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Free-surface flows, especially those associated with fluid-structure interactions (FSIs), pose challenging problems in numerical
simulations. The authors of this work recently developed a smoothed particle element method (SPEM) to simulate FSIs. In this
method, both the fluid and solid regions are initially modeled using a smoothed finite element method (S-FEM) in a Lagrangian
frame, whereas the fluid regions undergoing large deformations are adaptively converted into particles and modeled with an
improved smoothed particle hydrodynamics (SPH) method. This approach greatly improves computational accuracy and effi-
ciency because of the advantages of the S-FEM in efficiently treating solid/fluid regions showing small deformations and the
SPH method in effectively modeling moving interfaces. In this work, we further enhance the efficiency of the SPEM while
effectively capturing local fluid information by introducing a multi-resolution technique to the SPEM and developing an
effective approach to treat multi-resolution element-particle interfaces. Various numerical examples demonstrate that the multi-
resolution SPEM can significantly reduce the computational cost relative to the original version with a constant resolution.
Moreover, the novel approach is effective in modeling various incompressible flow problems involving FSIs.
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1 Introduction

Free-surface flows widely exist in numerous natural and
industrial systems in which fluids usually interact with rigid
and flexible structural subcomponents. Developing adequate

mathematical models and simulation strategies for under-
lying fluid-structure interaction (FSI) mechanisms is an
important subarea in the field of computational fluid dy-
namics (CFD) [1]. In this area, tedious problems arise be-
cause of the large deformations of solids and the large-scale
motion of fluids, free surfaces, and moving fluid-structure
interfaces. The inherent nonlinearity and time-dependent
characteristics of these problems present great challenges in
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their numerical modeling. Hence, the demand for truly pre-
dictive computational methods in industries, medical fields,
research laboratories, space exploration, and many other
fields has grown.
To model the incompressible flows involving FSI pro-

blems, there are two main approaches relying on grid-based
methods in a Lagrangian or Eulerian frame. The Lagrangian
finite element method (FEM) cannot effectively simulate
incompressible flows with large deformations (e.g., free-
surface flows). In such cases, this method requires mesh
adjustment or rezoning. Idelsohn et al. [2] pioneered the
combination of the Lagrangian FEM with a particle-based
method and developed the particle finite element method
(PFEM) for modeling incompressible flows with free sur-
faces. In the PFEM, the equations of fluid motion are solved
by the FEM in a Lagrangian description, and the mesh nodes
are regarded as moving material points. Recently, the PFEM
has been successfully coupled with the FEM for the simu-
lation of FSI problems [3,4], in which the PFEM is utilized to
solve fluid flows and the FEM is applied to model solid
structures. Despite the successful applications of the PFEM,
it requires overcoming mesh entanglements and may thus
entail additional topological modifications and an overall
volume variation [5].
As for modeling incompressible flows in an Eulerian

frame, the FEM [6], finite volume method (FVM) [7], and
finite difference method (FDM) [8] have been widely em-
ployed. In dealing with violent FSI problems, these methods
may require special techniques, such as the volume of fluid
(VOF) [9] and level set (LS) [10], to track changing inter-
faces or free surfaces. This requirement usually brings great
difficulties in accurately reproducing breaking free surfaces.
Moreover, some complicated mesh generation techniques are
necessary in situations involving complex geometries or
moving boundaries.
Meshfree and particle methods have special advantages in

modeling incompressible flows with free surfaces because
they can naturally capture moving interfaces. The smoothed
particle hydrodynamics (SPH) method is a popular meshfree
method that has been successfully applied to different fields
of engineering and science, such as free-surface flows [11-
13], multiphase flows [14-17], heat and mass transfer [18-
20], explosion phenomenon [21,22], and others [23-25].
Some researchers have coupled the SPH method with other
Lagrangian or Eulerian grid-based methods for treating in-
compressible flow problems. To take advantage of the La-
grangian FEM for accurately and efficiently modeling
structural deformations, coupling methodologies of SPH
with FEM have been developed to treat various FSI problems
[26,27]. For example, Hermange et al. [28] developed a
coupling method for the SPH method and FEM to model
some hydroelastic and 3D hydroplaning problems and
achieved good accuracy and stability. Zhang et al. [29] in-

vestigated the mechanism of sloshing mitigation that takes
advantage of SPH-FEM coupling method for treating the FSI
problem of violent sloshing with deformable baffles. Cou-
pling strategies of SPH with FVM [30,31] and SPH with
FDM [32] also have been successfully presented while
leveraging the capabilities of Eulerian grid-based methods in
treating wall regions or efficiently modeling flows in a large
domain. However, the FEM-SPH coupling approach treats
fluid regions by using SPH and is thus computationally ex-
pensive. The FVM/FDM-SPH coupling approaches still
suffer from the drawbacks of grid-based methods in mod-
eling breaking free surfaces, and they are not able to effec-
tively solve FSI problems with large structural deformations.
The multi-resolution techniques have recently been de-

veloped for grid-based and particle-based methods. In cases
with computational domains that are much larger than solid
structures, the use of a uniform mesh or particle distribution
is prohibitive in terms of computational costs. Therefore,
some researchers have developed adaptive mesh refinement
(AMR) [33,34] for grid-based methods and adaptive particle
resolution (APR) [35,36] for particle-based methods. In this
way, as local fluid regions are modeled using refined grids or
particles, the computational accuracy for regions with fine
resolution can be improved with greatly reduced central
processing unit (CPU) time and memory consumption. For
the SPH method, some researchers have attempted to use
variable particle spacing to overcome the drawbacks of using
uniform particle distributions. In recent years, a challenging
approach to implement multi-resolution simulations in SPH
has emerged, and it is based on particle splitting and coa-
lescing techniques [35,37], or called adaptive particle re-
solution [36,38,39]. Feldman and Bonet [40] first developed
a particle refinement technique in which a coarse particle is
split into several children particles to increase the spatial
resolution in local regions. As the major part of the com-
putational domain is modeled using coarse particles, the
approach can significantly reduce CPU time relative to si-
mulations that use refined particles for the whole domain.
López et al. [41] improved this technique by maintaining the
conservation of the change rate of density during the re-
finement process. Furthermore, Vacondio et al. [35,42] pre-
sented a dynamic particle resolution approach by
incorporating a coarsening technique in which children
particles can coalesce back to mother particles. Barcarolo et
al. [36] developed an APR technique where mother particles
are not removed after splitting but switched off and are
turned on after passing through the refinement region. Al-
though the refinement region can be moving in many of these
refinement techniques, the fixed configurations of the region
(e.g., square region) are usually used to easily implement the
multi-resolution technique, whereas arbitrarily shaped and
varying refinement regions may be desirable in some prac-
tical simulations.
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The smoothed finite element method (S-FEM) developed
by Liu et al. [43] can solve the usual problem of “overly-
stiff” in the conventional FEM. The S-FEM accurately
models structural deformations and can greatly reduce the
computational time for fluid modeling as compared to the
particle-based methods. To take advantages of the S-FEM
and SPH method, Zhang et al. [1] developed the smoothed
element-particle method (SPEM) for modeling FSI pro-
blems. In this approach, fluid and structural regions are in-
itially simulated using the Lagrangian S-FEM. During the
simulation, the finite elements in local fluid regions under
large deformations are adaptively converted into particles,
while the other fluid regions without large deformations are
still modeled using finite elements. In this way, computa-
tional efficiency is significantly improved relative to that of
conventional particle-based methods, such as the SPH
method. Meanwhile, free surfaces and moving interfaces can
be effectively captured by particles. In recent years, multi-
resolution simulations have become increasingly popular
because they entail low computational costs and achieve
high accuracy for local fluid regions (e.g., boundary layer
regions). In the current work, we focus on developing a
multi-resolution technique for the SPEM to further improve
computational efficiency along with computational accuracy
for local domains. With this newly developed technique, the
multi-resolution element-particle interfaces are successfully
treated by splitting ghost fluid particles, and the multi-re-
solution regions can be arbitrary and vary with FSI inter-
faces. The multi-resolution SPEM is expected to effectively
treat various FSI problems with significantly reduced com-
putation costs.
The remainder of this paper is organized as follows. The

methodologies, including the Lagrangian S-FEM formula-
tions and the improved SPH method, are introduced in sect.
2. The multi-resolution technique for the SPEM and the
presented algorithms for treating multi-resolution element-
particle interfaces are also described in detail. Four numer-
ical examples are presented and elucidated in sect. 3 to show
the accuracy and efficiency of the presented method. Finally,
conclusions are summarized in sect. 4, along with some re-
marks.

2 Methodology development

In the first part of this section, the Lagrangian S-FEM
formulations for fluid and solid modeling are derived. In
the second part, the improved SPH benefiting from
several advanced techniques is described. In the third part,
we introduce the multi-resolution technique implemented in
the SPEM and the multi-resolution interface treatment in
detail. The coupling strategy for fluids and solids is also
described.

2.1 Lagrangian S-FEM for fluids and solids

In the SPEM, both structural deformations and fluid flows
are modeled by the edge-based S-FEM with an updated
Lagrangian description [1]. Three-node triangular elements
are employed to discretize the computational domain. In the
current configuration, the spatial position and velocity are
obtained by

x N x
v N v

= ,
= ,

(1)I I

I I

where α, NI, xI, and vI denote the dimension index, shape
function, current spatial position, and velocity of node I,
respectively. In the S-FEM, smoothing domains are used to
solve the smoothed gradient of the field (Figure 1). On the
basis of the divergence theorem, the smoothed velocity
gradient can be derived as:
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where Ak
s denotes the area of the smoothing domain k

s in a
two-dimensional space, superscript “s” denotes the field
variable of the solid, and nβ represents the component of the
unit vector normal to the smoothing domain boundary k

s .
Using the principle of virtual power, we obtain the fol-

lowing equation:
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By further employing the shape function of polynomial
interpolation, we rewrite eq. (3) as:
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Figure 1 (Color online) Partition of smoothing domains (shaded areas)
with triangular elements (solid lines).
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where v, , ρ, a, T , b, and v represent the virtual velocity,
smoothed Cauchy stress, density, acceleration, surface force,
body force, and boundary of velocity, respectively. Finally,
the nonlinear solid deformations are calculated using the
explicit time integration based on the central difference al-
gorithm. The S-FEM formulas for structural deformations
are

M a f f

f
N
x

f N b N T

+ = ,

= d ,

= d + d ,

. (5)

I I I I

I
I

I I I

_int _ext

_int

_ext
t

where MI is the node mass. The equivalent internal force
f I_int represents the contribution of Cauchy stress, and the
equivalent external force f I_ext represents the contribution of
body and surface forces.
In the SPEM, the edge-based S-FEM in a Lagrangian

frame is utilized to model incompressible flows. The relevant
mathematical relations are presented here. The Cauchy stress
tensor in the equations of fluid motion is written as:

p= + , (6)
where δ and τ represent the unit tensor and deviator stress,
respectively. Similar to the weakly compressible SPH
[23,24], an artificial equation of state is applied to compute
pressure by regarding the incompressible fluid as weakly
compressible, i.e.,

p c= ( ), (7)2
0

where c and ρ0 are the numerical sound speed and reference
density, respectively. Sound speed is usually restricted by
c U p10max( , / )max max 0 to satisfy the weakly compres-
sible condition [44,45]. Umax and pmax respectively denote the
maximum expected velocity and pressure of the fluid.
Smoothed pressure p is constructed by the smoothed velo-
city gradient given as:

p
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The deviator strain rate ε and its smoothed value are
written as:
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Finally, the smoothed deviator stress and smoothed Cau-
chy stress are given by

µ
p

= 2 ,
= + ,

(10)

where μ is the dynamic viscosity of the fluid. In a recent
study presented by the authors [1], the set of such Lagrangian
S-FEM formulas for incompressible fluid flows is called the
weakly compressible S-FEM.

2.2 Improved SPH for local fluid regions

In the SPEM, we use an improved SPH to model local fluid
regions. The SPH formulations for incompressible fluid
flows are presented as follows. In SPH, kernel and particle
approximations are employed to discretize the governing
partial differential equations. For the kernel approximation,
we use the kernel function W to calculate the interaction
forces between SPH particles. Hence, a field function f (x)
and its spatial derivative f (x) at position x are given by

f f W hx x x x x( ) = ( ) ( , )d , (11)

f f W hx x x x x( ) = ( ) ( , )d , (12)

where Ω denotes the spatial domain, < > shows the SPH
approximation, and h stands for the smoothing length. For
the particle approximation, the field function and its deri-
vatives can be obtained by taking the sum of all the neigh-
boring particles of the interested particle, i.e.,

f
m
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where mj is the mass, ρj is the density of particle j, and N
represents the total number of its neighboring particles.
For incompressible viscous hydrodynamic problems, the

governing continuity and Navier-Stokes (N-S) equations in a
Lagrangian frame are given by

t
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Applying the kernel and particle approximations to the
above eq. (15), along with some transformations, yields the
following SPH forms of the governing equations:
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where v v v=ij i j and x x x=ij i j. In modeling in-
compressible flows using SPH, one approach is to calculate
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the pressure through the Poisson equation (PPE) (see refs.
[46,47] about PPE). This approach is called the in-
compressible SPH (ISPH) method [48-50]. Another method
considers incompressible fluid as weakly compressible and
employs an artificial equation of state to update fluid pres-
sure, i.e., the weakly compressible SPH (WCSPH) method
[23,24]. In the current work, we apply the WCSPH to treat
incompressible flows and adopt the state (eq. (7)).
The conventional SPH method suffers from low accuracy

as it cannot exactly approximate linear functions and even
constants. To improve the accuracy of the SPH method, Liu
et al. [23,51] developed the finite particle method (FPM)
with second-order accuracy. Since the introduction of the
FPM, it has been successfully applied to the modeling of
different problems in various fields [19,52,53]. However, the
FPM is time consuming and not very stable because matrix
equations are involved in the simulations. Recently, the au-
thors developed a decoupled FPM that does not need to solve
the corrective matrix while maintains a relatively high ac-
curacy [1], and this approach is used in the current multi-
resolution SPEM. To ensure a uniform particle distribution
and obtain a stable and accurate solution, we also consider
the particle shifting technique (PST) [54,55] in the present
method. This technique helps by re-distributing particles and
adapting the field variables.

2.3 Multi-resolution SPEM

2.3.1 Multi-resolution technique for SPEM

Feldman and Bonet [40] firstly presented a particle refine-
ment technique for SPH. In this technique, one coarse par-
ticle is split into several children particles to increase the
particle resolution in the concerned fluid regions. During the
particle refinement process, the conservation of mass, kinetic
energy, and linear and angular momenta of particles should
be maintained. After the refinement, the change in the den-
sity and velocity fields surrounding the refined particles
should also be minimized. Further details about this method
are available in ref. [40]. Motivated by this idea, we integrate
the particle refinement technique with the SPEM to imple-
ment a multi-resolution simulation.
In the multi-resolution SPEM, the same group-based

conversion method is used to identify the elements to be
converted into particles [1,56]. The entire fluid domain is
partitioned into different groups at the beginning of the
computation. The length g of the group is taken as

h= (2 )g max , where λ is the dilation factor larger than 1.0
and hmax is the maximum smoothing length of the particles to
be converted in this group. In this method, the minimum
interior angle (MIA) algorithm is employed to determine
whether an element should be converted. Specifically, if the
minimum interior angle of an element reaches a limited small

value (30° in present simulations), then such element is re-
garded as a distorted element. If one distorted element occurs
in a group, all the elements in such group are converted into
particles. Converting one element into one particle in an
instant instead of converting a group of elements is in-
appropriate because converting only one particle is compu-
tationally uneconomical and the element-particle interface
can be discontinuous. Further details about the group-based
conversion algorithm are described in refs. [1,56].
Figure 2 shows the conversion of a group of elements into

particles and the implementation of the multi-resolution
technique in the SPEM. After identifying the groups of
elements to be converted into particles, we generate fluid
particles in these groups and ghost particles in the sur-
rounding groups of the unconverted elements. Then, the
generated fluid particles are split into three particles to in-
crease the spatial resolution in local regions. It should be
noticed that the coarse fluid particles can also be split into
four or seven particles, as introduced in ref. [40]. We find
that as the triangle elements are used in this work, splitting
one particle into three particles on the basis of the triangle
elements can yield stable and accurate simulations. Fur-
thermore, the ghost particles are split to overcome the dis-
continuity problem between the refined particles and the
coarse elements.
First, we introduce the conversion of elements into parti-

cles and the particle refinement process. As shown in Figure
3, the elementOPQ is identified as a converting element, and
a fluid particle M is generated at its barycenter. The position
and velocity of the new particle are

m m m
m

v
m v m v m v

m

x
x x x

=
+ +

,

=
+ +

,
(17)

M
O O P P Q Q

e

M
O O P P Q Q

e

where mO, mP, and mQ are the masses of the element nodes
and me is the mass of the corresponding element OPQ. The
mass and density of particle M are the same as those of the
element

{m m= ,
= , (18)M e

M e

where me and ρe are the mass and density of the element
OPQ, respectively. Second, particle M is split into three
particles in the corresponding triangle element. To maintain
the uniform distribution of the refined particles and the
conservation of the element properties, we locate the refined
particles at the center of particleM and element nodes, that is

x x x x x x x
x x

= +
2 , = +

2 , =
+
2 , (19)i

O M
j

P M
k

Q M

where xi, xj, and xk denote the positions of the refined par-
ticles. To guarantee mass conservation, the mass of the three
particles remains equal to one-third that of the element. We
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Figure 2 (Color online) Implementation of multi-resolution technique in SPEM, (a) determining the elements to be converted, (b) generating ghost and real
fluid particles, (c) splitting the ghost/fluid particles and removing the local fluid elements.

Figure 3 (Color online) Conversion of elements to particles. (a) Identification of converting elements; (b) generation of fluid particles; (c) refinement of
fluid particles.
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also set the density of the particles to be the same as that of
the element; that is

m m m m= = = 1
3 ,

= = = .
(20)i j k e

i j k e

Moreover, the momentum conservation is maintained, and
the velocity of a refined particle is adopted as that of the
neighboring element node:

v v v v v v= , = , = . (21)i O j P k Q

The radius of the coarse particle M is taken as:

R A= / 2, (22)M e

where Ae denotes the area of the triangular element. The
radius of the refined particles Ri = Rj = Rk, and this value can
be adopted as 0.5-0.6RM. Using this approach, we can con-
serve the mass and momentum during the element-particle
conversion and particle refinement processes.
After generating the refined particles, the boundary seg-

ments should be updated, as shown in Figure 2(c). The
groups of refined particles are added into the list of fluid
particles. The smoothing domain should also be re-
constructed, as introduced in ref. [1]. Furthermore, the cou-
pling strategy based on splitting ghost particles is presented
to calculate the interaction forces between the fluid elements
and the fluid particles. The coupling in the conventional
SPEM involves locating one ghost particle in each element
of the interface regions, and such ghost particle carries the
information of the corresponding fluid element. Fluid parti-
cles are updated by considering the ghost particles as the
neighboring particles in the computations of governing
equations. The force on the element node is computed on the
basis of the neighboring fluid particles. However, the sizes of
the elements and particles are not consistent in the multi-
resolution SPEM, and the relevant field variables, such as the
mass or volume between the elements and particles, are not
continuous. This condition may lead to computational errors
in the interface regions. For instance, when particles are
distributed nonuniformly, the support domain of one fluid
particle may include a very small number of ghost particles
due to the large size of the element (one ghost particle in each
element). To calculate the interaction forces and solve the
discontinuity problem, we split the ghost particles in the
unconverted elements. As shown in Figure 4, the local fluid
domain is modeled using refined particles while the other
region is treated by coarse elements. We first detect the new
boundary element segments of the element region and
identify the surrounding groups of the particle region. Then,
each of the ghost particles in these surrounding groups is
split into three particles. The refined ghost particles carrying
the information of the corresponding elements are obtained
using the same approach as that used for the real fluid par-
ticles, i.e., eqs. (17) to (22). Furthermore, the force applied

from the elements to the particles can be calculated using the
splitting ghost particles. This force is obtained by including
the ghost particles in the summations of the real fluid particle
i, that is

t
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where Nsg denotes the number of splitting ghost particles in
the support domain of particle i. The total information of
fluid particle i is finally updated by

t t t
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d
d = d

d + d
d ,

d
d = d

d + d
d ,

(24)

i i i

i i i

total ghost real

total ghost real

where real represents the information obtained by the sur-
rounding real fluid particles. This calculation follows the
same approach (using eq. (16)) as that for the inner fluid
particles. As the splitting ghost particles carry similar vari-
ables as the real fluid particles, including the mass, velocity,
volume, and density, the information of the fluid particles is
consequently updated using the continuous field variables.
At this point, we calculate the forces applied to the coarse

elements; the calculation is similar to that in ref. [1]. Taking
one interfacial element as an example, the interaction force
from the particles to the segment PQ, FFtPQ, can be obtained
according to the stress of the surrounding fluid particles,

( )
F

l n

m
W

m W

=
+
2 ,

= ,
(25)
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PQ Q P
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j
j Qj

j
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j
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f

f

where Q represents the Cauchy stress of the interface node

Q and Nf is the number of neighboring fluid particles of this
node. lPQ and n denote the segment length and unit vector

normal to PQ, respectively. Finally, F / 2FtPQ is applied on
both the nodes of P and Q. Furthermore, the velocity of the
interface node is corrected by

m
Wv v v v= ( ) , (26)i

Intf
i
Intf

j

j

j
i
Intf

j ij
_node _node _node

where φ is a manually adjusted parameter and is adopted as
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0.1 in our present simulations. This approach makes the in-
terface elements and particles move in a homologous man-
ner.
In the multi-resolution simulations, the fluid region is

calculated using aforementioned PST [54,55]. The PST helps
obtain a uniform distribution for the refined particles and
thus achieves stable and accurate calculation results. In this
work, we only present an example of splitting one particle
into three particles on the basis of the triangle elements in
multi-resolution SPEM. Other particle refinement techniques
with smaller refinement errors can be developed and in-
tegrated into the SPEM in the future.

2.3.2 Coupling of structural elements and fluid particles
As far as the simulations of FSI problems are concerned, the
treatment of FSI interfaces is important as it directly influ-
ences computational accuracy. In the present work, we adopt
the virtual particle coupling strategy [57] in the decoupled
FPM scheme to transfer the information between the struc-
tural elements and the fluid particles [1]. This coupling
strategy is different from the element-particle coupling al-
gorithm in the previous section in which the field variables
are continuous around the interfaces of the fluid elements
and fluid particles. In the fluid-structure coupling strategy,
the truncation region of the fluid particle is partitioned into
different subregions to generate ghost particles. The element-
particle interaction forces are exerted by these ghost parti-
cles. At this point, we need to detect the type of interaction
between a fluid particle and an element segment. Different
position relationships between the particle and the element
segment should be recorded, i.e., the particle interacting with
segment AB or BC shown in Figure 5.
As shown in Figure 5(b), the truncation area of particle i is

partitioned into three subareas, namely, Ω1, Ω2, and Ω3. The
subareas are divided into small triangles and arches with
ghost particles located at the centers. The information of a
ghost particle is obtained from the neighboring fluid particles
[57]. Then, the force applied to fluid particle i from the

segment BC is given by
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where FG tFj i
is the force applied to fluid particle i from ghost

particle j. The boundary force from fluid particle i on seg-
ment BC is written as F F=F tS S tFi BC BC i

. To restore con-
sistency, we utilize the highly accurate approximation
scheme in the coupling strategy. With this approach, we at-
tain the variables of both fluid and ghost particles. Ref. [1]
presents further details about this coupling strategy for
treating FSI interfaces.
The present method can also be easily extended to the

modeling of FSI problems with thin-walled structures. In the
multi-resolution SPEM, we employ the S-FEM to describe
structural deformations; this approach is suitable for mod-
eling thin-walled structures, as shown in refs. [58,59].
Moreover, the present method shows promise in the mod-
eling of FSI problems with the dynamic plastic response of
plates when appropriate plastic deformation criteria are in-
troduced [60].

2.3.3 Extension of multi-resolution technique to 3D
Herein, we show the extension of the present multi-resolu-
tion technique to 3D problems, as targeted for our future
work. In ref. [1], the conversion of elements into particles in
a 3D space was discussed in detail, i.e., the computational
domain is partitioned into different cubes, and the group-
based conversion algorithm is applied to the tetrahedron
elements under large deformations. After converting the
groups of elements, the generated fluid particles are split into
four particles to increase the spatial resolution in local 3D
regions. Similarly, the mother particles can be split into eight
or more children particles. It is found that stable and accurate
simulations can be obtained when splitting one particle into
four children particles on the basis of tetrahedron elements.
As shown in Figure 6, mother particle M is located at the
barycenter of tetrahedron element OPQR and is given the
same mass and density as those of the corresponding ele-
ment. The children/refined particles are generated at the
center of the mother particle and the four element nodes in
3D. The density of the four children particles is the same as
that of the tetrahedron element, and the mass of the children
particles is adopted as one-fourth of that of the element so
that the mass conservation can be maintained. To ensure
momentum conservation, we keep the velocity of a refined
particle equal to that of the neighboring element node. After

Figure 4 (Color online) Coupling of refined particles with coarse ele-
ments based on splitting ghost particles.
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the provision of information to the four children particles, the
boundary segments and smoothing domains in the 3D space
can be updated using the same way as that introduced in ref.
[1]. Another key point of the 3D multi-resolution technique
is to couple the tetrahedron elements with the refined parti-
cles. This coupling can be achieved by splitting the ghost
particles in unconverted elements and giving the ghost par-
ticles information in a way similar to that for real fluid
particles. Furthermore, the variables of the refined fluid
particles can be updated by regarding the split ghost particles
as the neighborhood. The interaction forces applied to the
element segments are computed according to the method
introduced for 2D simulation. When extending the multi-
resolution SPEM from 2D to 3D, the computational cost
does not significantly increase. In the present coupling
strategy, we only need to generate ghost particles for the fluid
particles around the element-particle interfaces, i.e., a small

number of ghost particles are generated for the limited fluid
particles. Therefore, the element-particle coupling strategy in
multi-resolution scheme additionally consumes very little
computation time relative to that used in the entire simula-
tion.

2.4 Differences between present multi-resolution tech-
nique and existing ones

In this section, we compare the present multi-resolution
technique with existing ones in the context of SPH to illus-
trate the key point of our method. APR techniques [35,36]
are known to show some advantages in modeling FSIs, but
they need further development to become as mature as AMR
techniques in grid-based methods [61]. One challenge is to
maintain the mass, momentum, and energy conservation of
the particle system during the particle splitting and coar-

Figure 5 (Color online) Illustration of virtual particle strategy for treating FSI interfaces.

Figure 6 (Color online) Particle refinement process in 3D multi-resolution SPEM.
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sening processes that may affect the simulation accuracy and
stability. Therefore, the position of the target region with a
refined resolution is often determined in the computational
domain [40] so that the particle splitting and coarsening
technique can be easily and accurately implemented. A
number of researchers have successfully moved the position
of the refinement region in their simulations [35], and the
same is done in our multi-resolution technique. More im-
portant, the multi-resolution regions in our method can be
arbitrary and vary with FSI interfaces, and such interfaces
should be identified during the simulation process. As shown
in the water entry case in sect. 3.2, a rectangular region with
refined particles (much smaller than the solid structure) is
initially set around the water entry area. During the water
entry process, the configuration of the refined region changes
with the evolution of the fluid-structure interfaces. In the
reported multi-resolution simulations of SPH, the moving
refined region with a fixed configuration should be much
larger than the solid structure, or the solid structure should be
contained in the refined region. The adaptive refined region
with configurations varying with the fluid-structure inter-
faces can be more efficient than conventional ones with large
regions containing solid structures. The present adaptive
multi-resolution technique provides a new alternative for
researchers to implement multi-resolution simulations of FSI
problems using SPH.
As mentioned previously, the configuration of the refine-

ment region is usually fixed with regular interfaces between
coarse and refined particles that need to be treated in the
existing multi-resolution SPH. The overlapping particle re-
gion can be used to transfer information between coarse and
fine particles (or named mother and children particles).
Meanwhile, the artificially defined function can also be ap-
plied to transfer the field variables continuously. However,
the multi-resolution interfaces in our developed algorithms
become changing element-particle interfaces. The field
variables should be accurately transferred from coarse ele-
ments to refined particles, as shown in Figure 4. This cou-
pling is more challenging than the easy coupling of coarse
particles with refined particles. Through the use of the pro-
posed coupling algorithm based on splitting ghost particles,
the field variables can be smoothly and continuously trans-
ferred between the coarse elements and the refined particles.
The process is demonstrated in the following numerical tests.
To the best of the authors’ knowledge, the introduction of a
multi-resolution technique to element-particle coupling ap-
proaches is rarely reported.
In summary, the present multi-resolution SPEM is very

different from existing multi-resolution techniques adopted
in particle-based methods. Specifically, the proposed method
can treat moving multi-resolution regions with arbitrary
shapes along with evolving FSI interfaces. The proposed
algorithm for treating multi-resolution element-particle in-

terfaces (rather than particle-particle interfaces) can also
benefit the implementation of multi-resolution techniques in
the coupling strategy of particle-based with grid-based
methods, especially the SPH-FEM coupling approach.

3 Numerical tests

In this section, different examples are tested to show the
accuracy and efficiency of the presented multi-resolution
SPEM. First, a hydrostatic water column on an elastic plate is
simulated to validate the accuracy of the multi-resolution
element-particle interface treatment and show the con-
vergence of the multi-resolution SPEM. Second, the water
entry and exit cases are tested to validate the accuracy of our
method and show its improved efficiency. Furthermore, the
multi-resolution SPEM is applied to model a fluid-elastic
structure interaction problem. The accuracy of the present
method for treating FSI problems is demonstrated herein.

3.1 Hydrostatic water column on an elastic plate

In this section, we simulate the example of a hydrostatic
water column on an elastic plate to investigate the con-
sistency of the field variables across the multi-resolution
element-particle interface. The model set-up of this case is
similar to that shown in ref. [1]. The height and width of the
still water column are H = 2.0 m and L = 1.0 m, respectively.
The density of the fluid is ρ = 1000 kg/m3, and the numerical
sound speed is taken as c = 100 m/s. The elastic plate is set
with a thickness of e = 0.05 m and a density of ρs =
2700 kg/m3. The plate deformation is simulated by a linear
elastic constitutive model with Young’s modulus E =
67.5 GPa and Poisson’s ratio υ = 0.34. Except for specifically
mentioned instants (e.g., water entry and exit in sect. 3.3), the
acceleration of gravity is g = 9.81 m/s2 in the present simu-
lations.
Figure 7 shows the pressure distribution in the fluid and

stress field in the solid plate obtained using the multi-re-
solution SPEM. The water column is discretized by both
elements and particles, i.e., the height of the particle domain
is 0.5 m. In this case, two coarse element distributions are
adopted with element leg lengths ∆xe = L/40 and L/60. The
refined particles are distributed by presetting the elements in
the particle region and replacing each element with three
particles. The solid plate is discretized with the same coarse
resolution as the fluid element region. Figure 7 shows that
the present method can attain a continuous pressure dis-
tribution across the multi-resolution element-particle inter-
face. A smooth stress field is reproduced in the solid plate at
the same time.
Moreover, we compare the midpoint displacements of the

elastic plate computed through the multi-resolution SPEM
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simulation and analytical solution (Figure 8). Three different
coarse element lengths are considered, and the distribution of
the refined particles is the same as that shown in Figure 7.
The comparison indicates that with an increase in the spatial
resolutions of the fluid and solid, the results of the multi-
resolution SPEM approach the analytical ones. This test case
demonstrates the accuracy of the multi-resolution SPEM in
treating multi-resolution element-particle interfaces and the
good convergence of the method.

3.2 Water entry of a wedge

In this section, the water entry of a wedge is simulated to
validate the accuracy of the multi-resolution SPEM and de-
monstrate its efficiency. Figure 9 shows the schematic for the
model set-up of this problem, which was also used by Oger et
al. [62]. Zhao et al. [63] conducted an experiment for such a
problem in which a wedge prism is freely released and im-
pacts the water surface. Hence, this problem can be simpli-

fied as a 2D case. In this test, the width of the wedge is W =
0.5 m, and the dead rise angle of the wedge is 30°. Five
piezoresistive pressure cells (P1-P5 in Figure 9) are used to
record the wall pressure during the water entry process. Two
force transducers are placed to test the vertical force on the
falling wedge. The vertical velocity of the wedge is mea-
sured with an optical sensor. At T = 0 s, the wedge enters the
water surface with a vertical velocity of 6.15 m/s. The den-
sity of water is ρf = 1000 kg/m

3. The length and depth of the
computational fluid domain are set as 3.0 and 1.5 m, re-
spectively. The numerical sound speed is taken as c =
100 m/s. A constant time step of 0.4 × 10−6 s is adopted for
the present simulations. As shown in Figure 10, two different
mesh distributions are used to test the accuracy and effi-
ciency of the different approaches, respectively. In case I, the
variable mesh size is used with a fine mesh distribution
around the water entry region, i.e., the mesh size becomes
smaller from the side and bottom walls to the water entry
point. In case II, a fixed mesh size is employed for the entire
computational domain.
The spatial resolution of the water entry region in case I is

higher than that in case II and this keeps the higher accuracy
of the simulation in case I. Hence, we first adopt case I to
demonstrate the accuracy of the implementation of multi-
resolution technique in SPEM. In case I, the computational
domain is initially discretized using around 120000 elements

Figure 8 (Color online) Comparison of midpoint displacements of elastic
plate obtained from analytical solution and multi-resolution SPEM with
different spatial resolutions (element leg lengths).

Figure 7 (Color online) Pressure distribution in fluid and stress field in solid plate obtained using multi-resolution SPEM, element leg lengths ∆xe = L/40
(a) and L/60 (b).

Figure 9 (Color online) Model set-up for the water entry of a wedge.
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in the multi-resolution SPEM simulation and about 360000
elements in the simulation by the SPEM with a fine spatial
resolution (no particle refinement). In this situation, the local
spatial resolution near the wedge in multi-resolution SPEM

is similar to that in the conventional SPEM with a fine re-
solution. Figure 11 shows the distributions of the particles
and elements during the water entry process obtained using
the multi-resolution SPEM. To ensure the stability of the

Figure 10 (Color online) Mesh distributions in (a) case I with variable mesh sizes and (b) case II with a fixed mesh size.

Figure 11 (Color online) Particle and element distributions obtained using the multi-resolution SPEM in case I at T = 0.006 s (a) and 0.012 s (b).
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simulation and avoid the frequent evolution of the multi-
resolution interfaces, we convert the elements in the region
around the water entry point (0, 0) into refined particles
before the simulation. During the water entry process, the
multi-resolution element-particle interfaces change follow-
ing the variation of the fluid-structure interfaces. A smooth
pattern of the pressure is apparently obtained in the corre-
sponding regions with refined particles and coarse elements,
and the pressure distribution is continuous across the multi-
resolution element-particle interfaces. Then, we compare the

numerical results of the conventional SPEM with a fine
spatial resolution and multi-resolution SPEM in Figure 12.
This comparison shows the good agreement of the solutions
of the two approaches, including the pressure field, wedge
position, and free-surface shapes. Therefore, the im-
plementation of multi-resolution technique in the SPEM can
be quantitatively validated.
As shown in Figures 13 and 14, we perform some quan-

titative comparisons of the results obtained from different
sources. As for the vertical force and vertical velocity of the

Figure 12 (Color online) Comparison of pressure fields during the water entry process obtained using the SPEM with a fine spatial resolution (left) and the
multi-resolution SPEM (right), case I at T = 0.008, 0.011, and 0.014 s from (a) to (c).
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wedge during the water entry process, the conventional
SPEM and multi-resolution SPEM can achieve results that
are very close to the experimental observations [63]. The
present numerical solutions overestimate the vertical force
on the wedge, possibly because of the ignored 3D effects
[62]. As for the pressure distribution on the wedge, the
conventional SPEM with a fine resolution and the multi-
resolution SPEM solutions agree well again with the re-
ference results, except for the numerical results that show a
slight deviation from the experimental data. In all the
quantitative comparisons, the multi-resolution SPEM results
are in a good agreement with the solutions by the conven-
tional SPEM with a fine resolution. This result highlights the
accuracy of the multi-resolution SPEM for modeling highly
nonlinear problems involving free-surface flows.
The particle resolution around the water entry region in

case I is much higher than that in case II. Hence, the particle-
based modeling consumes more time than the element-based
modeling in case I. As the numbers of the refined particles in

the local regions of multi-resolution SPEM and conventional
SPEM with a fine resolution are similar, the advantage of the
multi-resolution SPEM in terms of efficiency is more evident
for case II with a fixed mesh size than for case I. Further-
more, the SPEM consumes less time for simulating case II
because more elements rather than particles are adopted in
such a case if the total number of elements and particles is
determined. Therefore, we utilize case II to test the efficiency
of SPH, SPEM with a constant resolution, and multi-re-
solution SPEM (Table 1). These three approaches have si-
milar spatial resolutions in the local region around the
wedge. We observe that relative to the SPH method, the
SPEM can greatly decrease the computational time because
most of the fluid region is modeled using finite elements and
only local fluid regions with moving interfaces or free sur-
faces are treated by particles. We should note that the con-
ventional SPEM with a constant resolution and the multi-
resolution SPEM use similar numbers of particles to model
the local fluid region, whereas the multi-resolution SPEM

Figure 13 (Color online) (a) Vertical force and (b) vertical velocity of the wedge during the water entry process, case I.

Figure 14 (Color online) Pressure distribution on the wedge (case I) at simulation time (a) T = 0.00435 s and (b) T = 0.0158 s, p* = P/0.5ρfV
2(t),

z z V t t* = / ( )d
t

0
.
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employs few elements for treating other fluid regions.
Therefore, the multi-resolution SPEM does not hugely im-
prove the efficiency of the conventional SPEM, and the time-
consuming particle simulations with these two approaches
are close to one another. Nevertheless, the multi-resolution
SPEM is still much more efficient than the conventional
SPEM with a constant resolution when the local spatial re-
solution is determined, as shown in Table 1. It is worth noting
that significant computation cost is saved by the multi-re-
solution SPEM in comparison to SPH using a constant re-
solution because the number of particles in the SPEM
simulation is very limited (around 10000) while most of the
fluid region is modeled using coarse elements.

3.3 Water exit and entry of a cylinder

In this section, the water exit and entry of a cylinder are
simulated by different approaches to demonstrate the su-
perior efficiency of the multi-resolution SPEM. The model
set-up for the present work is the same as that described in
refs. [64,65], but a different computational domain size is
adopted in the present simulation. In this problem, a cylinder
with a diameter of 2.0 m is initially placed at d = 1.25 m
below the static water surface. The gravitational acceleration
is set as g = 1.0 m/s2, and the cylinder has an impulsive
upward velocity of V0 = 0.39 m/s for the water exit problem
(downward velocity in cylinder sinking case). We perform
our present simulation with a time step of 2 × 10−5 s. The
dimensionless time is taken asT V t d= /0 , where t is the real
time. The fluid domain is set with a length of 20 m and a
depth of 11.25 m. Different from the water entry of the
wedge in sect. 3.2 using nonuniform and uniform mesh
systems, the computational domain is discretized by a uni-
form mesh system in this case.
Figures 15 and 16 illustrate the accuracy of the im-

plementation of the multi-resolution technique in the SPEM.
As shown in Figure 15, the water exit of a cylinder at dif-
ferent time instants is obtained from the reference solutions
and the multi-resolution SPEM. We observe that the multi-
resolution SPEM can effectively simulate the water exit
process while producing free surfaces close to the numerical
solutions in refs. [64,65]. These numerical results are slightly
different from the theoretical results [66] as the nonlinear
fluid dynamics (breaking thin fluid layer) make the theore-
tical results unreliable. This difference explains the theore-
tical solution being unavailable after T = 0.6.

As the computational domain is very large, it is not ne-
cessary to initially model the whole computational domain
using finite elements for the sake of saving time. Therefore, a
local square region around the cylinder (x = −1.8-1.8 m, y =
−3.25-0 m) is preset with refined particles, and the frequent
variations of the multi-resolution element-particle interfaces
(like the water entry case) are avoided, as shown in Figure
16. It is noted that at the later stage of the water exit process,
the multi-resolution element-particle interfaces are changed
due to large deformations of the elements in a wide fluid
domain. It also manifests that a continuous pressure dis-
tribution across the multi-resolution element-particle inter-
faces can be obtained by the present method.
As for modeling the sinking of a cylinder, we also preset

refined particles in the local square region around the cy-
linder (x = −1.8-1.8 m, y = −3.1-0 m). In this case, the multi-
resolution region changes with the sinking of the cylinder.
Figure 17 shows the cylinder sinking process obtained from
different approaches. The free-surface configurations pro-
duced by the multi-resolution SPEM agree well with those
obtained from other numerical solutions. Furthermore, we
show the multi-resolution element-particle interfaces during
the cylinder sinking process in Figure 18. It is observed that a
smoothed velocity field can be attained by the present
method. This result highlights the effectiveness of the pro-
posed algorithm in treating multi-resolution interfaces. By
using the water exit and entry cases, we can effectively va-
lidate the accuracy of the multi-resolution SPEM in simu-
lating FSIs with free-surface flows.
We compare the computational costs of the SPH simula-

tions, conventional SPEM with a constant resolution, and
multi-resolution SPEM, as shown in Table 2. The resolution
in the refined region for the multi-resolution SPEM is the
same as that for the conventional SPEM or SPH method with
a constant resolution. It is seen that the SPEM significantly
saves computational time relative to the SPH method as the
major part of the fluid region is efficiently modeled by ele-
ments. An attractive result is that the multi-resolution SPEM
can greatly improve the computational efficiency of the
conventional SPEM when the spatial resolution of a target
region is determined. That is to say, the simulation time of
the multi-resolution SPEM may be several tenths of that of
the SPH method with a constant resolution because only the
local fluid region around the cylinder is modeled using re-
fined particles while the large fluid domain is treated by
coarse elements. This feature presents a huge improvement

Table 1 Comparison of computational costs in the water entry case II with a fixed mesh size (computational domain: 3 m × 1.5 m)

Real time (s)
CPU time (min)

SPH with 540000 particles SPEM with 540000 initial elements Multi-resolution SPEM with 180000 initial elements

0.02 3828 255 132

0.025 4873 352 186
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Figure 15 (Color online) Water exit of a cylinder at different time instants from the left: numerical results by Lin [65] (solid line), numerical results by
Greenhow and Moyo [64] (dashed line), theoretical solutions by Tyvand and Miloh [66] (dotted line); and from the right: present multi-resolution SPEM.
From up to down, T = 0.2, 0.4, 0.6, 0.8, and 2.0.
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in efficiency over the conventional particle-based SPH
method.
It should also be noticed that the efficiency improvement

of the multi-resolution SPEM over the conventional SPEM is
not as much as that in the water entry case (sect. 3.2). This
difference is due to the large region with refined particles
being preset in the water exit case. Moreover, the cylinder
region is also larger than the wedge region. Consequently,
particle-based modeling takes up a larger proportion in the
water exit case, and the multi-resolution SPEM and con-
ventional SPEM with a fine resolution consume a similar
amount of time for this part of the computation. Actually, the
efficiency improvement of the multi-resolution SPEM de-
pends on the ratio of particle-based modeling to element-
based modeling. If a large computation domain is handled by
coarse elements and a smaller local region is treated using
refined particles, then the multi-resolution SPEM can greatly
reduce the computational time compared to the conventional
SPEM with a fine resolution. By contrast, when a small
computational domain is adopted or most of the fluid region
undergoing large deformations is modeled using refined
particles, the efficiency improvement of the multi-resolution
SPEM is not so evident, just as shown in the dam breaking
case (sect. 3.4).

3.4 Breaking dam flow on an elastic plate

Further, we model the case of breaking dam flow on an
elastic plate to test the accuracy and efficiency of the multi-
resolution SPEM. Figure 19 shows the model set-up for this
example. A hydrostatic column is released from the left side
of the container and then collides with the clamped elastic
plate. The length of the container is set as L = 0.584 m. The
width and height of the water column are W = 0.146 m and
H = 0.292 m, respectively. An elastic plate is clamped on the

middle bottom of the container and is set with a height of h =
0.085 m and width of s = 0.012 m. The density of the plate is
specified as ρs = 2500 kg/m3. A linear elasticity constitutive
description is employed to model the elastic plate. The
Poisson’s ratio and Young’s modulus of the plate are υ = 0
and E = 106 Pa, respectively. These material parameters are
the same as those adopted in ref. [67]; in this way, we can
realize a good comparison with the reference results.
In this case, the fluid regions undergoing large deforma-

tions are adaptively modeled using refined particles. At a
later stage of the simulation, most part of the fluid domains
turns out to be refined particle regions as they all undergo
large fluid deformations. Therefore, the multi-resolution
SPEM does not show much improvement in terms of effi-
ciency in this case. We adopt this example to mainly test the
accuracy of the multi-resolution approach since the im-
proved efficiency attained by our present method has been
fully demonstrated in previously explained numerical ex-
amples.
Figure 20 shows the comparison of the pressure and stress

fields between the simulation results of the multi-resolution
SPEM and conventional SPEMwith a fine resolution. Figure
21 presents the configurations of the free-surface and solid
structure at two time instants of the simulations of the two
approaches. The multi-resolution SPEM can produce nu-
merical results very close to the SPEMwith a fine resolution,
including the pressure distribution in the fluid, stress dis-
tribution in the solid, free-surface shape, and baffle de-
formation during the dam breaking process. At the
simulation time T = 0.2 s, the breaking free surface obtained
by the multi-resolution SPEM is slightly higher than that
produced by the SPEM with a fine resolution. Nevertheless,
these comparisons qualitatively demonstrate the accuracy of
the present multi-resolution technique introduced to the
SPEM.

Figure 16 (Color online) Pressure field of the fluid and the enlarged view of the element-particle interface in the case of water exit, obtained using the
multi-resolution SPEM at T = 0.1.
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We should mention that in the dam breaking case, the
pressure field of the fluid may not be smooth at the initial
stage of the simulation because of the frequent variations of
the multi-resolution element-particle interfaces. However,
when more fluid regions undergoing large deformations have
been converted into refined particles, the pressure distribu-
tion of the fluid obtained by the multi-resolution SPEM be-
comes relatively smooth, as shown in Figure 20. Although

the pressure field may be influenced by the frequent chan-
ging of the multi-resolution interfaces, the multi-resolution
SPEM can achieve quantitatively good results close to the
reference data [67] (Figure 22). We also observe that com-
pared with the simulation results by the conventional SPEM
with a coarse resolution, the multi-resolution SPEM results
agree more with the SPEM results with refined particles.
As mentioned previously, the enhanced efficiency of the

Figure 17 (Color online) Water entry of a cylinder at different time instants obtained from the left: numerical results by Lin [65] (solid line), numerical
results by Greenhow and Moyo [64] (dashed line), theoretical solutions by Tyvand and Miloh [66] (dotted line); and from the right: present multi-resolution
SPEM. From up to down, T = 0.0, 0.4, 1.0, and 2.0.
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multi-resolution SPEM depends on the ratio of the particles
to elements. Hence, the efficiency advantage of the multi-
resolution SPEM over the conventional SPEM is not obvious
in this case. Furthermore, the efficiency improvement of the
conventional SPEM over the SPHmethod is not as evident as

that observed in the previous cases because the computa-
tional domain is smaller, and most of the fluid region un-
dergoes large deformations and is modeled using particles in
this case. Nevertheless, we still show the comparisons of the
computational costs of these approaches, as listed in Table 3.
In the case of the multi-resolution SPEM simulation, the
resolution of the converted particles is the same as that for
the other two cases, i.e., ∆x = 0.00075 m. The FEM-SPH
represents the coupling of the FEM with the SPH in which
the entire fluid region is modeled using the SPH method, and
the solid structure is treated by the FEM. For modeling such
a case (T = 0.15 s), the computational time of the multi-
resolution SPEM is 81% that of the conventional SPEM and
20% that of the FEM-SPH. In summary, the dam breaking
case validates the accuracy of the multi-resolution SPEM
and shows its efficiency advantage to some degree.

4 Conclusions

In this work, a multi-resolution technique is introduced to the

Figure 19 (Color online) Model set-up for the case of breaking dam flow
on an elastic plate.

Table 2 Comparison of computational efforts in the water exit casea)

Real time t (s) Refined particle
resolution ∆x (m)

CPU time (min)

SPH with 450000 particles SPEM with 450000 initial
elements

Multi-resolution SPEM with
150000 initial elements

1.0 0.022 3361 319 207

2.0 0.022 6806 647 415

a) Computational domain: 20 m × 11.25 m.

Figure 18 (Color online) Horizontal velocity field of the fluid and the zoomed-in view of the element-particle interface during the cylinder sinking process.
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recently developed SPEM. In the SPEM, both the fluid and
solid regions are initially modeled using the S-FEM. During

the simulation process, the fluid regions under large de-
formations are adaptively modeled using the improved SPH
method, which is very effective in treating moving interfaces
and free surfaces. Therefore, both the computational accu-
racy and efficiency can be enhanced by SPEM. Recently,
multi-resolution simulations have become very popular in
the field of CFD because this approach can greatly reduce the
computational cost and well produce detailed information in
local regions. In the present work, we introduce a multi-
resolution technique for the SPEM and develop a novel al-
gorithm to treat multi-resolution element-particle interfaces
on the basis of splitting ghost particles. From various nu-
merical examples, we demonstrate the following:
The present multi-resolution SPEM can treat moving

multi-resolution regions with arbitrary shapes along with
evolving FSI interfaces.
The developed multi-resolution element-particle coupling

algorithm can accurately transfer information between
coarse fluid elements and refined fluid particles.
The virtual particle coupling strategy can effectively treat

FSI interfaces with different spatial resolutions in fluids and

Figure 21 (Color online) Evolution of free-surface shape in the case of breaking dam flow on an elastic plate, obtained using multi-resolution SPEM (gray
field) and conventional SPEM with a constant (fine) resolution (red line). (a) T = 0.2 s; (b) T = 0.4 s.

Figure 20 (Color online) Pressure distribution in fluid and stress field in the structure at T = 0.2 s obtained using (a) multi-resolution SPEM, and (b)
conventional SPEM with a constant (fine) resolution.

Figure 22 (Color online) Upper left corner’s displacement of the elastic
plate obtained from different sources. The present simulations are con-
ducted with a solid element length Δxs = 0.001 m. The initial fluid element
length in the case of using the multi-resolution SPEM is Δxf = 0.002 m.
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structures.
The multi-resolution SPEM can greatly reduce the com-

putational cost relative to the SPH method, and it is more
efficient than the conventional SPEM with a constant re-
solution.
The multi-resolution SPEM shows a good convergent

performance for modeling fluid-elastic structure interaction
problems, and the multi-resolution SPEM results match very
well with those obtained by the conventional SPEM with a
fine resolution.
The multi-resolution SPEM can be further integrated with

some advanced adaptive mesh refinement techniques. For
instance, the dynamic mesh refinement may be performed on
the element region of the SPEM, and the refined element
region may be adaptively converted into particles to accu-
rately model the regions of interest. Besides, multiphase si-
mulations using the SPH method are time consuming
because of the required small time step. The multi-resolution
SPEM can be an attractive approach to handle multiphase
problems due to its relatively high efficiency.

This work was supported by the National Numerical Wind Tunnel Project
(Grant No. NNW2019ZT2-B02), the National Natural Science Foundation
of China (Grant Nos. 12032002, 51779003, and 11902005) and the Sino-
German Mobility Programme (Grant No. M-0210). The authors appreciate
the help from Dr. Muhammad Saif Ullah Khalid for smoothing the paper and
giving constructive suggestions.
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