nd) gate operations for a parametric quan-

tum circuit of depth d, while the classical feature map re-

quires O(N) Floating-point arithmetics (vector inner prod-

uct). As a result from the point of computational efficiency

QCCNN would not be advantageous. We could also use

amplitude encoding instead of qubit encoding in principle,

such that a parametric quantum circuit of N qubits could pro-

cess 2N features in a single quantum feature map. However

if naively implemented this approach would have the input

problem that the encoding stage itself has a complexity of

O(2N), which is already the same as the classical feature map

(our quantum feature map does not have the output problem

since it outputs a single expectation value). If a better prob-

lem could be found which is free of such input problem, one

could probably achieve quantum advantage in terms of com-

putational time with our QCCNN framework.

5 Conclusion

In summary, we present a hybrid QCCNN which could be

used to solve real world problems with current quantum com-

puters. QCCNN avoids the input and output problems of

quantum machine learning algorithms when applied to real-

world problems, which is one of the major challenges for

current quantum machine learning algorithms. As a quan-

tum machine learning algorithm inspired by classical CNN,

QCCNN keeps the features of CNN such as the nonlinear-

ity, locality of the convolutional layer, as well as exten-

sibility to deep structures. Similar to CNN, our QCCNN

architecture provides a framework for developing various

hybrid quantum-classical machine learning applications on

near-term quantum devices, such as the discriminative model

and generative model. Moreover, the generalized feature map

with a parametric quantum circuit is able to explore the corre-

lations of neighbouring data points in an exponentially large

linear space, hopefully allowing our algorithm to capture the

patterns in the dataset more precisely with a quantum com-

puter.

In addition, we also present a framework to automatically

compute the gradients of hybrid quantum-classical loss func-

tions, which could be a useful tool for developing compli-

cated hybrid quantum-classical variational algorithms in the

future. We demonstrate our approach on the Tetris dataset

and show the potential of our approach to reach better learn-

ing precision for classification problems.

Note added. During the preparation of this work, we no-

tice a similar work that uses qRAM [56] and another work

that uses non-parametric random quantum circuits for feature

mapping [57], which were carried out independently.

Chu Guo acknowledges support from the National Natural Science Foun-
dation of China (Grant No. 11805279). He-Liang Huang acknowledges
support from the Youth Talent Lifting Project (Grant No. 2020-JCJQ-
QT-030), the National Natural Science Foundation of China (Grant No.
11905294), the China Postdoctoral Science Foundation, and the Open Re-
search Fund from State Key Laboratory of High Performance Computing
of China (Grant No. 201901-01). The numerical simulation is done by
the open source variational quantum circuit simulator VQC (Available on

J. Liu, et al. Sci. China-Phys. Mech. Astron. September (2021) Vol. 64 No. 9 290311-8

GitHub at https://github.com/guochu/VQC.jl). The noisy quantum circuits
are simulated using qiskit (G. Aleksandrowicz, T. Alexander, P. Barkoutsos,
L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-
Franquis, A. Chen, C.-F. Chen, et al., accessed on: Mar 16, 2019).

1 J. Preskill, Quantum 2, 79 (2018).

2 H. L. Huang, D. Wu, D. Fan, and X. Zhu, Sci. China Inf. Sci. 63,

180501 (2020).

3 F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R.

Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,

Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,

B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S.

Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T.

Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K.

Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,

D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-

Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni,

J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A.

Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C.

Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D.

Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh,

A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019),

arXiv: 1910.11333.

4 A. W. Harrow, and A. Montanaro, Nature 549, 203 (2017), arXiv:

1809.07442.

5 C. Guo, Y. Liu, M. Xiong, S. Xue, X. Fu, A. Huang, X. Qiang, P. Xu,

J. Liu, S. Zheng, H. L. Huang, M. Deng, D. Poletti, W. S. Bao, and J.

Wu, Phys. Rev. Lett. 123, 190501 (2019), arXiv: 1905.08394.

6 C. Guo, Y. Zhao, and H. L. Huang, Phys. Rev. Lett. 126, 070502

(2021), arXiv: 2011.02621.

7 F. Pan, and P. Zhang, arXiv: 2103.03074.

8 J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S.

Lloyd, Nature 549, 195 (2017), arXiv: 1611.09347.

9 S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014),

arXiv: 1307.0401.

10 S. Lloyd, S. Garnerone, and P. Zanardi, Nat. Commun. 7, 10138

(2016).

11 P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503

(2014), arXiv: 1307.0471.

12 H. L. Huang, X. L. Wang, P. P. Rohde, Y. H. Luo, Y. W. Zhao, C. Liu,

L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Optica 5, 193 (2018), arXiv:

1801.06316.

13 H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang,

X. Wang, and W. S. Bao, Front. Phys. 12, 120305 (2017), arXiv:

1612.02886.

14 C. Ding, T.-Y. Bao, and H.-L. Huang, arXiv: 1906.08902.

15 J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, New J.

Phys. 18, 023023 (2016), arXiv: 1509.04279.

16 M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Quantum Sci.

Technol. 5, 019601 (2020).

17 Y. Liu, D. Wang, S. Xue, A. Huang, X. Fu, X. Qiang, P. Xu, H. L.

Huang, M. Deng, C. Guo, X. Yang, and J. Wu, Phys. Rev. A 101,

052316 (2020), arXiv: 1912.07286.

18 P. W. Shor, SIAM Rev. 41, 303 (1999).

19 L. K. Grover, in A fast quantum mechanical algorithm for database
search: Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, Philadelphia, 1996, pp. 212-219.

20 G. L. Long, Phys. Rev. A 64, 022307 (2001), arXiv: quant-

ph/0106071.

21 C. Y. Lu, D. E. Browne, T. Yang, and J. W. Pan, Phys. Rev. Lett. 99,

250504 (2007), arXiv: 0705.1684.

22 H. L. Huang, Q. Zhao, X. Ma, C. Liu, Z. E. Su, X. L. Wang, L. Li, N.

L. Liu, B. C. Sanders, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 119,

050503 (2017), arXiv: 1707.00400.

23 L. Gentini, A. Cuccoli, S. Pirandola, P. Verrucchi, and L. Banchi, Phys.

Rev. A 102, 052414 (2020), arXiv: 1912.06744.

24 N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada,

and S. Lloyd, Phys. Rev. Res. 1, 033063 (2019), arXiv: 1806.06871.

25 Y. Du, M. H. Hsieh, T. Liu, and D. Tao, Phys. Rev. Res. 2, 033125

(2020).

26 G. Garcı́a-Pérez, M. A. C. Rossi, and S. Maniscalco, npj Quantum Inf.

6, 1 (2020), arXiv: 1906.07099.

27 J. Tangpanitanon, S. Thanasilp, N. Dangniam, M. A. Lemonde, and D.

G. Angelakis, Phys. Rev. Res. 2, 043364 (2020), arXiv: 2005.11222.

28 M. Schuld, and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).

29 S. D. Sarma, D.-L. Deng, and L.-M. Duan, arXiv: 1903.03516.

30 S. Lloyd, and C. Weedbrook, Phys. Rev. Lett. 121, 040502 (2018),

arXiv: 1804.09139.

31 A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J.

Love, A. Aspuru-Guzik, and J. L. OBrien, Nat. Commun. 5, 4213

(2014), arXiv: 1304.3061.

32 E. Farhi, J. Goldstone, and S. Gutmann, arXiv: 1411.4028.

33 P. L. Dallaire-Demers, and N. Killoran, Phys. Rev. A 98, 012324

(2018), arXiv: 1804.08641.

34 H.-L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li,

F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M.-H. Hsieh, H. Deng, H.

Rong, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, D. Tao, X. Zhu, and J.-W.

Pan, arXiv: 2010.06201.

35 L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D.

L. Deng, C. L. Zou, and L. Sun, Sci. Adv. 5, eaav2761 (2019), arXiv:

1808.02893.

36 K. Huang, Z.-A. Wang, C. Song, K. Xu, H. Li, Z. Wang, Q. Guo, Z.

Song, Z.-B. Liu, D. Zheng, D.-L. Deng, H. Wang, J.-G. Tian, and H.

Fan, arXiv: 2009.12827.

37 V. Havlı́ček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,

J. M. Chow, and J. M. Gambetta, Nature 567, 209 (2019), arXiv:

1804.11326.

38 K. Fukushima, Biol. Cybernetics 36, 193 (1980).

39 Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, Shape, Contour and
Grouping in Computer Vision (Springer, Berlin, Heidelberg, 1999), pp.

319-345.

40 A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances in Neu-
ral Information Processing Systems 25, edited by F. Pereira, C. J. C.

Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc.,

2012), pp. 1097-1105.

41 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.

Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-

Fei, Int. J. Comput. Vis. 115, 211 (2015).

42 K. Simonyan, and A. Zisserman, arXiv: 1409.1556.

43 K. He, X. Zhang, S. Ren, and J. Sun, in Deep residual learning for
image recognition: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, 2016, pp. 770-778.

44 I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, arXiv: 1406.2661.

45 Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, arXiv: 1612.08083.

46 J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, arXiv:

1705.03122.

47 Y. Zhang, and B. Wallace, arXiv: 1510.03820.

48 A. Kirillov, D. Schlesinger, W. Forkel, A. Zelenin, S. Zheng, P. Torr,

and C. Rother, arXiv: 1511.05067.

49 S. Song, H. Huang, and T. Ruan, Multimed Tools Appl. 78, 857 (2019).

50 A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and

Q. V. Le, arXiv: 1804.09541.

51 I. Cong, S. Choi, and M. D. Lukin, Nat. Phys. 15, 1273 (2019), arXiv:

1810.03787.

52 K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev. A 98,

032309 (2018), arXiv: 1803.00745.

53 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533

(1986).

54 C. Guo, and D. Poletti, Phys. Rev. E 103, 013309 (2021).

55 D. P. Kingma, and J. Ba, arXiv: 1412.6980.

56 I. Kerenidis, J. Landman, and A. Prakash, arXiv: 1911.01117.

57 M. Henderson, S. Shakya, S. Pradhan, and T. Cook, Quantum Mach.

Intell. 2, 2 (2020).

