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Applying a three-band model and the random phase approximation, we theoretically study the spin excitations in nickelate super-
conductors, which have been newly discovered. The spin excitations were found to be incommensurate in the low energy region.
The spin resonance phenomenon emerged as the excitation energy increased. The intensity can be maximized at the incommensu-
rate or commensurate momentum, depending on the out-of-plane momentum. The spin excitations reverted to incommensurate at
higher energies. We also discuss the similarities and differences in the spin excitations of nickelate and cuprate superconductors.
Our predicted results can be later validated in inelastic neutron scattering experiments.
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1 Introduction

High-Tc cuprate superconductivity was discovered over thirty
years ago, but understanding its microscopic mechanism has
been a challenging task [1]. Undoubtedly, exploring cuprate
analogs has revealed a new family of superconductors and
has enhanced our understanding of cuprate superconductor
physics [2-4]. The Ni atom is close to the Cu atom on the
periodic table. Early efforts realized infinite-layer RNiO2

(R=La, Nd) compounds [5-7], which are isostructural to
CaCuO2 [8], a parent compound of cuprate superconduc-
tors. The Ni+ in RNiO2 has a 3d9 configuration, similar to
the Cu2+ in high-Tc cuprate superconductors. Therefore, the
nickelates are strong potential candidates of cuprate analogs,
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and have attracted considerable attention for this reason [5-
7, 9-14]. However, nickelates differ from cuprates in two re-
spects: RNiO2 may be metallic rather than a magnetic insu-
lator [6,7,10-14], and the Ni-dx2−y2 band in LaNiO2 may mix
with the La-5d band at low energies [12, 13].

Very recently, superconductivity with Tc in the 9-15 K
range was discovered in the Sr doped infinite-layer nickelate
material Nd1−xSrxNiO2 [15]. This new discovery has reinvig-
orated studies in the electronic structure and physical proper-
ties of nickelates [16-37]. Of crucial importance is reconsid-
ering the differences and similarities between nicklates and
cuprates, and identifying the superconductivity mechanism
of nickelates. Some experiments have yielded contrary re-
sults, namely, no superconductivity has been observed in bulk
sample [30] or film samples of Nd1−xSrxNiO2 [32]. Based on
density functional theory, Si et al. [33] concluded that 3d9-
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type RNiO2 is analogous to the cuprates despite these nega-
tive findings. In some nickelate samples, superconductivity
is lost through hydrogen intersection, which favors the 3d8

configuration of nickel ions.
Although the mechanism of high-Tc superconductivity re-

mains puzzling, spin excitations are thought to play an im-
portant role. Accordingly, the spin excitations in cuprate
superconductors have been intensively studied, both exper-
imentally [38-43] and theoretically [44-56]. The momen-
tum and frequency dependences of spin excitations have been
experimentally studied in inelastic neutron scattering (INS)
experiments. Meanwhile, theoretical studies of spin exci-
tations have explored the imaginary part of the dynamical
spin susceptibility. The theoretical results qualitatively con-
cur with the experimental observations. In the supercon-
ducting state, the resonant spin excitation at the commen-
surate momentum (π,π) occurs at a certain resonant en-
ergy. Below and above the resonant energy, the intensity
of the spin excitation decreases rapidly and the momentum
moves to an incommensurate state [38-56]. This is among
the most important results of superconductivity. The parent
compounds RNiO2 of nickelates are metallic and lack mag-
netic order [6,7,10-15]. At first glance, the nickelates appear
to differ from the cuprates. Many groups have reported that
the Ni-3dx2−y2 band is self-doped with holes left by LaNd-
5d electrons [12, 13, 16-19, 22-25, 27]. This phenomenon
can explain the disappearance of the magnetic order in nick-
elates. Although the parent compounds lack a static mag-
netic order, dynamical spin fluctuations are potentially impor-
tant for superconductivity. Applying magnetic force theory,
Ryee et al. [22] proposed that a hole-doped nickelate system
is magnetically similar to a cuprate system. Another study
reported that phonons cannot support the high superconduct-
ing transition temperature of nickelate superconductors [20].
This suggests that spin fluctuations mediate the electron pair-
ing. In fact, possible superconductivity has been probed by
spin fluctuation theory, leading to concepts such as d-wave
pairing symmetry [17, 19]. Therefore, theoretically explor-
ing the spin excitations of nickelates is timely and might pro-
vide valuable insights. Comparisons of the numerical results
with later INS experimental results would unambiguously re-
veal whether nickelates are cuprate-like superconductors, and
would help to elucidate the mechanism of nickelate supercon-
ductivity.

Several models of nickelate band structure have been pro-
posed in recent years. These models include the single-
band [16, 19, 27], two-band [18, 21, 26], three-band [19, 20],
and higher multi-band models [17]. In general, spin exci-
tations are determined by the geometry of the Fermi sur-
face [47-49, 51, 54]. We first consider the d-wave super-
conducting pairing in a three-band model. To investigate

the spin excitations, we apply random phase approximation
(RPA). Our numerical results suggest the presence of quasi-
spin-resonance at a typical resonant energy. At low and very
high energies, the spin excitations are generally incommensu-
rate, which can be well understood in terms of Fermi surface
scattering. The similarities and differences between the spin
excitations of nickelates and cuprates are then discussed.

The remainder of the paper is organized as follows. Sect. 2
introduces and formulates the model. Sect. 3 reports the nu-
merical calculations and discusses the obtained results. The
paper concludes with a brief summary in sect. 4.

2 Model and formalism

We start from the Hamiltonian including the hopping term,
the superconducting pairing term, and the interaction term,
expressed as:

H = Ht + Hp + Hint. (1)

The hopping term Ht is obtained from a three-band tight-
binding fit from the first-principal band structure of the
Nd0.8Sr0.2NiO2 compound [19],

Ht = −
∑
i jµνσ

tµνi j c†iµσc jνσ − µ0

∑
iµσ

c†iµσciµσ. (2)

Here c†iµσ (ciµσ) are creation (annihilation) operators at the ith
site in the orbital µ and with spin projection σ. The indices
µ and ν run through 1 to 3 corresponding to the Ni-3dx2−y2

orbital, the Nd-5d3z2−r2 orbital, and the Nd-5dxy orbital, re-
spectively.

Hp is the superconducting pairing term, expressed as:

Hp =
∑

i j

(∆i jc
†
i1↑c
†
j1↓ + h.c.). (3)

Following ref. [19] and assuming that the electron pairing is
mediated by the spin excitations, only the electron pairing
within the Ni-3dx2−y2 orbital is considered.

The electron interaction term Hint is expressed as:

Hint =
∑

i,α≤α′
Uαα′niα↑niα′↓ + JH

∑
iσσ′

c†i2σc†i3σ′ci2σ′ci3σ

+ J′
∑

i

(c†i2↑c
†
i2↓ci3↓ci3↑ + h.c.), (4)

where Uαα and Uαα′ (α , α′) represent the intra-orbital
and inter-orbital interactions, respectively. JH and J′ are the
Hund’s coupling constant and the pairing hopping constant of
the two Nd-5d orbitals.

Defining a six order column vector with Ψ(k) = (ck1↑,

ck2↑, ck3↑, c
†
−k1↓, c

†
−k2↓, c

†
−k3↓)

T, the above bare Hamiltonian
without the interaction term can be expressed as the 6 × 6
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matrix term in the momentum space. The bare spin suscepti-
bility including both the normal and the anomalous terms is
then expressed as:

χαα
′

0 (q, ω) =
1
N

∑
ki j

[
uαi(k)uα′i(k)uα′ j(k + q)uα j(k + q)

+uαi(k)uα′+3,i(k)uα′ j(k + q)uα+3, j(k + q)
]

×
f (E j(k + q)) − f (Ei(k))
ω − E j(k + q) + Ei(k) + iδ

, (5)

where ui j(k) and Ei(k) are eigenvectors and eigenvalues of
the Hamiltonian which can be obtained through diagonalizing
the Hamiltonian matrix. The cases with α = α′ and α , α′

are corresponding to the intra-orbital excitations and inter-
orbital excitations, respectively. Generally both the inter-
orbital scattering and the intra-orbital scattering may con-
tribute to the spin susceptibility. While from the present
band structure, the three orbitals are weakly coupled and
the spin susceptibilities from the inter-orbital scattering are
nearly vanishing. As a result, only intra-orbital spin excita-
tions related to intra-orbital interaction terms in eq. (4) need
to be considered. Moreover, the renormalized spin suscep-
tibilities contributed by the Nd-layer are negligibly small in
the whole momentum and energy space we considered. More
details and the numerical verifications have been presented in
Supporting Information. Then, following refs. [55, 56], here
only the scattering within the Ni-3dx2−y2 orbital is considered
with χ0(q, ω) = χ11

0 (q, ω).
The renormalized spin susceptibility can be obtained

through the RPA [44, 46], which is given by

χ(q, ω) =
χ0(q, ω)

1 − Uχ0(q, ω)
, (6)

where U = U11 is the on-site Hubbard-like interaction in the
Ni-3dx2−y2 band.

In the following presented results, we use the nearest-
neighbor hopping constant of the Ni-3d band as the en-
ergy unit. Other in-plane hopping constants are taken from
ref. [19] and presented in Supporting Information.

3 Results and discussion

We now study the spin excitations in the normal state by set-
ting the gap magnitude ∆0 = 0 in eq. (1). At first we shall
justify the effective on-site interaction U in the RPA factor.
In the RPA theory, the effective interaction U differs from the
original on-site repulsive interaction. Usually the former is
much smaller than the latter to ensure the RPA framework
to be correct [44, 46]. Also, for the t-J type model, it was
proposed that the renormalized interaction in the RPA the-
ory should multiply an additional factor α = 0.34 to match

the antiferromagnetic instability [51]. Therefore, it is diffi-
cult to determine U directly from the band calculation. While
one can obtain an effective range for the value of U from the
magnetic instability. In the framework of RPA, the magnetic
instability occurs when the pole condition of the real part of
the zero energy RPA factor occurs (1 − UReχ0(q, 0) = 0).
We plot the real part of the zero energy normal state bare spin
susceptibility as a function of the in-plane momentum q in
Figure 1(a). As is seen, the maximum value of Reχ0(q, 0) is
about 0.346. To avoid the magnetic instability, the effective U
should be taken as U < 2.89. Note that the doping density is
0.2, which is far away from the antiferromagnetic instability
point. In the following presented results, we choose U = 2.
We have checked numerically that the results are stable when
the value of U changes slightly.

The imaginary parts of the spin susceptibility as a function
of the in-plane momentum q with the energy ω = 0.1 are
plotted in Figure 1(b). As is seen, the main contributions of
the spin excitations are around the antiferromagnetic momen-
tum (π,π). The maximum spin excitations occur at an incom-
mensurate in-plane momentum Q∥ with Q∥ ≈ (0.55π,π). The
maximum intensity increases as the out-of-plane momentum
qz increases. The momentum Q∥ depends weakly on qz.

The intensity plots of the imaginary parts of the spin sus-
ceptibilities as functions of the momentum and the energy in
the normal state with different qz are plotted in Figure 2(a)-
(c). For the case of qz = 0, the main spin excitations are
around the incommensurate in-plane momentums (π ± δ,π).

(a)

0.5

(b)

Figure 1 (Color online) (a) The real parts of the bare normal state spin sus-
ceptibility as a function of the momentum q with ω = 0. (b) The imaginary
parts of the renormalized normal state spin susceptibility as a function of the
momentum q with ω = 0.1.
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(a)

(b) 0.5

(c)

Figure 2 (Color online) The intensity plots for the imaginary parts of the
spin susceptibilities in the normal state as functions of the momentum (with
qy = π) and the energy. (a) qz = 0; (b) qz = 0.5π; (c) qz = π.

δ is defined as the incommensurability. As qz increases, the
spin excitations near the in-plane momentum (π,π) increases
while the maximum spin excitations are still at an incommen-
surate momentum.

We turn to study the spin excitations in the superconduct-
ing state. At first, we would like to discuss the possible su-
perconducting pairing symmetry. The nickelate compound
crystallizes in a tetragonal structure. As indicated in ref. [15],
the Nd1−xSrxNiO2 material is in the infinite-layer phase, with
NiO2 planes intersecting with the Sr-doped Nd-layers. Due
to the existence of the Nd-layers, the coupling between dif-
ferent NiO2 layers should be weak. This is also consis-
tent with the tight-binding band parameters from the band
calculation [19], namely, the inter-layer hopping constants
for the Ni-3dx2−y2 orbital are much smaller than the intra-
layer nearest-neighbor hopping constants. Therefore, only
the electron pairings within the NiO2 plane are considered in
the present work. There are three possible pairing symme-
tries. For the case of j = i in eq. (3), the pairing symmetry
is the isotropic s-wave pairing with ∆k ≡ ∆0. When j is the
nearest-neighbor site to i, the pairing symmetry may be the
extended s-wave pairing state with ∆i j ≡ ∆0/4, or the dx2−y2 -
pairing state with ∆i j = ±∆0/4 (± depend on the bond ⟨i j⟩
being along the x direction or the y direction). In the momen-
tum space, through Fourier transformation, these two pairing

symmetries are expressed as ∆k = ∆0(cos kx + cos ky)/2 and
∆k = ∆0(cos kx − cos ky)/2, respectively.

The most possible pairing symmetry can be further investi-
gated from the above normal state spin excitations presented
in Figure 1, namely, the NiO2 planes are hole-doped from
the half-filled Mott insulators. There may exist significant
spin excitations near the antiferromagnetic in-plane momen-
tum (π,π), which may in principle generate in-plane super-
conducting d-wave pairing. Previously based on the spin fluc-
tuation scenario, the dx2−y2 pairing symmetry is indeed sup-
ported [17, 19]. In the following, we follow refs. [17, 19] and
consider the pairing symmetry as the d-wave pairing within
the NiO2 plane. For the infinite-layer phase, each NiO2 plane
is equivalent. Therefore, the gap magnitude ∆0 = 0.2 is con-
sidered below, independent on the z-axis coordinates.

Now let us study the energy dependence of the spin ex-
citations. One of most important results in the supercon-
ducting state is the resonant spin excitations. The possible
spin resonance has been studied theoretically in many uncon-
ventional superconducting systems, including the cuprates
[50-56], the iron-based superconductors [57-61], the
NaxCoO2 ·yH2O superconductors [62], and the heavy fermion
material CeCoIn5 [63]. Here we would like to explore
whether the spin resonance exists in nickelate superconduc-
tors. The imaginary parts of the spin susceptibilities as a
function of the energy at the in-plane momentum Q∥ = (π,π)
are displayed in Figure 3. For comparison, we also present
the spin susceptibilities in the normal state, the isotropic
s-wave pairing state and the extended s-wave pairing state
in Figure 3. Then it is seen clearly that a spin resonance peak
occurs near the energy 0.4 (about twice of the gap magni-
tude) for the spin excitation in the d-wave superconducting
state. For the isotropic s-wave pairing state, the spin exci-
tations are nearly vanishing within the superconducting gap
and no spin resonance occurs. For the extended s-wave pair-
ing state, no gap feature is seen. The spin excitation is almost
the same as that of the normal state and no spin resonance
exits, either. This can be explained well through exploring
the nodal lines of the extended s-wave pairing. They coin-
cide with the boundaries of the magnetic Brillouin zone, ex-
pressed as (kx = π ± ky). The spin excitations at the momen-
tum (π,π) are mainly contributed by the scattering between
boundaries of the magnetic Brillouin zone. Thus the super-
conducting pairing has no effect on the (π,π) spin excitation
for this extended s-wave pairing symmetry.

The energy dependence of the spin excitations may be
studied by later INS experiments. The existence of the spin
resonance at the in-plane momentum (π,π) may be tested and
taken as one important signature for the d-wave supercon-
ductivity. The spin resonance is robust for different qz. The
position changes slightly as qz changes.
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(a)
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Figure 3 (Color online) The imaginary parts of the spin susceptibilities
as a function of the energy. (a) Q = (π,π, 0); (b) Q = (π,π, 0.5π); (c)
Q = (π,π,π).

The intensity plots of the imaginary part of the spin sus-
ceptibility as a function of the in-plane momentum with dif-
ferent energies and qz are presented in Figure 4. For the
case of qz = 0, when the energy is below the resonant en-
ergy, as is seen in Figure 4(a), four incommensurate peaks
at the momentums (π ± δ,π) and (π,π ± δ) are seen clearly.
As the energy increases to the resonant energy, as is seen in
Figure 4(b), the spin excitation at the momentum (π,π) in-
creases greatly, while the spin excitation is still incommensu-
rate at this energy and the incommensurability is rather small.
When the energy increases further to above the resonant en-
ergy (Figure 4(c)), the spin excitation is still incommensurate
while the incommensurability is large. The numerical results
for qz = 0.5π are displayed in Figure 4(d)-(f). At low energy
with ω = 0.2, the spin excitation is also incommensurate.
The maximum spin excitations form a circle around (π,π).
Near the resonant energy, the maximum spin excitation still
occurs at an incommensurate momentum and the incommen-
surability is still rather large. Above the resonant energy with
ω = 0.8, the spin excitation is also incommensurate. When
the out-of-plane momentum qz increases to π, as is seen in
Figure 4(g)-(i), the spin excitations are incommensurate at
low and high energies. Near the resonant energy, the spin
excitation is commensurate.

q
y
 /π

q
y
 /π

q
y
 /π

qx /π qx /π qx /π

Figure 4 (Color online) The intensity plots of the imaginary part of the
spin susceptibility as a function of the in-plane momentum in the supercon-
ducting state with different energies and different out-of-plane momentum
qz. (a) ω = 0.2, qz = 0; (b) ω = 0.4, qz = 0; (c) ω = 0.8, qz = 0; (d) ω = 0.2,
qz = 0.5π; (e) ω = 0.4, qz = 0.5π; (f) ω = 0.8, qz = 0.5π; (g) ω = 0.2,
qz = π; (h) ω = 0.4, qz = π; (i) ω = 0.8, qz = π.

To study the energy dependence of the spin excitations
more clearly, the intensity plots of the imaginary part of the
spin susceptibility as functions of the momentum and energy
are presented in Figure 5. The incommensurability reaches
the minimum at the energy about 0.4. For higher energies
(ω > 0.6), the superconducting order parameter plays a rel-
atively minor role and the dispersion at this energy region is
similar to those of the normal state (presented in Figure 2). As
qz increases to 0.5, the spin excitation is commensurate near
the energy 0.6. While at the energy 0.4, where the spin reso-
nance is excepted, the spin excitation is still incommensurate.
Actually, the spin excitations at this momentum are similar
to those in La-based cuprate superconductors [54, 64]. As
discussed in ref. [54], when the spin resonance is weak, the
incommensurate spin excitation may occur. The commensu-
rate spin excitation at higher energies is consistent with the
bare spin susceptibility. For the case of qz = π, as is seen,
the dispersion is downward at low energies and upward at
high energies. The spin excitation is commensurate near the
resonant energy. For all of qz we considered, a hourglass dis-
persion is seen clearly. Note that, the dispersion may also
be obtained from INS experiments. For cuprate supercon-
ductors, the hourglass dispersion has also been reported both
experimentally and theoretically [42,43,51,54]. Actually, the
dispersion of the maximum spin excitations is closely related
to the band structure, the Fermi surface, and the pairing sym-
metry of the material. We expect that our theoretical predic-
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(qx /π,π)

Figure 5 (Color online) The intensity plots of the imaginary part of the
spin susceptibility as a function of the in-plane momentum (with qy = π)
and the energy in the superconducting state with different out-of-plane mo-
mentum qz. (a) qz = 0; (b) qz = 0.5π; (c) qz = π.

tions for the dispersion may be tested by later INS experi-
ments. Then a lot of useful information may be provided.

Generally the numerical results of spin excitations can be
well understood based on the geometry of Fermi surface.
We plot the normal state Fermi surface with different kz in
Figure 6(a). As is seen, as kz = 0, the normal state Fermi sur-
face including a small pocket around the (0, 0) point is con-
tributed mainly by the Nd-5d3z2−r2 orbital and a large Fermi
surface is mainly contributed by the Ni-3dx2−y2 band. The
small Fermi pocket disappears completely as kz increases to
larger than 0.21π. As kz increases further, when kz > 0.81π,
another small Fermi pocket around the (π,π) pocket con-
tributed mainly by the Nd-5dxy orbital appears. Based on the
first principle calculation, the inter-orbital hopping constants
are much smaller than the intra-orbital hopping ones [19].
Therefore, here the spin excitations are mainly determined
by the scattering between the same Fermi pocket. The large
Fermi surface is close to the magnetic Brillouin zone, gen-
erating significant spin excitations around the momentum
(π,π), as indicated by the solid vectors Q1 in Figure 6(a).
The low energy spin susceptibility comes from the particle-
hole excitations around the Fermi surface. Generally, when
the Fermi pocket is small, the low energy spin excitations are
also small. Therefore, here the spin susceptibility contributed
by the Nd-layer is generally much smaller than that by the

Ni-3dx2−y2 band. As a result, the scattering between the small
Fermi pocket from Nd-5d band will merely enhance the spin
excitation at the small momentums while it is not important to
the superconductivity. On the other hand, now the minimum
model for nickelates is still under debate. It was proposed
that the Nd-5d orbitals may be strongly coupled to the Ni-
3dx2−y2 orbital to form the Kondo spin singlets [24]. In this
case, there may exist some additional peaks of the spin sus-
ceptibilities contributed by the inter-orbital scattering, which
can be discussed from the normal state Fermi surface shown
in Figure 6(a). As is seen, the dashed arrows indicate the
vectors connecting the Ni-3dx2−y2 orbital and the Nd-5d or-
bitals, with the vectors Q2,3 = (0.5π± δ, 0.5π± δ) (δ = 0.1π).
Based on the Fermi surface nesting picture [51], the inter-
orbital coupling may generate the spin excitations around the
momentum (0.5π, 0.5π, qz). Therefore, if the Nd-5d orbitals
and the Ni-3dx2−y2 orbital are indeed strongly coupled, the
spin excitations around the momentum (π,π, qz) (from the
intra-orbital scattering) and the spin excitations around the
momentum (0.5π, 0.5π, qz) (from the inter-orbital scattering)
may coexist in the system. Thus the spin excitations may

k
y

k
y

(a)

(b)

(c)

kx

0

Figure 6 (Color online) (a) The normal state Fermi surfaces. The solid
arrow indicates the intra-orbital scattering with Q1 = (π,π). The two
dashed arrows indicate the inter-orbital scattering with Q2 = (0.6π, 0.6π)
and Q3 = (0.4π, 0.4π). (b) The constant energy contours. (c) The real part
of the RPA factor and the imaginary part of the bare spin susceptibility as a
function of the energy.
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also provide a potential justification of the models if such co-
existence is detected by experiments.

For the case of low energy spin susceptibility in the su-
perconducting state, only excitations near nodes can occur.
Thus qualitatively speaking, the low energy spin excitations
are qualitatively similar for different qz. A more insightful
explanation for the low energy incommensurate spin excita-
tions can be obtained through the constant energy contours.
According to ref. [51], at low energies, the spin excitations
are mainly determined by the bare spin susceptibilities. Gen-
erally, the scattering between the energy contours Ek = ω j/2
is responsible for the spin excitations at the energy ω j. The
contour plots of the quasiparticle energy with Ek = 0.1 for
different kz are plotted in Figure 6(b). As is seen, here for all
of kz we considered, the contours for different kz are quali-
tatively similar. Therefore, the spin excitations at the energy
ω = 0.2 are qualitatively similar and are incommensurate for
different our-of-momentum qz.

We depict the real part of the RPA factor ReA(Q, ω) (A =
1 − Uχ0) and the imaginary part of the bare spin suscepti-
bility Imχ0 in Figure 6(c) to look into the mechanism of the
spin resonance. Here the spin resonance arises from the RPA
renormalized effect. Firstly let us summarize the mechanism
for the spin resonance in cuprate superconductors [51,52]. At
low energies, the energy contours do not touch the hot spot
(the crossing points of Fermi surface with the magnetic Bril-
louin zone boundary). Therefore, Imχ0 tends to zero at the
in-plane momentum (π,π), i.e., a spin gap exists. The spin
gap closes when the constant energy contour reaches the hot
spot. Usually for hole-doped cuprate compounds, the hot-
spot is near the momentum (π, 0). Thus the spin gap is about
2∆0 (∆0 is the gap magnitude at the momentum (π, 0)). Due
to the flat band at this momentum (extended van Hove sin-
gularity), a step-like rise of Imχ0 occurs at the edge of the
spin-gap. Then a logarithmic singularity in Reχ0 occurs via
the Kramers-Kronig relation. This singularity will lead to the
pole condition of the RPA factor being satisfied within the
spin-gap. As a result, a sharp resonance peak appears for the
imaginary part of the renormalized spin susceptibility. For
nickelates compound, the nodal point at the Fermi surface
is away from the magnetic Brillouin zone for all of kz, as is
seen in Figure 4(a). Thus the spin-gap still exists. However,
the hot spot depends on kz. As kz equals to zero, the hot spot
is far away from (π, 0). Thus the real spin gap is less than
2∆0, as is seen in Figure 6(c). Imχ0 increases gradually at
the energy about 0.2. Therefore, there is no step-like rise for
Imχ0. At the energy 2∆0, there is still a peak for Reχ0 due
to the flat band dispersion at (π, 0), although there is no sin-
gularity at this energy. Then ReA(ω) reaches the minimum
at this energy, leading to the quasi-resonance behavior. Here
the spin excitation is indeed enhanced for a typical d-wave

superconducting state. As the pole condition is not really sat-
isfied, the RPA renormalized effect is not as strong as that in
cuprates. Therefore, for some qz the spin excitation may still
be incommensurate even at the resonant energy.

As the energy increases further, the RPA renormalization
has a rather weak effect. Then the spin excitations are still
determined by the bare spin susceptibility, similar to the case
of low energy excitations. While at the high energy, the antin-
odal to antinodal excitations play an important role. The nor-
mal state Fermi surface splits at the antinodal direction for
different kz. Thus the spin excitations for qz = 0 and qz , 0
are different. For the case of qz = 0, only the scattering be-
tween the same Fermi surface occurs. For the case of qz , 0,
the spin excitations are determined by scattering between the
Fermi surface with different kz. Then the weak disorder is
induced. It is noted that the spin excitations along different
directions are almost the same as those shown in Figure 4.

Let us summarize the similarities and differences of the
spin excitations in the d-wave superconducting state between
the cuprates and nickelates. Firstly, although the band struc-
ture of nickelates is three dimensional, the properties of the
spin excitations are qualitatively similar for different qz. The
maximum spin excitations are always around the momentum
(π,π), which is indeed similar to those of cuprates. Secondly,
in both compounds, a spin resonance phenomena can be ob-
served, namely, the spin excitation is enhanced greatly in the
superconducting state at the energy about 2∆0. The third sim-
ilarity is that the spin excitations are incommensurate at low
and high energies. Especially, the low energy spin excita-
tions are nearly identical to those of cuprates. On the other
hand, there still exist some differences for the spin excita-
tions of these two families. In nickelates, the spin resonance
is damped greatly. Therefore for some qz, the maximum exci-
tation does no occur at the momentum (π,π). Moreover, the
incommensurate spin excitations depend on the out-of-plane
momentum qz. The maximum points may form a circle at
the momentum space for certain qz. These similarities and
differences may be detected by later INS experiments.

At last, we would also like to discuss the difference of
spin excitations between nickelates and iron-based super-
conductors. In iron-based superconductors, as discussed in
ref. [57], the d-orbitals from iron ions are heavily entangled
thus rather strong hybridization exists. Moreover, each Fermi
pocket is contributed by several orbitals. Therefore, the inter-
pocket scattering is important to determine their spin excita-
tions [57-61]. For nickelates, although a three-orbital model
is taken to generate three Fermi surface pockets, while from
the present band structure we considered, each Fermi pocket
is mainly contributed by one orbital and the inter-pocket cou-
pling is weak. As have discussed, the spin excitations are
mainly contributed by the Ni-3dx2−y2 band. The other two
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Nd-5d orbitals play a minor role. Also, based on our present
model the spin excitations from the inter-pocket scattering are
also rather small.

4 Summary

In summary, starting from a three-band model and d-wave
superconductivity, we have examined the spin excitations in
the nickelate superconductors based on the random phase ap-
proximation. A spin resonance phenomenon, namely, the
spin excitation is enhanced in the superconducting state at
the energy about twice of the gap magnitude, was revealed.
Below and above the resonant energy, the spin excitations
are incommensurate. The similarities and differences for the
spin excitations in the nickelates and cuprates have been dis-
cussed. All of the numerical results are explained well based
on the geometry of Fermi surface.
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