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We construct a family of solutions of the holographic insulator/superconductor phase transitions with the excited states in the
AdS soliton background by using both the numerical and analytical methods. The interesting point is that the improved Sturm-
Liouville method can not only analytically investigate the properties of the phase transition with the excited states, but also the
distributions of the condensed fields in the vicinity of the critical point. We observe that, regardless of the type of the holographic
model, the excited state has a higher critical chemical potential than the corresponding ground state, and the difference of the
dimensionless critical chemical potential between the consecutive states is around 2.4, which is different from the finding of the
metal/superconductor phase transition in the AdS black hole background. Furthermore, near the critical point, we find that the
phase transition of the systems is of the second order and a linear relationship exists between the charge density and chemical
potential for all the excited states in both s-wave and p-wave insulator/superconductor models.
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1 Introduction

The gauge/gravity correspondence, which was first proposed
by Maldacena [1], relates the large N limit of the strongly
coupled gauge theories to the classical gravitational theories
in the anti-de Sitter (AdS) spacetime. As a version of this du-
ality, the anti-de Sitter/conformal field theories (AdS/CFT)
correspondence [2, 3] has been used to study a variety of the
condensed matter systems over the past ten years [4,5], espe-
cially for the high-temperature superconductor systems [6].
With this holographic duality, Gubser [7] suggested that an
instability may be trigged by a scalar field around a charged
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AdS black hole, which is dual to a superconducting phase
transition. Later on, Hartnoll et al. [8] built the first holo-
graphic superconductor model to reproduce the properties of
a (2 + 1)-dimensional s-wave superconductor. Due to the po-
tential applications to the condensed matter physics, a large
number of the s-, p- and d-wave holographic superconductor
models in different theories of gravity have been constructed;
see refs. [9-12] and references therein.

In most cases, the studies on the holographic superconduc-
tors focus on the ground state, which is the most stable mode.
It is of great interest to investigate the excited states of the
superconductors by holography because of the potential sig-
nificance in the condensed matter physics [13-18]. Analyzing
the colorful horizons with the charge in the AdS space, Gub-
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ser [19] showed the existence of branches of solutions with
multiple nodes corresponding to the excited states. By con-
structing numerical solutions of the holographic s-wave su-
perconductors with the excited states in the probe limit [20]
and away from the probe limit [21], Wang et al. [20,21] found
that the excited state has a lower critical temperature than
the corresponding ground state, which has recently been con-
firmed analytically by us [22], through using the improved
variational method for the Sturm-Liouville eigenvalue prob-
lem. Li et al. [23] discussed the non-equilibrium condensa-
tion process of the holographic s-wave superconductor with
the excited states as the intermediate states during the relax-
ation, and observed the dynamical formation of the excited
states as the intermediate states during the relaxation from the
normal state to the ground state, which may provide the use-
ful information about the non-equilibrium superconductivity
that can be compared to the experiments in the condensed
matter physics. More recently, Xiang et al. [24] generalized
the study of the holographic superconductors with the excited
states to the framework of massive gravity and obtained the
effects of the graviton mass on the scalar condensate and con-
ductivity of the system.

The aforementioned studies on the holographic supercon-
ductors with the excited states were implemented on the
backgrounds of AdS black hole. Thus, it is interesting to
study whether there exist the solutions of the holographic
dual models with the excited states in the backgrounds of AdS
soliton. For the ground state, Nishioka et al. [25] showed
that the soliton becomes unstable to form scalar hair and a
second order phase transition can happen when the chemi-
cal potential is sufficiently large beyond a critical value µc,
which can be used to describe the transition between the in-
sulator and superconductor. This pioneering work has led to
many investigations concerning the s-wave [26-45], p-wave
[46-55] and s+p [56] holographic insulator/superconductor
phase transition with the ground state. Interestingly, taking
advantage of the Sturm-Liouville method first proposed by
Siopsis and Therrien [57], Li studied the holographic insula-
tor/superconductor phase transition analytically and obtained
not only the ground state of the phase transition but also the
first excited state in ref. [58]. As a further step along this line,
in this work we first construct the novel solutions of the holo-
graphic insulator/superconductor phase transitions with the
excited states by using the numerical shooting method, and
then, following our previous work [22], employ the Sturm-
Liouville method by including more higher order terms in
the expansion of the trial function, to study the higher ex-
cited state and back up the numerical computations. Consid-
ering that the probe limit can simplify the problem but retain
most of the interesting physics since the nonlinear interac-
tions between the scalar (or vector) and Maxwell field are

retained, we will concentrate on this probe limit and consider
the five-dimensional Schwarzschild-AdS soliton background
in the form

ds2 = −r2dt2 +
dr2

f (r)
+ f (r)dφ2 + r2(dx2 + dy2), (1)

where f (r) = r2(1 − r4
s /r

4) with a conical singularity rs, i.e.,
the tip of the soliton. It should be noted that one can impose
a period βs = π/rs for the coordinate φ to remove the singu-
larity.

This paper is organized as follows. In sect. 2, we
explore the solutions of the s-wave holographic insula-
tor/superconductor phase transition with the excited states
by using the shooting method and the generalized Sturm-
Liouville method. In sect. 3, we study the solutions of the
p-wave case via the Maxwell complex vector field model
[59, 60], by using the aforementioned numerical and analyt-
ical methods. We conclude in the last section with our main
results.

2 Excited states of the s-wave holographic in-
sulator/superconductor phase transition

In order to study the solutions of the s-wave holographic dual
model with the excited states in the AdS soliton background,
we begin with a Maxwell field coupled to a charged complex
scalar field via the action

S =
∫

d5x
√−g

[
− 1

4
FµνFµν − gµν(∇µψ − iqAµψ)

× (∇νψ − iqAνψ)∗ − m2|ψ|2
]
, (2)

where q and m are the charge and mass of the scalar field
ψ, respectively. By adopting the ansatz for the matter fields
ψ = ψ(r) and At = ϕ(r), we get the equations of motion

ψ′′ +

(
3
r
+

f ′

f

)
ψ′ − 1

f

(
m2 − q2ϕ2

r2

)
ψ = 0 , (3)

ϕ′′ +

(
1
r
+

f ′

f

)
ϕ′ − 2q2ψ2

f
ϕ = 0 , (4)

where the prime denotes the derivative with respect to r. In
order to get the solutions in the superconducting phase, we
impose the boundary conditions at the tip rs by requiring the
matter fields to be regular. In the asymptotic AdS region
r → ∞, the solutions behave as:

ψ =
ψ−
r∆−
+
ψ+

r∆+
, ϕ = µ − ρ

r2 , (5)

with the characteristic exponents ∆± = 2 ±
√

4 + m2. Here,
µ and ρ are interpreted as the chemical potential and charge
density in the dual field theory, respectively. From the
AdS/CFT correspondence, the coefficients ψ− and ψ+ both
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multiply normalizable modes of the scalar field equations and
correspond to the vacuum expectation values ⟨O−⟩ = ψ−,
⟨O+⟩ = ψ+ of an operator O dual to the scalar field. We
can impose boundary condition that either ψ+ or ψ− vanishes,
just as in refs. [6, 8]. Since the choices of the scalar field
mass do not modify results qualitatively, in this section we
set m2 = −15/4 for concreteness.

2.1 Numerical analysis

We first use the shooting method to solve eqs. (3) and (4)
numerically. It should be noted that the following scaling
transformations:

r → λr, (t, φ, x, y)→ 1
λ

(t, φ, x, y),

(q, ψ)→ (q, ψ), ϕ→ λϕ, (6)

µ→ λµ, ρ→ λ3ρ, ψ± → λ∆±ψ±,

where λ is a positive number, are held for eqs. (3) and (4).
Therefore, we can set rs = 1, q = 1 and introduce a dimen-
sionless quantity z = rs/r when performing numerical calcu-
lations.

In ref. [25], Nishioka et al. pointed out that, in the
ground state, there is a critical chemical potential µc, above
which the solution is unstable and a hair can be developed;
while for µ < µc the scalar field is zero and it can be in-
terpreted as the insulator phase. This means that there is
a phase transition between the insulator and superconductor
phases around the critical chemical potential µc. Following

the same spirit, here we numerically solve eqs. (3) and (4),
to explore excited states of the s-wave holographic insula-
tor/superconductor phase transition.

In Figure 1, we use the numerical shooting method to plot
the distribution of the scalar field ψ(z) as a function of z for
the scalar operatorsO− andO+ with the fixed scalar field mass
m2 = −15/4. In each panel, the red line has no intersect-
ing points with the ψ(z) = 0 axis at nonvanishing z, which
denotes the ground state with the number of nodes n = 0.
And the blue line has one intersecting point with ψ(z) = 0
axis while the green line has two, corresponding to the first
(n = 1) and second (n = 2) states respectively, which shows
that the n-th excited state has exactly n nodes.

In order to obtain the effect of the node number on the crit-
ical chemical potential for the scalar operators O− and O+, in
Table 1 we give the critical chemical potential µc obtained by
the shooting method with the fixed mass of the scalar field
m2 = −15/4 from the ground state to the sixth excited state.
We observe that the critical chemical potential µc increases
with increasing the number of nodes n for both the operators
O− and O+, i.e., an excited state has a higher critical chem-
ical potential than the ground state, which indicates that the
ground state is the first one to condense when increasing the
chemical potential. Using the numerical results obtained by
the shooting method, we can express the relation between µc

and n as:

µc ≈
 2.370n + 0.739, for O− ,

2.385n + 1.861, for O+ ,
(7)
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Figure 1 (Color online) The scalar field ψ(z) as a function of the radial coordinate z outside the horizon with the scalar operators O− (left) and O+ (right)
for the fixed mass of the scalar field m2 = −15/4 by using the numerical shooting method. In each panel, the three lines from top to bottom correspond to the
ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited states, respectively.

Table 1 The critical chemical potential µc obtained by the shooting method for the scalar operators O− and O+ with the fixed mass of the scalar field
m2 = −15/4 from the ground state to the sixth excited state

n 0 1 2 3 4 5 6

O− 0.836 3.055 5.427 7.816 10.209 12.604 15.000

O+ 1.888 4.234 6.616 9.005 11.397 13.791 16.186
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which shows that, for both operators, the dimensionless crit-
ical chemical potential becomes evenly spaced for the num-
ber of nodes n and the difference of the dimensionless crit-
ical chemical potential µc between the consecutive states is
around 2.4.

In Figure 2, we present the condensates of the scalar oper-
ators O− and O+ as a function of the chemical potential with
the mass of the scalar field m2 = −15/4 for the first three
lowest-lying modes n = 0, 1 and 2. For both the scalar oper-
ators O− and O+, the behavior of the condensates for the ex-
cited states is similar to that for the ground state in the probe
limit [25]. Moreover, we observe that, similar to the ground
state, a phase transition can happen when the chemical poten-
tial is over a critical value µc for an excited state, which can
be used to describe the transition between the insulator and
superconductor with the excited state. By fitting these curves
for small condensate, we obtain

⟨O−⟩ ≈



2.866
 µ

µ(0)
c

− 1
1/2

, ground state,

2.030
 µ

µ(1)
c

− 1
1/2

, 1st excited state,

2.015
 µ

µ(2)
c

− 1
1/2

, 2nd excited state,

(8)

and

⟨O+⟩ ≈



3.400
 µ

µ(0)
c

− 1
1/2

, ground state,

8.783
 µ

µ(1)
c

− 1
1/2

, 1st excited state,

14.069
 µ

µ(2)
c

− 1
1/2

, 2nd excited state,

(9)

where the critical chemical potentials µ(0)
c , µ(1)

c and µ(2)
c , which

correspond to the ground, first and second excited states, are

given in Table 1 for both operators. Obviously, for both oper-
ators O− and O+ with the excited states, the phase transition
between the s-wave holographic insulator and superconduc-
tor belongs to the second order and the critical exponent of
the system takes the mean-field value 1/2.

In order to study the relation between the charge density
and chemical potential, in Figure 3 we exhibit the charge den-
sity ρ as a function of the chemical potential with m2 = −15/4
for the first three lowest-lying modes. For the ground state or
each excited state, we observe that the system is described by
the AdS soliton solution itself when µ is small, which can be
interpreted as the insulator phase [25]. But when µ → µ(n)

c ,
there is a phase transition and the AdS soliton reaches the su-
perconductor phase for larger µ. By fitting these curves near
the critical point, we find that for the scalar operator O−,

ρ ≈


6.863

(
µ − µ(0)

c

)
, ground state,

2.912
(
µ − µ(1)

c

)
, 1st excited state,

2.877
(
µ − µ(2)

c

)
, 2nd excited state,

(10)

and for the scalar operator O+,

ρ ≈


2.237

(
µ − µ(0)

c

)
, ground state,

2.846
(
µ − µ(1)

c

)
, 1st excited state,

2.976
(
µ − µ(2)

c

)
, 2nd excited state,

(11)

where again the critical chemical potentials µ(0)
c , µ(1)

c and
µ(2)

c , corresponding to the ground, first and second excited
states, are shown in Table 1 for both operators O− and O+.
Thus, for both operators O− and O+, the linear relation-
ship between the charge density and chemical potential ρ ∼(
µ − µ(n)

c

)
is valid in general for the s-wave holographic insu-

lator/superconductor phase transition with the excited states
in the vicinity of the critical point. The number of nodes n
does not affect the observed linearity.
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Figure 2 (Color online) The condensates of the scalar operators O+ and O− with respect to the chemical potential µ for the mass of the scalar field
m2 = −15/4. In each panel, the three lines from left to right correspond to the ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited states,
respectively.
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Figure 3 (Color online) The charge density ρ as a function of the chemical potential µ with fixed mass of the scalar field m2 = −15/4 when ⟨O−⟩ , 0 (left)
and ⟨O+⟩ , 0 (right). In each panel, the three lines from left to right correspond to the ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited
states, respectively.

2.2 Analytical investigation

In this section, we generalize the Sturm-Liouville method
[57, 61] to analytically investigate the properties of the s-
wave holographic insulator/superconductor phase transition
with the excited states and back up the numerical computa-
tions.

2.2.1 Critical chemical potential

Introducing a variable z = rs/r for convenience, we can
rewrite eqs. (3) and (4) into

ψ′′ +

(
f ′

f
− 1

z

)
ψ′ +

 1
z2 f

(
qϕ
rs

)2

− m2

z4 f

ψ = 0, (12)

ϕ′′ +

(
1
z
+

f ′

f

)
ϕ′ − 2q2ψ2

z4 f
ϕ = 0, (13)

where the function f is f (z) = (1 − z4)/z2 and the prime de-
notes the derivative with respect to z.

It has been shown numerically in the previous section that,
for both the ground and excited states of the s-wave holo-
graphic dual model in the backgrounds of AdS soliton, there
is a phase transition between the insulator and superconduc-
tor phases around the critical chemical potential µc. Since the
scalar field ψ vanishes as long as one approaches the critical
point µc from below, we can get a general solution to eq. (13)
at the critical point

ϕ = µ + c1 ln
(

1 + z2

1 − z2

)
, (14)

with an integration constant c1. According to the Neumann-
like boundary condition for the gauge field ϕ, we have to set
c1 = 0 to keep At finite at the tip z = 1. Thus, for the case of
µ ≤ µc, we obtain the physical solution ϕ(z) = µ to eq. (13).

In order to match the behavior of ψ at the boundary (5), we

define a trial function F(z) which satisfies

ψ(z) ≃ ⟨Oi⟩
rs
∆i

z∆i F(z), (15)

with i = +/−. Here we have imposed the boundary condition
F(0) = 1. With the help of eq. (12) and the physical solution
ϕ(z) in eq. (14), we find

(T F′)′ + T

U + V
(

qµ
rs

)2 F = 0, (16)

with

T = z2∆i−1 f , U =
∆i

z

(
∆i − 2

z
+

f ′

f

)
− m2

z4 f
, V =

1
z2 f

. (17)

According to the Sturm-Liouville eigenvalue approach [62],
the eigenvalue qµ/rs can be achieved from the extremal val-
ues of the following function by virtue of the Rayleigh Quo-
tient:(

qµ
rs

)2

=

∫ 1
0 T

(
F′2 − UF2

)
dz∫ 1

0 TVF2dz
. (18)

Before proceeding, we would like to make a comment. In
order to derive the expression (18), we have employed the
boundary condition [T (z)F(z)F′(z)]|10 = 0. Note that T (1) ≡ 0
from eq. (17), so the condition T (1)F(1)F′(1) = 0 is satisfied
automatically. However, for the case of m2 = −15/4 consid-
ered here, the condition T (0)F(0)F′(0) = 0 is not satisfied au-
tomatically for the operator O− since the leading order contri-
bution from T (z) as z→ 0 is 2∆−−3 = 0 but is satisfied auto-
matically for the operatorO+ since 2∆+−3 = 2 > 0. Thus, we
have to impose the Neumann boundary condition F′(0) = 0
for the operator O−, just as analyzed in refs. [22, 54, 58, 63].

As an example, we calculate the case for the operator O−
by using the fourth order trial function

F(z) = 1 − a2z2 − a3z3 − a4z4, (19)
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which satisfies the Neumann boundary condition F′(0) = 0
with three constants a2, a3 and a4. From eq. (18), we have(

qµ
rs

)2

=

(
3
4
− 9a2

10
− 3a3

4
− 9a4

14
+

33a2a3

16
+

173a2a4

90

+
41a3a4

20
+

13a2
2

12
+

21a2
3

20
+

29a2
4

28

)/
(
1 − 2a2

3
− a3

2
− 2a4

5
+

a2a3

3
+

2a2a4

7
+

a3a4

4

+
a2

2

5
+

a2
3

7
+

a2
4

9

)
, (20)

which gives us the dimensionless critical chemical potential
qµc/rs and corresponding value of ak from the ground state to
the third excited state by computing the extremal values of the
above expression, i.e., qµ(0)

c /rs = 0.836 at a2 = 0.384, a3 =

−0.157 and a4 = −0.002, qµ(1)
c /rs = 3.053 at a2 = 5.298,

a3 = −2.998 and a4 = 0.231, qµ(2)
c /rs = 5.432 at a2 = 20.306,

a3 = −30.120 and a4 = 8.793, and qµ(3)
c /rs = 7.847 at

a2 = 47.655, a3 = −120.749 and a4 = 76.511. Comparing
with the analytical results from the second order trial function
in ref. [58], we can obtain the first four lowest-lying modes
by using the fourth order trial function F(z).

In order to investigate the higher excited states of the s-
wave holographic insulator/superconductor phase transition
by using the analytical Sturm-Liouville method, we include
the eighth order of z in the trial function F(z), i.e., F(z) =
1 − ∑k=8

k=2 akzk for the operator O−, and F(z) = 1 − ∑k=8
k=1 akzk

for the operator O+ in the following calculation, where ak is a
constant. Using the expression (18) to compute the extremal
values, we can get the critical chemical potentials from the
ground state to the sixth excited state, which have been pre-
sented in Tables 2 and 3. Compared with the numerical re-
sults shown in Table 1, the agreement of the analytical results
and numerical calculation is impressive, which implies that
the Sturm-Liouville method is powerful to study the s-wave
holographic insulator/superconductor phase transition even if
we consider the excited states.

From Tables 2 and 3, we confirm analytically that for both
operators the critical chemical potential µc increases as the
number of nodes n increases, which supports the numeri-
cal observation obtained in Table 1 that an excited state has
a higher critical chemical potential than the corresponding
ground state. Fitting the relation between qµc/rs and n by
using the analytical results, we get

qµc

rs
≈

 2.375n + 0.728, for O− ,
2.394n + 1.847, for O+ ,

(21)

which is in good agreement with the numerical fitting results
given in eq. (7). This can be used to back up the numerical

computation that, for both operators O− and O+, the differ-
ence of the dimensionless critical chemical potential qµc/rs

between the consecutive states is about 2.4.
On the other hand, for the scalar field mass m2 = −15/4,

in Figure 4 we use the expression (15) to give the distribution
of the scalar field ψ(z) as a function of z for the scalar opera-
tors O− and O+ by setting the initial condition ψ(1) = 0.0001,
which agrees well with the numerical calculation shown in
Figure 1. Interestingly enough, besides the critical chemical
potential, the Sturm-Liouville method with the higher order
of z in the trial function F(z) can also study the behaviors of
the scalar field near the critical point of the phase transition.

2.2.2 Critical phenomena

Since the condensate of the scalar operator ⟨Oi⟩ is so small
near the critical point, we can expand ϕ(z) in terms of small
⟨Oi⟩ by

ϕ(z) ∼ µc + 2µc

(
q⟨Oi⟩
rs
∆i

)2

χ(z) + · · · , (22)

which leads to the equation of motion for χ(z)

(Wχ′)′ − z2∆i−3F2 = 0, (23)

where we have defined a new function W(z) = z f (z) and in-
troduced the boundary condition χ(1) = 0 at the tip.

Considering the asymptotic behavior of ϕ in eq. (5), we
expand ϕ when z→ 0 as:

ϕ ≃ µ − ρ

r2
s

z2

≃ µc + 2µc

(
q⟨Oi⟩

r∆i
s

)2 [
χ(0) + χ′(0)z +

1
2
χ′′(0)z2 + · · ·

]
.

(24)

Comparing the coefficients of the z0 term in both sides of the
above formula, we can easily get

q⟨Oi⟩
r∆i

s

=
1√

2χ(0)

(
µ

µc
− 1

)1/2

, (25)

where χ(0) = c2 −
∫ 1

0 W−1[c3 +
∫ z

1 x2∆i−3F(x)2dx]dz with the
integration constants c2 and c3 which can be determined by
the boundary condition of χ(z) in eq. (23). For example, in
the case of m2 = −15/4 considered here, for the operator O−
we find that

q⟨O−⟩
r3/2

s

≈



1.799
 µ

µ(0)
c

− 1
1/2

, ground state,

1.396
 µ

µ(1)
c

− 1
1/2

, 1st excited state,

1.394
 µ

µ(2)
c

− 1
1/2

, 2nd excited state,

(26)
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Table 2 The dimensionless critical chemical potential qµc/rs obtained by the Sturm-Liouville method for the operator O− and corresponding value of ak for
the trial function F(z) = 1 −∑k=8

k=2 akzk from the ground state to the sixth excited state in the s-wave holographic insulator and superconductor model. Here we
fix the mass of the scalar field by m2 = −15/4

n qµc/rs a2 a3 a4 a5 a6 a7 a8

0 0.836 0.349 0.001 –0.212 –0.006 0.212 –0.158 0.038

1 3.053 4.657 0.035 –3.951 0.054 4.230 –3.306 0.826

2 5.423 14.643 0.909 –40.778 8.181 47.340 –43.031 11.673

3 7.810 29.518 15.289 –241.971 217.724 155.313 –258.306 85.914

4 10.202 42.928 153.621 –1405.255 2784.640 –2025.254 347.735 99.762

5 12.603 37.159 785.173 –6433.838 17725.045 –22568.526 13453.361 –2294.129

6 15.040 68.959 1102.374 –12006.310 41434.653 –66302.827 50620.592 –14920.513

Table 3 The dimensionless critical chemical potential qµc/rs obtained by the Sturm-Liouville method for the operator O+ and corresponding value of ak for
the trial function F(z) = 1 −∑k=8

k=1 akzk from the ground state to the sixth excited state in the s-wave holographic insulator and superconductor model. Here we
fix the mass of the scalar field by m2 = −15/4

n qµc/rs a1 a2 a3 a4 a5 a6 a7 a8

0 1.888 0.000(3) 0.590 0.030 –0.520 0.167 0.267 –0.240 0.060

1 4.234 0.003 2.941 0.317 –4.102 1.983 1.584 –1.774 0.479

2 6.616 0.033 6.791 3.452 –28.924 24.753 –0.042 –8.248 2.840

3 9.005 0.263 9.385 29.248 –167.855 240.706 –137.001 23.744 2.803

4 11.398 1.289 0.108 160.370 –800.342 1541.875 –1429.746 637.510 –110.319

5 13.792 2.422 –15.760 410.605 –2258.564 5315.877 –6254.036 3618.816 –818.134

6 16.263 –9.719 175.378 –559.660 –315.936 4517.559 –8679.681 6911.895 –2039.153

n=0

n=1

n=2

n=0

n=1

n=2

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0 0.2 0.4 0.6 0.8 1.0
z

0.00010

0.00005

0.00000

 (
z
)

ψ

0.00010

0.00005

0.00000

 (
z
)

ψ

Figure 4 (Color online) The scalar field ψ(z) as a function of the radial coordinate z outside the horizon with the scalar operators O− (left) and O+ (right)
for the fixed mass of the scalar field m2 = −15/4 by using the analytical Sturm-Liouville method with ψ(1) = 0.0001 in eq. (15). In each panel, the three lines
from top to bottom correspond to the ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited states, respectively.

which agrees well with the numerical result given in eq. (8).
Here the critical chemical potentials µ(0)

c , µ(1)
c and µ(2)

c , which
correspond to the ground, first and second excited states, are
given in Table 2. Obviously, the expression (25) is valid for
all cases considered here. Therefore, it is shown clearly that,
for both operators O− and O+, the phase transition between
the s-wave insulator and superconductor is second order and
the condensate approaches zero as ⟨Oi⟩ ∼

(
µ − µ(n)

c

)β
with the

mean-field critical exponent β = 1/2 for all the states.
From the coefficients of the z1 term in eq. (24), we note

that χ′(0) → 0, which is consistent with the following rela-

tion by making integration of both sides of eq. (23):[
χ′(z)

z

] ∣∣∣∣∣
z→0
= χ′′(0) = −

∫ 1

0
z2∆i−3F2dz. (27)

Moving to the coefficients of the z2 term in eq. (24), we
obtain

ρ

r2
s
= −µcχ

′′(0)
(

q⟨Oi⟩
r∆i

s

)2

= Γ(m, n)(µ − µc), (28)

with Γ(m, n) = [2χ(0)]−1
∫ 1

0 z2∆i−3F2dz, which is a function
of the scalar field mass m2 and the number of nodes n. As an
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example, we observe that for the operator O− with the fixed
mass m2 = −15/4,

ρ

r2
s
≈


2.707

(
µ − µ(0)

c

)
, ground state,

1.301
(
µ − µ(1)

c

)
, 1st excited state,

1.281
(
µ − µ(2)

c

)
, 2nd excited state,

(29)

which again can be compared with the numerical result pre-
sented in eq. (10), where the critical chemical potentials µ(0)

c ,
µ(1)

c and µ(2)
c are given in Table 2, corresponding to the ground,

first and second excited states, respectively. Thus, we point
out that, in the vicinity of the transition point, one may find a
linear relationship between the charge density and chemical
potential, namely, ρ ∼

(
µ − µ(n)

c

)
in the present model for all

the states, which is in agreement with the numerical calcula-
tion shown previously in eqs. (10) and (11) for both operators
O− and O+.

3 Excited states of the p-wave holographic in-
sulator/superconductor phase transition

In the previous section, we have investigated the excited
states of the s-wave holographic insulator/superconductor
phase transition by employing the numerical shooting method
as well as the analytical Sturm-Liouville approach. Now,
we extend our study to the excited states of the p-wave
holographic insulator/superconductor phase transition in the
probe limit by considering the Maxwell complex vector field
model [59, 60]

S =
∫

d5x
√−g

(
− 1

4
FµνFµν − 1

2
ρ†µνρ

µν − m2ρ†µρ
µ

+ iqγρµρ†νFµν
)
, (30)

where the tensor ρµν is defined by ρµν = (∇µ − iqAµ)ρν −
(∇ν − iqAν)ρµ, the parameter γ describes the interaction be-
tween the vector field ρµ and the gauge field Aµ, q and m
represent the charge and mass of the vector field ρµ. Making
use of the ansatz for the matter fields ρµdxµ = ρx(r)dx and
Aµdxµ = At(r)dt, we obtain the equations of motion

ρ′′x +

(
1
r
+

f ′

f

)
ρ′x −

1
f

(
m2 − q2A2

t

r2

)
ρx = 0, (31)

A′′t +
(

1
r
+

f ′

f

)
A′t −

2q2ρ2
x

r2 f
At = 0, (32)

where the prime denotes the derivative with respect to r. It
should be noted that, if we set m2 = 0, At = ϕ and rescale the
vector field by ρx = ψ/

√
2, we can easily recover the equa-

tions of motion (4.4) and (4.5) in ref. [58] for the p-wave
holographic insulator/superconductor phase transition where
an S U(2) Yang-Mills action is considered.

In order to solve eqs. (31) and (32), the vector field ρµ and
gauge field Aµ are required to be regular at the tip r = rs. And
as r → ∞, the asymptotical behaviors are

ρx =
ρx−

r∆−
+
ρx+

r∆+
, At = µ −

ρ

r2 , (33)

where ∆± = 1 ±
√

1 + m2 are the characteristic exponents,
and ρx− and ρx+ are interpreted as the source and the vacuum
expectation value of the vector operator ⟨Ox⟩ in the dual field
theory from the AdS/CFT correspondence [64, 65], respec-
tively. In this work, we impose boundary condition ρx− = 0
since we are interested in the case where the condensate ap-
pears spontaneously. And we use ∆ to denote ∆+ for sim-
plicity and set m2 = 5/4 for concreteness. In order to com-
pare our results with those in the p-wave holographic insula-
tor/superconductor model in the Yang-Mills theory [29, 58],
we also present the results for the case m2 = 0 simultaneously
in the following.

3.1 Numerical analysis

From the equations of motion (31) and (32), one may find
that the following scaling symmetries:

r → λr, (t, φ, x, y)→ 1
λ

(t, φ, x, y),

q→ q, (ρx, At)→ λ(ρx, At), (34)

µ→ λµ, ρ→ λ3ρ, ρx+ → λ1+∆ρx+ ,

with a real positive number λ, are held. Therefore, we can use
them to choose rs = 1 and q = 1 throughout the numerical
calculations, similar to the study shown in the last section for
the s-wave holographic insulator/superconductor model.

In Figure 5, we show the distribution of the vector field
ρx(z) as a function of z for the vector operator Ox with the
fixed masses of the vector field m2 = 0 and m2 = 5/4. In
each panel, similar to the scalar field ψ(z) in the s-wave holo-
graphic insulator/superconductor model, the red line, blue
line and green line of the vector field ρx(z) correspond to the
ground state with n = 0, first excited state with n = 1 and
second excited with n = 2, respectively. This means that, for
both the s-wave and p-wave holographic models, there exist
exactly n nodes in the n-th excited state.

In Table 4, we present the critical chemical potential µc

obtained by the shooting method with the fixed masses of the
vector field m2 = 0 and m2 = 5/4 from the ground state to the
sixth excited state for the vector operator Ox, which shows
that, regardless of the vector field mass, the critical chemi-
cal potential µc increases as the number of nodes n increases.
This behavior is reminiscent of that observed for the s-wave
holographic insulator/superconductor case, so we conclude
that an excited state has a higher critical chemical potential
than the corresponding ground state. Fitting these numerical
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Figure 5 (Color online) The vector field ρx(z) as a function of the radial coordinate z outside the horizon with the vector operator Ox for the fixed masses of
the vector field m2 = 0 (left) and m2 = 5/4 (right) by using the numerical shooting method. In each panel, the three lines from top to bottom correspond to the
ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited states, respectively.

Table 4 The critical chemical potential µc obtained by the shooting method
for the vector operator Ox with the fixed masses of the vector field m2 = 0
and m2 = 5/4 from the ground state to the sixth excited state

n
µc

m2 = 0 m2 = 5/4
0 2.265 2.785
1 4.741 5.291
2 7.156 7.720
3 9.561 10.133
4 11.962 12.539
5 14.362 14.943
6 16.760 17.344

results for the vector operator Ox, we have

µc ≈
 2.412n + 2.308, for m2 = 0 ,

2.421n + 2.844, for m2 = 5/4 .
(35)

Compared with the numerical results in eq. (7) for the s-
wave holographic model, it is clear that, although the under-
lying mechanism remains mysterious, the difference of the
dimensionless critical chemical potential µc between the con-
secutive states is about 2.4 for both the s-wave and p-wave
holographic insulator/superconductor phase transitions.

In Figure 6, we exhibit the condensates of the vector opera-
tor Ox as a function of the chemical potential with the masses
of the vector field m2 = 0 and m2 = 5/4 for the first three
lowest-lying modes n = 0, 1 and 2. Similar to the behav-
ior of the ground state in the probe limit [46], for an excited
state the phase transition occurs as the chemical potential is
over a critical value µc, which can be used to describe the
p-wave phase transition between the insulator and supercon-
ductor with the excited state. By fitting these curves near µc,
we find that for the vector field mass m2 = 0,

⟨Ox⟩ ≈



3.664
 µ

µ(0)
c

− 1
1/2

, ground state,

13.054
 µ

µ(1)
c

− 1
1/2

, 1st excited state,

25.318
 µ

µ(2)
c

− 1
1/2

, 2nd excited state,

(36)

and for the vector field mass m2 = 5/4

⟨Ox⟩ ≈



4.191
 µ

µ(0)
c

− 1
1/2

, ground state,

18.251
 µ

µ(1)
c

− 1
1/2

, 1st excited state,

41.339
 µ

µ(2)
c

− 1
1/2

, 2nd excited state,

(37)

where the critical chemical potentials µ(0)
c , µ(1)

c and µ(2)
c are

given in Table 4 for the masses of the vector field m2 = 0
and m2 = 5/4, corresponding to the ground, first and sec-
ond excited states, respectively. Thus, similar to the s-
wave holographic model, the p-wave holographic insula-
tor/superconductor phase transition in the excited states is al-
ways the second order with the mean-field critical exponent
1/2, and the number of nodes n does not affect the order of
phase transition.

In Figure 7, we plot the charge density ρ as a function of
the chemical potential with m2 = 0 and m2 = 5/4 from the
ground state to the second excited state, which implies that
for all the states, there is a critical chemical potential µc above
which the system becomes unstable to develop vector hair
leading to a second order phase transition in the dual field
theory. By fitting these curves in the vicinity of the critical
point, we observe that for the vector field mass m2 = 0,

ρ ≈


1.754

(
µ − µ(0)

c

)
, ground state,

2.646
(
µ − µ(1)

c

)
, 1st excited state,

2.896
(
µ − µ(2)

c

)
, 2nd excited state,

(38)

and for the vector field mass m2 = 5/4,

ρ ≈


1.517

(
µ − µ(0)

c

)
, ground state,

2.443
(
µ − µ(1)

c

)
, 1st excited state,

2.790
(
µ − µ(2)

c

)
, 2nd excited state,

(39)
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Figure 6 (Color online) The condensates of the vector operator Ox with respect to the chemical potential µ for the masses of the vector field m2 = 0 (left)
and m2 = 5/4 (right). In each panel, the three lines from left to right correspond to the ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited
states, respectively.
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Figure 7 (Color online) The charge density ρ as a function of the chemical potential µ with fixed masses of the vector field m2 = 0 (left) and m2 = 5/4 (right)
when ⟨Ox⟩ , 0. In each panel, the three lines from left to right correspond to the ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited
states, respectively.

where the critical chemical potentials µ(0)
c , µ(1)

c and µ(2)
c are

given in Table 4 for m2 = 0 and m2 = 5/4, corresponding
to the ground, first and second excited states, respectively.
Similar to the s-wave case, we again obtain the linear rela-
tion between the charge density and chemical potential near
µ(n)

c for the n-th excited state in the p-wave holographic in-
sulator/superconductor model, i.e., ρ ∼

(
µ − µ(n)

c

)
, which is

independent of the vector field mass m2 and the number of
nodes n.

3.2 Analytical investigation

We have used the shooting method to numerically study the
p-wave holographic insulator/superconductor phase transi-
tion with the excited states. Now we are in a position to in-
vestigate this p-wave holographic model by using the Sturm-
Liouville method [57,61] and analytically confirm the numer-
ical findings.

3.2.1 Critical chemical potential

Changing the coordinate from r to z by z = rs/r, we can ex-

press eqs. (31) and (32) in the z coordinate as:

ρ′′x +

(
1
z
+

f ′

f

)
ρ′x +

 1
z2 f

(
qAt

rs

)2

− m2

z4 f

 ρx = 0, (40)

A′′t +
(

1
z
+

f ′

f

)
A′t −

2
z2 f

(
qρx

rs

)2

At = 0, (41)

with the function f (z) = (1 − z4)/z2. Here and hereafter in
this section the prime denotes the derivative with respect to z.

Considering the vector field ρx = 0 at the critical chemi-
cal potential µc for the the ground and excited states, just as
shown in Figures 6 and 7, we can obtain the physical solution
At(z) = µ to eq. (41) when µ < µc, which takes the same form
as that in the s-wave holographic insulator/superconductor
model. Thus, assuming that ρx takes the form

ρx(z) ≃ ⟨Ox⟩
r∆s

z∆F(z), (42)

with the boundary condition F(0) = 1 satisfying the bound-
ary behavior of ρx in eq. (33), we get the equation of motion
for the trial function F(z):

(QF′)′ + Q

P + V
(

qµ
rs

)2 F = 0, (43)
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with

Q = z1+2∆ f , P =
∆

z

(
∆

z
+

f ′

f

)
− m2

z4 f
, (44)

where V(z) has been introduced in eq. (17). Following the
standard procedure for the Sturm-Liouville eigenvalue prob-
lem [62], we can deduce the eigenvalues of qµ/rs from varia-
tion of the following function:(

qµ
rs

)2

=

∫ 1
0 Q

(
F′2 − PF2

)
dz∫ 1

0 QVF2dz
. (45)

Since Q(1) ≡ 0 and Q(0) ≡ 0 for the case of ∆ = 1 +√
1 + m2 with the mass beyond the Breitenlohner-Freedman

(BF) bound m2
BF = −1 [66], just as discussed in sect. 2 for the

s-wave holographic insulator/superconductor phase transition
with the excited states, the condition [Q(z)F(z)F′(z)]|10 = 0
can be satisfied automatically for the vector operator Ox.
This means that we shall require F(z) to satisfy the Dirich-
let boundary condition F(0) = 1 rather than the Neumann
boundary condition F′(0) = 0. Thus, we expand the trial
function F(z) up to the eighth order, i.e., F(z) = 1−∑k=8

k=1 akzk

for the operator Ox in the following calculation.
In Tables 5 and 6, we show the critical chemical poten-

tials from the ground state to the sixth excited state by using
the expression (45) to compute the extremal values, which
are in good agreement with the numerical results presented

in Table 4. This suggests that the Sturm-Liouville method,
by including higher orders of z in the trial function F(z), is
very powerful to study the excited states of the p-wave holo-
graphic insulator/superconductor phase transition. Moreover,
from these two tables, we observe that the critical chemical
potential increases almost linearly when n increases, which is
consistent with the numerical finding given in Table 4. From
the analytical results, we obtain

qµc

rs
≈

 2.420n + 2.295, for m2 = 0 ,

2.429n + 2.832, for m2 = 5/4 ,
(46)

which agrees well with the numerical results shown in eq.
(35). It is interesting to note that, from eqs. (7) and (21) for
the s-wave holographic insulator/superconductor phase tran-
sition and eqs. (35) and (46) for the p-wave case, the differ-
ence of the dimensionless critical chemical potential qµc/rs

between the consecutive states is about 2.4, which is indepen-
dent of the mass of the field and the type of the holographic
model.

Also, we can use the expression (42) to plot the distribu-
tion of the vector field ρx(z) as a function of z for the vector
operator Ox with the fixed masses of the vector field m2 = 0
and m2 = 5/4 by setting the initial condition ρx(1) = 0.0001,
just as shown in Figure 8. Compared with the numerical re-
sults shown in Figure 5, the agreement of the analytical re-
sults derived from the Sturm-Liouville method with the nu-

Table 5 The dimensionless critical chemical potential qµc/rs obtained by the Sturm-Liouville method for the vector operator Ox and corresponding value
of ak for the trial function F(z) = 1 − ∑k=8

k=1 akzk with the fixed mass of the vector field m2 = 0 from the ground state to the sixth excited state in the p-wave
holographic insulator and superconductor model

n qµc/rs a1 a2 a3 a4 a5 a6 a7 a8

0 2.265 0.000(9) 0.631 0.061 –0.662 0.321 0.180 –0.211 0.056

1 4.741 0.008 2.715 0.565 –4.803 3.243 0.413 –1.204 0.362

2 7.156 0.066 5.570 5.006 –30.887 31.894 –10.294 –1.908 1.355

3 9.561 0.424 5.866 34.438 –165.470 247.030 –167.463 51.471 –5.151

4 11.962 1.633 –5.082 150.541 –677.012 1269.722 –1185.247 546.634 –100.302

5 14.363 1.582 –5.268 271.599 –1523.813 3539.192 –4099.436 2343.249 –526.010

6 16.836 –29.859 400.377 –1649.080 2731.816 –809.668 –2966.267 3506.318 –1182.820

Table 6 The dimensionless critical chemical potential qµc/rs obtained by the Sturm-Liouville method for the vector operator Ox and corresponding value
of ak for the trial function F(z) = 1 −∑k=8

k=1 akzk with the fixed mass of the vector field m2 = 5/4 from the ground state to the sixth excited state in the p-wave
holographic insulator and superconductor model

n qµc/rs a1 a2 a3 a4 a5 a6 a7 a8

0 2.785 0.002 0.751 0.131 –1.010 0.653 0.042 –0.191 0.057

1 5.291 0.017 2.614 0.994 –6.249 5.280 –1.092 –0.604 0.258

2 7.720 0.118 4.651 7.159 –35.775 41.522 –20.472 3.455 0.219

3 10.133 0.614 3.157 40.026 –170.718 259.997 –191.586 69.476 –9.887

4 12.539 1.799 –7.103 138.588 –588.860 1085.574 –1015.018 475.456 –89.491

5 14.944 –0.456 15.219 140.116 –1021.532 2485.477 –2908.675 1664.270 –373.370

6 17.410 –245.676 2760.984 –11762.316 24627.132 –26109.296 11608.072 604.182 –1482.480
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merical calculation is impressive. Thus, we conclude that the
improved Sturm-Liouville method can not only analytically
calculate the critical chemical potential of the excited states,
but also study the behaviors of the vector field near the critical
point.

3.2.2 Critical phenomena

In the vicinity of the critical point, we may expand At(z) in
small ⟨Ox⟩ as:

At(z) ∼ µc + 2µc

(
q⟨Ox⟩
r1+∆

s

)2

χ(z) + · · · , (47)

with the boundary condition χ(1) = 0 at the tip. Then, with
the help of eqs. (41) and (42), we obtain

(Wχ′)′ − z2∆−1F2 = 0, (48)

where W(z) = z f (z) has been defined in the s-wave holo-
graphic insulator/superconductor model.

Following the strategy utilized for the analysis regard-
ing the critical phenomena in the s-wave holographic insu-
lator/superconductor phase transition, near z→ 0 we can ex-
pand At as:

At(z) ≃ µ − ρ

r2
s

z2

≃ µc + 2µc

(
q⟨Ox⟩
r1+∆

s

)2 [
χ(0) + χ′(0)z +

1
2
χ′′(0)z2 + · · ·

]
.

(49)

From the coefficients of the z0 term in both sides of the above
formula, we get

q⟨Ox⟩
r1+∆

s
=

1√
2χ(0)

(
µ

µc
− 1

)1/2

, (50)

where χ(0) = c4 −
∫ 1

0 W−1[c5 +
∫ z

1 x2∆−1F(x)2dx]dz with the
integration constants c4 and c5 which can be determined by

the boundary condition of χ(z) in eq. (48). As an example,
for the vector field mass m2 = 0 we observe that

q⟨Ox⟩
r3

s
≈



2.938
 µ

µ(0)
c

− 1
1/2

, ground state,

8.981
 µ

µ(1)
c

− 1
1/2

, 1st excited state,

16.717
 µ

µ(2)
c

− 1
1/2

, 2nd excited state,

(51)

where the critical chemical potentials µ(0)
c , µ(1)

c and µ(2)
c are

given in Table 5, which correspond to the ground, first and
second excited states, respectively. Obviously, eq. (51) can
be compared with the numerical results given in eq. (36).
Since eq. (50) is valid in general, near the critical point we
obtain ⟨Ox⟩ ∼

(
µ − µ(n)

c

)1/2
, which analytically confirms that,

for all the excited states, the phase transition between the
p-wave insulator and superconductor is of the second order
and the critical exponent of the system attains the mean-field
value 1/2.

According to the coefficients of the z2 term in eq. (49), we
finally have

ρ

r2
s
= −µcχ

′′(0)
(

q⟨Ox⟩
r1+∆

s

)2

= Γ(m, n)(µ − µc), (52)

where Γ(m, n) = [2χ(0)]−1
∫ 1

0 z2∆−1F2dz is a function of the
vector field mass m2 and the number of nodes n. For the case
of m2 = 0, we get

ρ

r2
s
≈


1.128

(
µ − µ(0)

c

)
, ground state,

1.247
(
µ − µ(1)

c

)
, 1st excited state,

1.262
(
µ − µ(2)

c

)
, 2nd excited state,

(53)

which is again consistent with the numerical result shown in
eq. (38). Here the critical chemical potentials µ(0)

c , µ(1)
c and

µ(2)
c have been presented in Table 5 for the ground, first and

second excited states, respectively. Therefore, from eq. (28)
for the s-wave holographic insulator/superconductor phase
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Figure 8 (Color online) The vector field ρx(z) as a function of the radial coordinate z outside the horizon with the vector operator Ox for the fixed masses
of the vector field m2 = 0 (left) and m2 = 5/4 (right) by using the analytical Sturm-Liouville method with ρx(1) = 0.0001 in eq. (42). In each panel, the three
lines from top to bottom correspond to the ground (n = 0, red), first (n = 1, blue) and second (n = 2, green) excited states, respectively.
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transition and eq. (52) for the p-wave case, we analytically
confirm that a linear relationship ρ ∼

(
µ − µ(n)

c

)
exists be-

tween the charge density and chemical potential near µ(n)
c for

the n-th excited state, which agrees well with the numerical
calculation for both the s-wave and p-wave holographic insu-
lator/superconductor phase transitions with the excited states.

4 Conclusions

In this work, we have presented a family of solutions of the
holographic insulator/superconductor phase transitions with
the excited states in the probe limit, by using the numeri-
cal shooting method and analytical Sturm-Liouville method.
In particular, we showed that the analytical results, obtained
by including more higher order terms in the expansion of
the trial function in the Sturm-Liouville method, are in good
agreement with the numerical data. Interestingly, we no-
ticed that this improved analytical method can not only ana-
lytically investigate the holographic insulator/superconductor
phase transitions with the excited states but also the behaviors
of the condensed fields near the critical point of the phase
transition, which implies that the Sturm-Liouville method
is a robust method to disclose the properties of the insula-
tor/superconductor phase transition systems even for the ex-
cited states. For both the s-wave (scalar field) and p-wave
(vector field) insulator/superconductor models, we found that
the critical chemical potential increases linearly as the num-
ber of nodes increases, which means that the excited state
has a higher critical chemical potential than the correspond-
ing ground state. It should be noted that, although the un-
derlying mechanism is still unclear, the difference of the di-
mensionless critical chemical potential between the consec-
utive states is around 2.4 regardless of the type of the holo-
graphic model, which is obviously different from the find-
ing of the metal/superconductor phase transition in the back-
grounds of AdS black hole where the difference is around 5.2
[20, 22]. Moreover, for all the excited states in both s-wave
and p-wave models, we observed that the phase transition of
the systems belongs to the second order with the mean-field
critical exponent 1/2, and the charge density scales linearly
with the chemical potential in the vicinity of the critical point.
Since the backreaction can provide richer physics in the holo-
graphic insulator/superconductor models, it would be of great
interest to generalize our study to the case where the backre-
action is taken into account. We will leave it for further study.
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