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The Monin-Obukhov (MO) similarity function ϕm of the atmospheric surface layer (ASL) describing the deviation from the log
law of the canonical turbulent boundary layer because of thermal stratification has been traditionally determined empirically. This
study presents a unified analytic expression derived from a symmetry-based theory of wall turbulence, called structural ensemble
dynamics (SED), which postulates a generalized dilation symmetry principle expressing the effect of the wall on turbulence,
leading to an analytic multi-regimes expression for the mixing length. For ASL in unstable and stable conditions (i.e., UC and
SC), a unified two-regime formula of the mixing length is proposed, leading to a ϕm, similar to the Businger-Dyer (BD) formula;
with a simplified model energy balance equation, ϕm is completely specified with no free parameter. Furthermore, the theory
allows the study of the open ASL’s underlying additional physical processes such as bottom-up or top-down flux due to pressure
variations Tp. Assuming that Tp is decomposed into shear-like and buoyancy-like components, we propose new explanations
for two important features of typical ASL: a significantly smaller Karman constant of 0.36 and a varying ϕm for SC mean speed
profiles. The theory is validated by the data obtained at Kansas and also at Qingtu Lake Observation Array in Northern China for
a variety of heat flux conditions. In conclusion, due to pressure variations, we assert that ASL is intrinsically open and that the
current theory offers a new basis for its quantification.
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1 Introduction

The atmospheric surface layer (ASL) is the hinge region
where the earth surface exchanges mass and energy with
the atmosphere through turbulence. The understanding and
quantification of turbulent processes in ASL are important
not only for the fundamental study of the boundary layer
with high Reynolds number (Re) [1], but also for the appli-
cations [2] of numerical weather prediction and modeling of
pollution diffusion and sand storm. In general, the two most
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important processes in ASL are earth surface-induced “wall”
shear and thermal stratification due to air temperature vari-
ation; the latter is recognized as the main cause for the de-
viation of the wind speed profile from the famous log law.
However, ASL is an intrinsically open system involving the
interaction with the upper atmosphere, where large-scale mo-
tions due to pressure variation are frequent. This study aims
to develop a theory that allows the study of the effect of ther-
mal stratification and bottom-up and top-down effects due to
pressure fluctuations.

Earlier, Monin and Obukhov (MO) [3, 4] proposed a simi-
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larity theory with variable ζ ≡ z/L, where L, now called
Obukhov length, is defined as L = −u3

τ/
(
κ ⟨w′T ′⟩ g/T̄

)
, where

uτ is the friction velocity, κ is the Karman constant, w′ and
T ′ is the vertical speed and temperature fluctuations, respec-
tively, and ⟨w′T ′⟩, T̄ , and g refers to the heat flux, mean tem-
perature profile, and gravitational acceleration respectively.
In the MO theory [3], the most remarkable quantity is the
nondimensional similarity function:

ϕm(ζ) =
κz
uτ

dU
dz
, (1)

where U is the mean speed profile. Once ϕm is known, one
can readily predict U by an integration. It is known that ϕm(ζ)
cannot be derived from dimensional analysis alone, and thus,
more theoretical arguments need to be introduced. First, one
assumes that ϕm(0) = 1 as the heat flux approaches zero, or
L → ∞ (thus, ζ → 0), and the log law is recovered, corre-
sponding to the neutral ASL. This assumption will be proved
to be incorrect by the present study, which shows that a non-
negligible pressure-induced flux yields a finite deviation of
ASL from a canonical TBL, manifesting in a much smaller
Karman constant of 0.36 [5].

Furthermore, the effect of thermal stratification on ϕm has
been traditionally determined by fitting the experimental data
through a measured wind speed U. One of the most pop-
ular formulas is presented by Businger et al. [6] and Dyer
[7], hereafter referred to as BD formula, which takes the fol-
lowing form: ϕm(ζ) = (1 − 15ζ)−1/4 when ζ < 0 (for UC)
with upward heat flux during daytime, and ϕm(ζ) = 1 + 4.7ζ
when ζ > 0 (for SC) with downward heat flux during night-
time. The BD formula had been confirmed by many obser-
vations, including well-known Kansas experiments. More-
over, Carl et al. [8] suggested another formula with a slightly
different scaling exponent (−1/3) to better fit some UC data:
ϕm(ζ) = (1 − 15ζ)−1/3. It seems that the data do not support
a single formula, so a better understanding of the variability
of the observed ϕm(ζ) is required. An implicit form of ϕm

has been proposed based on a simplified turbulent kinetic en-
ergy balance equation, yielding the so-called O’KEYPS (af-
ter Obukhov, Kazansky, Ellison, Yamamoto, Panofsky, and
Sellers) equation [9]: (ϕm(ζ))4 − γζ (ϕm(ζ))3 = 1, where γ
is an empirical constant ranging from 5 to 18 in different re-
ports. The variability of γ is an intriguing issue, for which
this study will develop an alternative point of view that it is a
direct consequence of the pressure variations (see sect. 3.4).

More recently, Katul et al. [10] pursued a path to relate the
turbulent energy spectrum to the mean velocity [11], yielding
also an equation to determine ϕm(ζ) as:

ϕm(ζ)4 − ζϕm(ζ)3 =
1

f (ζ)
, (2)

where f (ζ) is a dimensionless function describing the effect
of thermal stratification in terms of eddy’s anisotropy. It is
able to yield a different power law of ϕm(ζ) for a different heat
flux regime, whose prediction agrees reasonably well with
some UC data. However, for SC, its prediction has a substan-
tial deviation, which is later corrected by Salesky et al. [12]
using a stability-dependent integral lengthscale. Instead, Li
et al. [13] introduced a new length, called the Ozmidov scale
LOZ, to form a new similarity variable ζ′ = z/LOZ, replacing
ζ to construct f (ζ). In summary, these spectrum-based mod-
els explain some aspects of the scaling of ϕm and parameters,
but need the knowledge about integral length to predict ϕm.
Since the model spectrum only involves inertial subrange, it
is thus conceptually difficult to consider nonequilibrium ef-
fect of very large-scale motions. Indeed, it is already known
that to describe SC or analyze turbulent intensities [14], the
model needs to introduce more lengths and spectral relations,
thus depending on too many fitting parameters. Viewing the
current state-of-the-art, a new approach is needed to achieve
a concise yet comprehensive description of ASL.

This paper presents explicit forms of ϕm(ζ) for both UC
and SC in a unified way, based on a newly developed the-
ory of wall turbulence, called structural ensemble dynamics
(SED) [15-18], which develops a renovative Lie-group sym-
metry analysis on the momentum and energy balance equa-
tions. The SED theory defines several stress lengths that ex-
tended from the classical mixing length and introduces a gen-
eralized dilation symmetry assumption. In each flow region,
the lengths behave in a power law in z (height), owing to the
invariant energy balance mechanism in the region where the
dilation symmetry of lengths in z is preserved. Furthermore,
across different regions, a universal symmetry breaking is
postulated, yielding a specific transition function connecting
different power laws. Proceeding from the wall to the entire
flow domain, the theory then yields a multiregime expression
and the predicted (entire) mean velocity and turbulence ki-
netic energy profiles are validated with unprecedented accu-
racy by several dozens of experimental and numerical profiles
in a wide range of Re of canonical wall turbulence [15-18]. It
is intriguing to see whether the theory applies to ASL to yield
a unified description that is also adaptive to a variety of phys-
ical situations related to the complexity of the atmospheric
turbulence.

Below, a unified two-regime formula of Reynolds stress
length ℓ13 for both UC and SC is presented, leading to a sim-
ilar expression as the BD formula. A remarkable feature of
the present theory is that it allows further analysis for open
ASL underlying different physical processes such as bottom-
up or top-down flux due to pressure variations Tp. Specifi-
cally, a reasonable argument can be developed to determine
the transition parameters (from shear-dominated to heat flux-
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dominated regime), ζUC (or γ in BD), and ζSC (or β in BD)
by solving a simplified vertical turbulent kinetic energy bal-
ance equation with an isotropic dissipation. An outstanding
feature of this analysis is that it can be extended to include
the effect of pressure variations and thus establish a quanti-
tative framework to study the open ASL underlying bottom-
up or top-down flux due to pressure variations Tp. The the-
ory is fully validated by the well-known Kansas data and the
data measured at Qingtu Lake Observation Array (QLOA) in
Northern China for a variety of heat flux conditions, which
allows for a preliminary determination of pressure effect and
for an explanation of two important features of typical ASL: a
significantly smaller Karman constant of 0.36 and varying ϕm

for SC mean speed profiles. In summary, a unified analytic
expression of ϕm has been derived for the first time, in both
UC and SC with bottom-up and top-down energy fluxes. This
study asserted that ASL is intrinsically open due to pressure
variations and that the present theory has achieved a definitive
step for a comprehensive description of real (nonequilibrium)
ASL.

2 Data
An important aspect of the present work is to validate the the-
ory by observational data. In addition to the famous Kansas
data, we have specifically analyzed data at QLOA, which is
built on the dry lake bed located in Minqin County, Gansu
Province, in Northwestern region of China. In spring, sus-
tained northwest monsoon flows through the observation site
of which the surface relief is less than 1 m within 10 km in
the upwind direction. It is an ideal field laboratory for ob-
servation of ASL since it presents a high Re turbulent bound-
ary layer which could reach a friction Re of the order of 106,
much larger than laboratory wind tunnel experiments. The
array which consists of 21 towers, one main tower of 32 m
high and 20 other lower towers of 5 m high, are organized
into a T-like shape. The wind speeds are measured by a sonic
anemometer with a 50-Hz sampling frequency, and observa-
tions have been carried out day and night throughout several
years, offering abundant data for all weather conditions. Sev-
eral studies on large-scale motion, energy spectrum, etc., at
clear time or during sand storm have yielded interesting re-
sults on the physics of ASL, see refs. [19-21].

Here, wind speed measurements are analyzed in the main
tower, equipped with 11 anemometers of approximate loga-
rithmic equidistance from 0.9 to 30 m. 12 sets of data are se-
lected for UC during May 23, 2014, and 11-h samples of data
are chosen for SC during the nights of May 23 and March 27,
2014, since long-duration data with large enough wind speed
are more rare in nighttime. The detailed information of the
data is shown in Table 1. The friction velocities are selected

Table 1 The information of QLOA data used in this paper

No. Time and date uτ (m/s) L (m)

1 2014-05-23 7:00-8:00 0.28 −96.4

2 2014-05-23 8:00-9:00 0.31 −22.8

3 2014-05-23 9:00-10:00 0.32 −13.5

4 2014-05-23 10:00-11:00 0.33 −11.4

5 2014-05-23 11:00-12:00 0.34 −11.4

6 2014-05-23 12:00-13:00 0.29 −7.7

7 2014-05-23 13:00-14:00 0.33 −10.4

8 2014-05-23 14:00-15:00 0.29 −6.1

9 2014-05-23 15:00-16:00 0.30 −9.8

10 2014-05-23 16:00-17:00 0.34 −16.9

11 2014-05-23 17:00-18:00 0.39 −27.2

12 2014-05-23 18:00-19:00 0.35 −36.8

13 2014-03-27 0:00-1:00 0.26 31.0

14 2014-03-27 1:00-2:00 0.59 237.6

15 2014-03-27 2:00-3:00 0.67 351.0

16 2014-03-27 3:00-4:00 0.59 350.5

17 2014-03-27 4:00-5:00 0.48 263.9

18 2014-03-27 5:00-6:00 0.41 259.4

19 2014-03-27 6:00-7:00 0.31 134.9

20 2014-03-27 7:00-8:00 0.25 143.8

21 2014-05-23 2:00-3:00 0.22 27.5

22 2014-05-23 6:00-7:00 0.21 47.2

23 2014-05-23 20:00-21:00 0.23 40.6

to be larger than 0.2 m/s and the Obukhov length ranges
from −96.4 to 351.0 m, covering unstably, neutrally, and sta-
bly stratified ASL. The corresponding similarity coordinate
ranges from −4.9 to 1.1, which is wide enough to validate the
present SED similarity theory.

3 Theory

3.1 Energy balance analysis

We begin by analyzing turbulent kinetic energy (TKE) equa-
tion to identify different energy balance regimes. Instead of
treating the full TKE equation, we choose to discuss each
component of TKE equation separately, following Kader and
Yaglom [22], since the heat flux effect important to ASL acts
only in the vertical component. Indeed, ref. [22] claimed that
κ4L is the real vertical scale in ASL.

In what follows, we assume that the ASL flow is statisti-
cally stationary and the averaged quantities only depend on z,
independent of x (streamwise direction). Therefore, the TKE
equations are [22]

⟨
u′w′

⟩ dU
dz
+ ρ−1

⟨
p′
∂u′

∂x

⟩
= εu +

1
2

∂
⟨
u′2w′

⟩
∂z

, (3)
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ρ−1
⟨

p′
∂v′

∂y

⟩
= εv +

1
2

∂
⟨
v′2w′

⟩
∂z

, (4)

⟨
w′T ′

⟩ g
T̄
+ ρ−1

⟨
p′
∂w′

∂z

⟩
+ ρ−1 ∂ ⟨p′w′⟩

∂z
= εw +

1
2

∂
⟨
w′3

⟩
∂z
.

(5)

Eqs. (3)-(5) corresponds to the streamwise, spanwise, and
vertical energy balance equation, respectively, where x, y, z
are the streamwise, spanwise, and vertical coordinates, v′ is
the spanwise velocity fluctuation, p′ is the pressure fluctua-
tion, εu, εv and εw are the dissipation of the three directions.

In ASL, turbulence production mechanisms mainly in-
clude shear production for streamwise component and buoy-
ancy production for the vertical component. For convenience,
we use S = ⟨u′w′⟩ dU

dz to denote the shear production which
converts the mean motion energy to a streamwise fluctuation,
and B = ⟨w′T ′⟩ g

T̄ to denote buoyancy production, which in-
jects heat energy to the vertical fluctuation. The terms involv-
ing p on the left hand side are denoted by Ru,Rv and Rw. The
second terms of the right-hand side are denoted by Tu,Tv and
Tw and the pressure transport is denoted by Tp. The equation
could then be rewritten as:

S + Ru = εu + Tu, (6)

Rv = εv + Tv, (7)

B + Rw + Tp = εw + Tw. (8)

In our following discussion, higher-order turbulent transport
terms are ignored, but the effect of Tp in sect. 3.4 will be
considered below. Note that in canonical TBL, Tp is absent.
Our present study reveals primary importance in ASL, rep-
resenting transport by large-scale pressure variation. Hunt et
al. [23,24] argued its importance in ASL even in near-neutral
conditions.

The pressure-strain correlation term redistributes energy
in three directions, leading the turbulence to a small-scale
isotropic state. Following Bou-Zeid et al. [25] who neglected
turbulent transport, the energy equation is simplified by as-
suming a small-scale isotropy for dissipation:

εu = εw = εv = ε/3. (9)

Furthermore, the sum of turbulent production, dissipation,
and buoyancy is zero (i.e., S + B = ε), and the sum of three
pressure redistributions terms is also zero (i.e., Ru+Rv+Rw =

0). Thus, eqs. (6)-(8) could be rewritten as:

Ru = −
2
3

S +
1
3

B, (10)

Rv =
1
3

S +
1
3

B, (11)

Rw = −
2
3

B +
1
3

S . (12)

This indicates that pressure redistribution terms (Ru, Rv and
Rw) can be expressed in terms of shear (S ) and buoyancy
(B), owing to the energy balance equation. Normalizing eqs.
(6)-(8) by S, all R terms become an explicit function of the
Richardson number Ri f = −B/S. This was validated by a
simulation data [25]. Note that the Richardson number is
generally a function of the height. Below, we will show that
it reaches specific values for shear-dominated and buoyancy-
dominated regimes, so that the critical Ri f may be derived
to specify the transition point between the two regimes. Be-
low, all different regimes in ASL will be enumerated and an
analysis of the Richardson number is presented.

Typical regimes of ASL can be described in the following
energy balance scenario:
• Neutral: turbulent energy mainly originates from shear

production and balanced by the dissipation, S = ε, two-third
of which are redistributed from streamwise to vertical and
spanwise components: Ru = −2ε/3 and Rw = Rv = ε/3.
• SC: turbulent energy is generated by the shear pro-

duction mainly balanced by the buoyancy. Because turbu-
lence must be sustained, there exists a minimum dissipation
εm ≪ S. Ru redistributes S − εm/3 to vertical and spanwise
components, Rv = εm/3 and Rw = S − 2εm/3, respectively.
So, in the vertical direction, S − εm balances B.
• Strongly SC: dissipation is negligible, so shear produc-

tion S is balanced by Ru: Ru = −S is almost entirely redis-
tributed to the vertical component, Rw ≈ −Ru = S, while the
spanwise component is negligible: Rv ≈ 0.
• UC: buoyancy balances the dissipation in the vertical

direction, B = ε/3. Shear production generates two-thirds
of the dissipation: 2ε/3, half of which is redistributed from
streamwise to the spanwise component: Ru = −ε/3 and
Rv = ε/3.
• Strongly UC: in the extreme case of UC, buoyancy pro-

vides turbulent energy in all three directions, B = ε, two-
thirds of which, 2ε/3, are equally redistributed to streamwise
and spanwise directions. i.e., Ru = Rv = ε/3.

The above results are summarized in Table 2. Note that the
neutral, UC, and strongly UC regimes could be similar to dy-
namic, dynamic-convective, and convective regimes, respec-
tively, as first suggested by Kader and Yaglom et al. [22, 26]
who, however, have not clearly defined the transition param-
eters. A more detailed study of the correspondence will be
reported elsewhere.

A key outcome of the above analysis is to derive a critical
Richardson number marking the transition between UC (or
SC) and the neutral situation. We postulate the following rea-
sonable criteria: the transition point is located where the two
sinks (i.e., buoyancy B and dissipation ε) are equal for SC, or
where the two sources (buoyancy B and pressure redistribu-
tion Rw) are equal for UC. The rational behind these criteria
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Table 2 The energy balance in different regimes as special solutions to eqs. (10)-(12). Note that the two transition regimes are determined by the relations:
B + S = ε and −B/S = Ri f

Case S B Ru Rv Rw Ri f

Strongly SC −B −S −S ≈ 0 S ∼ 1

Transition 1 4ε/3 −ε/3 −ε ε/3 2ε/3 1/4

Neutral ε 0 −2ε/3 ε/3 ε/3 0

Transition 2 5ε/6 ε/6 −ε/2 ε/3 ε/6 −1/5

Strongly UC ≈ 0 ε ε/3 ε/3 −2ε/3 − inf

is clear: the middle of the transition corresponds to the situ-
ation where buoyancy grows and gradually reaches the same
magnitude as the prevalent sink or source. With these cri-
teria, one can readily derive the critical Richardson number:
for SC, Ri f = 1/4, since Rw/B = −2 (see eq. (12)); or for
UC, −Ri f = 1/5, since Rw/B = 1 and Rw + B = ε/3. Note
that the latter result is also consistent with ref. [27], which
showed that the transition point marks the beginning of the
decreasing momentum transport efficiency. The two critical
transition Richardson numbers are also presented in Table 2,
which will be used below to determine the two critical transi-
tion parameters.

3.2 Extended SED analysis

The SED is a similarity theory of wall turbulence [15,16] that
is based on the following basic assumptions:

(1) In the thin boundary layer, the Reynolds averaged
Navier-Stokes (RANS) equation has its solution strongly
constrained by the dilatation-group invariance in the direc-
tion normal to the wall. This symmetry constraint mani-
fests in a series of stress lengths, defined by the Reynolds
stresses and the mean shear, physically describing the domi-
nant eddy sizes relevant to turbulent diffusivity. The relevant
stress length for vertical momentum diffusion is the Prandtl
mixing length: ℓ13 =

√
W13/∂zU, where W13 = −⟨u′w′⟩.

(2) The boundary layer is composed of several subre-
gions and within each subregion, turbulent motions are self-
organized into a similarity state so that ℓ13 ∼ zα (also called
the structural ensemble). It is assumed that the subregion
(or structural ensemble) is formed due to a single dominated
mechanism of energy balance. In other words, the transition
from one subregion to another is due to the change of the
underlying energy balancing mechanism.

(3) It is assumed that across two subregions, a dilation
symmetry-breaking occurs with a variation of scaling expo-
nent α→ α′, and the transition function is universal.

For instance, in the region where turbulence production
W13∂zU balances dissipation ε, ℓ13 ≈ κz (linear scaling in z)
and the famous log law follows. Closer to the wall, it is shown
[15,16] that there exists a viscous sublayer where energy dis-

sipation balances diffusion and ℓ13 ∝ z3/2, while further away
from the wall, a buffer layer occurs where the streamwise
turbulent fluctuation reaches the maximum and the turbulent
transport then balances the residue dissipation (e.g., the sub-
traction of dissipation and diffusion) and ℓ13 ∝ z2. More re-
markably, because the universal transition takes place from
layer to layer, a unified expression called multi-layer formal-
ism is derived and validated, describing all structural ensem-
bles of varying energy balancing mechanism. This is a typical
feature of wall shearing turbulence involving nonequilibrium
dynamics (e.g., transport in space and across scales). Note
that ℓ13 is interpreted to quantify the size of eddy that con-
tributes to the momentum transport in the vertical direction
in the SED theory.

The SED theory takes a fundamentally different approach
to the closure problem of turbulence. Instead of solving a spe-
cific set of balance equations by a closure model, we consider
the symmetry constraint on all balance equations and postu-
late a global feature valid for all Reynolds stresses, namely
the formation of several structural ensembles, originating
from different energy balance mechanisms. Ref. [16] shows
that knowing ℓ13, one can solve the closed mean momentum
equation and obtain the mean velocity profile (MVP). Ref.
[17] further shows ℓ11. ℓ22 and ℓ33 display similar multi-
layer structure as ℓ13 (up to a few small anomalies). The
distribution of three turbulence intensities could then be de-
scribed analytically. The predicted intensity distributions are
validated with an unprecedented accuracy for the canonical
channel, pipe, and turbulent boundary layer against a large
variety of numerical and experimental data. Thus, according
to the SED theory, the dominant physics in wall turbulence is
the dilation symmetry-breaking associated with the change of
the energy balance mechanism. While a general concept (i.e.,
dilation symmetry-breaking) is still pending further elucida-
tion, its validated mean velocity and kinetic energy profiles
are strong evidence of its consistency with all budget equa-
tions.

Now, we follow the SED theory to derive the formula of
ℓ13 for ASL , in which dominant energy balance mechanisms
are already known. The two dominant energy regimes in ASL
are the shear dominant regime at low height where the wall’s
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effect is strong, and the heat flux dominant regime where
TKE mainly originates from buoyancy production. In the
shear dominant regime near the bottom of ASL, ℓ13 ≈ κz, fol-
lowing the linear law of the mixing length theory by Prandlt.
As the height increases, shear production S ∼ 1/ℓ13, which
decreases as z−1 while the heat flux is constant in ASL. Thus,
there exists a critical transition point above which buoyancy
production begins to play a role. There are two situations
where the heat flux dominates: upward and downward heat
flux, corresponding to UC and SC, respectively.

For UC with complete control by the heat flux, ϕm(ζ) ∼
(−ζ)−1/3, following dimensional analysis [8] or an expansion
argument [28]. Then, eq. (1) yields: ∂zU ∼ uτ(κz)−1 (−ζ)−1/3.
Since

√
W13 ≈ uτ, we obtain: ℓ13 ∼ κz (−ζ)1/3. Then,

a two-regime formula of the SED theory yields (see
Appendix A1)

ℓ∧13 = κζ

(
1 − ζ
ζUC

)1/3

, ζ < 0, (13)

where κ = 0.45 is Karman constant [16], ζUC is the critical
transition parameter, similar to γ in BD and Carl’s formula.

For SC, buoyancy absorbs TKE and dissipation, resulting
in different scaling compared to the UC. Considering an ex-
treme situation that the energy produced by the shear is al-
most completely absorbed by buoyancy, then W13∂zU ∼ −B.
Eq. (1) then yields: ℓ13 ∼ W3/2

13 /(−B). Since W13 = u2
τ,

we could obtain ℓ13 ∼ u3
τ/(−B) which is proportional to

the Obukhov length. In other words, in strong SC, the size
of eddies in charge of momentum transport approaches to
a constant, which is proportional to the Obukhov length L.
In this case, the two-regime formula of ℓ13 as derivation in
Appendix A2 reads,

ℓ∧13 = κζ

(
1 +

ζ

ζSC

)−1

, ζ > 0, (14)

where ζSC is the critical transition parameter, above which
ℓ∧13 deviates from the linear law, similar to β in the BD for-
mula. While γ and β in the BD formula are determined by
fitting empirical data, the present symmetry-based theory is
able to derive them (i.e., ζUC and ζSC) based on its definition
as the transition height of the energy balancing mechanism,
as shown below in sect. 3.3.

Now, we are ready to write down the full expression for
ϕm. According to the definition:

ϕm =

√
W13

ℓ13
× κz

uτ
, (15)

we are able to obtain

ϕm ≈


(
1 − ζ
ζUC

)−1/3

, ζ < 0,

1 +
ζ

ζSC
, ζ > 0.

(16)

3.3 Analytic derivation of critical transition parameter
ζUC and ζSC

We now present an argument to derive the critical transition
parameters, ζUC and ζSC, contained in the expressions of the
stress length (eqs. (13) and (14), respectively). The basic
assumption behind this derivation is the simplified model en-
ergy balance equation neglecting pressure effect and turbu-
lent transport, described in sect. 3.1. Under this assumption,
the only relevant terms specifying vertical variations are the
shear production S and the buoyancy heat flux B that com-
bine to a single parameter, which is the Richardson number
Ri f = −B/S. In ASL, at both UC and SC, the energy balanc-
ing mechanism varies from the shear-dominated regime at a
lower height to the buoyancy-dominated regime at an upper
height. Thus, the magnitude of Richardson number increases
monotonically in z and the critical Richardson number will
define the critical height for both UC and SC (i.e., ζUC or
ζSC).

First, note that Ri f can be related to ℓ13: Ri f = −B/S =
−BW−1/2

13 ℓ13 = −Bu−1
τ ℓ13. A rescaling with Obukhov length

yields

Ri f =


ζ

(
1 − ζ
ζUC

)1/3

, ζ < 0,

ζ

(
1 +

ζ

ζSC

)−1

, ζ > 0.

(17)

At the transition point, i.e., ζ = −ζUC (for ζ < 0) or ζ = ζSC

(for ζ > 0), takes the critical Richardson number argument
(its values presented in Table 2): Ri f = −1/5 or Ri f = 1/4,
and we find

ζUC = 0.2/21/3 ≈ 0.16 = 1/6.3,

ζSC = 0.25/2−1 ≈ 0.5 = 1/2.
(18)

This yields

ϕm ≈
 (1 − 6.3ζ)−1/3, ζ < 0,

1 + 2ζ, ζ > 0.
(19)

Comparing eq. (19) with the BD formula, one can readily de-
rive an equivalent value of BD’s parameter: γ ≈ 1/ζUC ≈ 6.3
and β ≈ 1/ζSC ≈ 2. This theoretical determination is
achieved entirely based on an analysis of the energy balance
equation for the first time. Note that the predicted γ and
β seem to be noticeably smaller than the empirical values
(γ ≈ 16 and β ≈ 4.6) from fitting a large variety of data.
This deficiency inspires a further investigation by consider-
ing more physics of ASL such as additional pressure-induced
vertical energy transport.
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3.4 Pressure effect: possible pressure transport

As mentioned earlier, ASL turbulence is an open system af-
fected constantly by a large-scale inhomogeneity because of
pressure fluctuations, whose contribution to vertical energy
balance is expressed by Tp term and neglected in our deriva-
tion above. This term may be related to the so-called top-
down effect, as earlier speculated by Hunt et al. [23, 24] and
supported by previous analysis of QLOA observations [19].
Note that Salesky et al. [12] argued that the spatial trans-
port, including pressure transport, is not important in ASL.
We believe this is false for small to large heat flux regime.
The imbalance was also recently noticed by Chamecki et al.
[29], who put forward a TKE-based framework for studying
the disturbed ASL and found that the vertical fluctuation in-
tensity is affected. We now demonstrate that the SED theory
offers a basis for the systematic treatment in the energy bal-
ance equation of additional terms (source or sink) since the
symmetry-based approach is still valid to deal with the con-
straints imposed by a wall (i.e., earth surface for ASL).

Below, we outline briefly a preliminary consideration, but
leaves a thorough investigation of the pressure transport in a
future communication. This consideration adds the following
assumption to that stated in sect. 3.2: the pressure transport
has a vertical structure (i.e., z-dependence) which, at least in
leading order, can be decomposed into the two most impor-
tant energy modes, namely shear production S and buoyancy
heat flux B. Specifically, we assume that

Tp = aS + bB, (20)

where a and b are two free parameters used to quantify the
pressure-induced vertical energy transport. The rationale be-
hind this assumption is that at very large Reynolds num-
ber, the turbulent boundary layer has essentially two kinds
of components: active and inactive, as proposed earlier by
Townsend [30]. The former forms attached eddies whose size
is proportional to the wall distance, like S, while the latter cor-
responds to some large-scale action which introduces a con-
stant energy flux, like B in ASL. We conjecture that these
two components originate from wall symmetry constraints
that are preserved even when vertical pressure transport is
not negligible. Then, the new energy balance equations can
be written in a similar form to eqs. (6)-(8)

S ′ + R′u = εu, (21)

Rv = εv, (22)

B′ + R′w = εw, (23)

where S ′ = (1+a)S, B′ = (1+b)B, R′u = Ru−aS, R′w = Rw+aS.
Consequently, the transition point is defined by B′/S ′ =
−1/5 for UC, B′/S ′ = 1/4 for SC.

Now, three different situations are considered to elucidate
the effect of active (aS ) and inactive (bB) components:
• UC under the effect of active component: a , 0, b = 0.

For UC at the transition point, the ratio of B′ and S ′ satisfies

B′

S ′

∣∣∣∣∣
ζ=−ζUC

=
B

(1 + a) ∂U
∂z W13

∣∣∣∣∣
ζ=−ζUC

= −1
5
. (24)

The active part of Tp contributes to the momentum transport
in ASL, so ℓ13 will be modified. However, this modification
only changes the slope or the Karman constant κ by a factor
of 1 + a. It can be verified whether

ℓ∧13 = (1 + a)0.45ζ
(
1 − ζ
ζUC

)1/3

, ζUC ≈ 0.16. (25)

Eq. (24) is satisfied
(
taking W13 ≈ u2

τ, L = − u3
τ

κB

)
. The above

result shows that the active component of Tp modifies the
Karman constants but does not shift the transition height.
• SC under the effect of active component: a , 0, b = 0.

Similar result is obtained for SC and the resulting stress
length is

ℓ∧13 = (1 + a)0.45ζ
(
1 +

ζ

ζSC

)−1

, ζSC = 0.5. (26)

• UC under the effect of inactive component: a = 0,
b , 0.
For UC at the transition point, the ratio of B′ and S ′ satisfies

B′

S ′

∣∣∣∣∣
ζ=−ζUC

=
(1 + b)B
∂U
∂z W13

∣∣∣∣∣
ζ=−ζUC

= −1
5
. (27)

In this case, ℓ∧13 is not modified but a shift of ζUC takes place
by a modification of B:

ℓ∧13 = 0.45ζ
(
1 − ζ
ζUC

)1/3

, ζUC =
0.16

1 + b−
. (28)

• SC under the effect of inactive component: a = 0, b , 0.
For SC, the same derivation yields

ℓ∧13 = 0.45ζ
(
1 +

ζ

ζSC

)−1

, ζSC =
0.5

1 + b+
. (29)

• The general situation: a , 0, b , 0.
The above results show that the active component aS only
affects the slope of ℓ∧13, while the inactive component only
affects the transition height ζUC and ζSC. Since the energy
balance equation is linear in Tp, the general situation is a su-
perposition of the two effects. Thus, we obtain

ℓ∧13 =

 (1 + a)ζ (1 − 6.3(1 + b−)ζ)1/3 , ζ < 0,

(1 + a)ζ (1 + 2(1 + b+)ζ)−1 , ζ > 0.
(30)

The results presented below compared to data indicate that
a ≈ −0.2 for both Kansas and QLOA data, while b seems to
be different for different sites. More discussions are presented
in sect. 4.
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The corresponding similarity function ϕm is

ϕm ≈
 (1 + a)−1 (1 − 6.3(1 + b−)ζ)−1/3, ζ < 0,

(1 + a)−1(1 + 2(1 + b+)ζ), ζ > 0.
(31)

Finally, the analysis is completed by presenting a formal-
ism for the prediction of U, which is made only for the in-
crement beyond the lowest measured speed, ∆Ui = Ui − U1,
to avoid complexity with consideration of roughness effect
(which will be discussed elsewhere). According to the defi-
nition of the stress length, the MVP could be predicted by an
integration:

∆U(i) =
∫ hi

h1

uτ
ℓ13

dz, (32)

where hi is the height of ith measurement probe. With the
model described in eq. (20), our prediction formula can be
explicitly written as:

∆Ui =
uτL

1 + a

∫ hi

h1

dz/z

 (1 − 6.3(1 + b−)z/L)−1/3, L < 0,

(1 + 2(1 + b+)z/L), L > 0.

(33)

4 Validation

Now, the present theory is validated with data. It is important
to directly validate eq. (13) (or eq. (14)), which requires to
derive ℓ13 from mean speed measurement of QLOA. To accu-
rately calculate dU/dz (and hence ϕm) from the mean speed
data U, we follow ref. [31] using log-polynomial to fit the
mean speed data:

U = c0 + c1 log(z) + c2 log(z)2. (34)

The main tower of QLOA contains 11 observation points in
the vertical direction that offers adequate points to fit. Each
time, we pick five adjacent points along z to determine the
coefficients c0, c1. and c2. The gradient is then calculated as
dU/dz = c1/z + 2c2 log(z)/z.

The measured ℓ13 is compared with the theoretical pre-
diction, as shown in Figure 1 for UC and SC. Symbols are
the values derived from mean speed measurements at QLOA
(black) and Kansas (red). It can be seen that when |ζ | is less
than 0.1, ℓ∧13 satisfies the linear law. As |ζ | increases, ℓ∧13
shows different trends in UC and SC. For UC, the scaling
exponent of ℓ13 changes to 4/3 as predicted by the analysis,
indicating that the buoyancy stretches the size of the attached
eddy in charge of the momentum transport. The dashed (blue)
line is the SED prediction without any fitting parameter (i.e.,
no effect of pressure transport, T∧p = 0). For UC, as shown

in Figure 1(a), this impressively agrees well with the mea-
surements even in heat flux-dominated regime at −ζ > 0.1
but slightly deviates from data in the near-neutral condition
(|ζ | ∼ 0.1). This (slight) deviation is corrected by the intro-
duction of a = −0.2.

For SC, Figure 1(b) shows a more interesting result. ℓ13

is globally shifted down from the canonical log law for small
ζ, corresponding to a smaller Karman constant close to 0.36
(with a ≈ −0.2) compared to either classical value (0.4) or
new SED value (0.45). According to the present work, this
is an indication of pressure transport: Tp ≈ −0.2S. The same
correction takes place in UC but the resulting change in ℓ13

is less remarkable in Figure 1(a). Here, a single a ≈ −0.2
is chosen for both UC and SC to fit the data and thus, the
continuity at ζ = 0 is guaranteed. This then yields a typical
Karman constant of 0.36, which is consistent with a previ-
ous study [5]. The minus sign of a implies taking away of
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∧ 1
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a =0, b-=0

a =−0.2, b-=1.2

(a)
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3
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a=−0.2, b+=−0.3
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(b)

ζ

ζ

ζ

ζ

Figure 1 (Color online) Normalized stress length by Obukhov length
ℓ∧13 = ℓ13/L versus ζ for UC (a) and SC (b). Black symbols are the de-
rived data from the mean speed measurement at QLOA, and the red squares
are those that are calculated from the Kansas data using eq. (1). The lines
correspond to the theoretical predictions. Solid black lines are the log law
for canonical TBL; dash black lines are the predictions of the current theory
with no pressure effect: Tp = 0 (eq. (13) for UC and eq. (14) for SC with
parameter given by eq. (18)). Blue lines correspond to a simple model for
pressure effect: Tp = aS + bB. Note that at small |ζ |, the deviation from
canonical law is much more remarkable for SC (b) than for UC (a).
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turbulent energy by Tp, which is consistent with the picture
that the active shearing turbulent structure is generated in
the bottom and transported upward. This is also called the
bottom-up process.

On the other hand, Figure 1(b) reveals a nonzero and dif-
ferent b for Kansas and QLOA data: b ≈ 0.7 for Kansas
data (dotted blue line) and b ≈ −0.3 for QLOA data (solid
blue line). A positive b for SC indicates an enhancement of
the downward energy flux induced by pressure transport (at
night) at Kansas site, while an opposite (upward) flux is in-
troduced at QLOA site. Is this related to the fact that the
Kansas’s surface condition is wheat farming, while QLOA
has a flat dry lake bed surface? More study should be car-
ried out later. Note that the Kansas data extends in ζ much
further away in SC (up to ζ ≈ 1) in clear distinction from
QLOA data. Clearly, the parameter b is not universal but de-
pends on the surface condition. Thus, it is intriguing to study
the near-surface Tp effect using the parameter b, which can
be obtained by fitting measured mean speed data, as will be
done below.

Next, we discuss ϕm, which is presented in Figure 2, dis-
playing the comparison between several theoretical predic-
tions and data, for which both Kansas (red squares) and
QLOA (black circles) data are included. Note that the Kar-
man constant is traditionally involved in the calculation of ϕm

from the mean speed measurement data. Kansas data origi-
nally assumes κ = 0.4. So when ϕm is extracted from lit-
erature, we need to multiply a factor of 0.45/0.4 since we
assume κ = 0.45 here. The green line is from the BD equa-
tion, while the black dashed line is from the Katul’s spec-
tral model (with at least three fitting parameters). The blue
line is predicted by the present SED theory (with the model
Tp = aS + bB). A far view from Figure 2 seems to indicate
that all models are in reasonable agreement with data, but a
closer view at small |ζ | from the inset of Figure 2 indicates
that the SED agreement is better than the BD and Katul’s re-
sults.

The inset of Figure 2 reveals a remarkable finding that
both UC and SC do not pass through ϕm(0) = 1. In other
words, we assert (based on the SED assumption κ = 0.45)
that the near-neutral ASL (of small heat flux) at both Kansas
and QLOA sites are distinctly different from canonical (or
wind tunnel) wall turbulence (of zero heat flux). Moreover,
there is a significant contribution from pressure transport that
yields a smaller Karman constant. This conclusion holds for
both unstable and stable situation. For UC, it is much more
visible from ϕm plot than from ℓ13 plot (Figure 1(a)); instead
of ϕm(0) = 1, actually ϕm(0) ≈ 1.26, indicating a bottom-
up flux for both cases. This explanation for smaller Karman
constant raises an issue for debate, and more data should be
studied in the future.
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BD equation

Katul model
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Figure 2 (Color online) Comparison of predicted ϕm by several theories
with data. The inset is an amplification near ζ = 0 and shows closer agree-
ment of the SED prediction: eq. (31).

Finally, we validate our theory by directly comparing it
with the measured mean speed profile containing QLOA
data (we do not have Kansas mean speed profile data), see
Figure 3, where the dashed lines correspond to predictions
under the assumption Tp = 0, while the solid lines corre-
spond to the model Tp ≈ −0.2S + 1.2B (for UC, L < 0) and
Tp ≈ −0.2S − 0.3B (for SC, L > 0). Generally speaking, the
solid lines agree better with the observed data for moderate z
and large L (moderate heat flux). However, the fixed b model
does not fit large z and small L (strong heat flux) data, sat-
isfactorily. This indicates that b may be a varying parameter
for nonequilibrium ASL from profile to profile. These small
but clear deviations are not random, but reveal the fact that
inactive parts of Tp may be varying with heat flux, which is
reasonable. Indeed, our preliminary study shows that we can
choose an optimal b for a much better fitting of all individual
mean speed profiles (not shown here), which reflects the truly
unsteady nature of open ASL physics. If the current model is
further validated by more data, this work would open an av-
enue to interpret subtle deviations of the mean speed profiles
from the log law and establish a framework to quantify the
pressure transport in open ASL.

The magnitude of bB quantifies the top-down energy flux.
The average Tp is estimated to be around 0.0017 m2/s3 when
inserting dimensional quantities, which is consistent, in the
order of magnitude with 1-3 ×10−3 obtained by energy spec-
trum filtering of low wavenumber parts interpreted as top-
down effect [19]. It will be intriguing to verify these prelimi-
nary findings against more data.

5 Conclusion

In this work, we outline a new approach to the ASL analysis
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Figure 3 (Color online) Mean wind speed measurements at QLOA are
compared with predictions of the present SED theory. (a) UC; (b) SC.
Dashed lines correspond to the situation Tp = 0 and solid lines to the model:
eq. (33), where a = −0.2, b− = 1.2 for UC and b+ = −0.3 for SC. For clarity
of presentation, profiles are lifted upward by a fixed amount, to separate the
profiles of different L.

based on a wall-induced dilation symmetry consideration of
governing mean momentum and energy equation. This study
shows that the SED theory has established a unified de-
scription of both UC and SC (including pressure transport).
The preliminary success validates the concept of structural
ensembles as subregions where the energy balance holds a
specific mechanism and the stress length selects a specific
power-law exponent in z. The concept is recently applied to
describe laminar-turbulent transition accurately [32], which
yields a remarkably precise drag prediction for aeronautic
wings [33]. It is owing to our focus on the universal mecha-
nism of symmetry-breaking from shear-dominated regime to
buoyancy-dominated regime that ϕm(ζ) can be derived in a
unified way, for both UC and SC, which might seem impos-
sible at first sight since the two conditions operate differently.

In summary, for the first time, we have derived an analyt-
ical form of ϕm which, under idealized condition of isotropy,
yields a formula with no adjustable parameter (i.e., eq. (19)).
The departure (and possible scattering) of data is then in-
terpreted as a nonequilibrium effect of ASL due to pres-
sure transport, which is considered to be constantly present

in open ASL compared with canonical (wind tunnel) TBL.
This interpretation is based on a model of pressure transport
(aS + bB) with a pair of parameters (i.e., a and b), which are
left to be determined by data. Limited testing against Kansas
and QLOA data tends to favor the conclusion that in ASL,
pressure transport is not small (a = −0.2). This consequently
leads to a substantial correction of the Karman constant (from
0.45 to 0.36). Moreover, it concludes that the real ASL (even
for −z/L ≪ 1) is fundamentally different from the labora-
tory wind tunnel TBL due to its intrinsic openness with un-
avoidable pressure fluctuations. This assertion is somewhat
striking since it is against the notion that ASL must go back
to canonical TBL at a small heat flux. We believe that the
present proposal deserves to be tested against more ASL data.

The achieved unified description via ℓ13 is more physical
than ϕm since ℓ13 represents the size of dominant eddies con-
tributing to momentum and energy transport, and hence is
subject to wall-induced dilation symmetry constraint. There-
fore, ℓ13 is a better variable than ϕm in capturing the system’s
underlying similarity structure. Once receiving further vali-
dation, it would represent a significant step for studying the
nonequilibrium effect of ASL in a quantitative way.
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Appendix Derivation of eqs. (13) and (14)

A1 Derivation of eq. (13)

According to ref. [16], the transition from one regime to an-
other obeys a generalized ansatz:

I2 = γII1 + c(I1)n, (a1)

where I1 and I2 are (local) dilation invariants of the length
function and its derivative, which are no longer constants (via
a symmetry-breaking), when a transition takes place from one
scaling regime to another. However, eq. (a1) holds. γI is
the scaling exponent of the first regime before the transition.
Here, two parameters, c and n, specify the transition location
and sharpness.

Considering UC with a transition from the shear-
dominated regime, γI = 1, to the upward heat flux regime,
we have I1 = −ℓ∧13/(−ζ)4/3 and I2 = −ℓ̇∧13/(−ζ)1/3. Substitut-
ing the last two expressions into eq. (a1), we obtain

−ℓ̇∧13

(−ζ)1/3 =
−ℓ∧13

(−ζ)4/3 + c
( −ℓ∧13

(−ζ)4/3

)n

, (a2)

where ℓ̇∧13 = dℓ∧13/d(−ζ). Introduce a new variable y = ℓ∧13/ζ,
so that ℓ∧13 = yζ, ℓ̇∧13 = ẏζ − y, then eq. (a2) is simplified to

ẏ
yn = c(−ζ) −2−n

3 . (a3)

If n , 1 and ẏ = dy/d(−ζ), an integration then yields

1
1 − n

y1−n = A0 + c
3

1 − n
(−ζ) 1−n

3 . (a4)

Substitute back ℓ∧13, we have

ℓ∧13 = [A0(1 − n)]
1

1−n ζ

(
1 +

3c
A0(1 − n)

(−ζ) 1−n
3

) 1
1−n

. (a5)

Note that the exponent (1 − n)/3 denotes sharpness of the
transition. Let it be 1 (which is the only free parameter) and
denote the up-front coefficient by κ, i.e.,

1 − n
3
= 1, [A0(1 − n)]

1
1−n = κ,

or n = −2 and A0 = κ
3/3. We further define ζUC = κ

3/3c.
The final expression of ℓ∧13 is then

ℓ∧13 = κζ

(
1 +
−ζ
ζUC

)1/3

. (a6)

A2 Derivation of eq. (14)

The transition from shear-dominated regime, γI = 1, to the
downward heat flux regime can be derived similarly as in Ap-
pendix A1. Here, we have I1 = ℓ

∧
13 and I2 = (dℓ∧13/dζ)/ζ

−1.
Substituting the last two expressions into eq. (a1), it can be
verified that

ℓ∧13 = κζ

(
1 +

ζ

ζSC

)−1

, (a7)

where we set c = −1/κζSC and n = 2.
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