
SCIENCE CHINA
Physics, Mechanics & Astronomy p r i n t - c r o s s m a r k

May 2020 Vol. 63 No. 5: 250001
https://doi.org/10.1007/s11433-019-1477-7

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 phys.scichina.com link.springer.com

. Invited Review .

Holographic topological semimetals
Karl Landsteiner1*, Yan Liu2,3*, and Ya-Wen Sun4,5
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The holographic duality allows to construct and study models of strongly coupled quantum matter via dual gravitational theories.
In general such models are characterized by the absence of quasiparticles, hydrodynamic behavior and Planckian dissipation
times. One particular interesting class of quantum materials are ungapped topological semimetals which have many interesting
properties from Hall transport to topologically protected edge states. We review the application of the holographic duality to
this type of quantum matter including the construction of holographic Weyl semimetals, nodal line semimetals, quantum phase
transition to trivial states (ungapped and gapped), the holographic dual of Fermi arcs and how new unexpected transport properties,
such as Hall viscosities arise. The holographic models promise to lead to new insights into the properties of this type of quantum
matter.
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1 Introduction

Weyl semimetals are a very interesting new form of gapless
topological quantum matter [1-5]. What makes them special
is that the electronic excitations behave in a very unusual way.
The electronic quasiparticles can be described by the Weyl
equation known from high energy physics. In the massless
limit the Dirac equation can be decomposed into two irre-
ducible parts, called Weyl equations which differ by chiral-
ity. In this way the electronics of Weyl semimetals is gov-
erned by the laws of relativistic physics. One of the corner-
stones of relativistic quantum field theory is that the concept
of chirality is sometimes incompatible with quantum theory.
Whereas classically the number of left- and right-handed chi-
ral fermions is separately conserved, quantum mechanically
this is no longer true. This is the so-called chiral anomaly
[6, 7]. Since the electronics of Weyl semimetals is governed
by the chiral Weyl equation the chiral anomaly also has pro-
found consequences on the physics of these materials. Many
of the most exotic and interesting phenomena such as the the
appearance of surface states (Fermi-arcs) or exotic transport
phenomena such as the Hall effect are directly linked to the
chiral anomaly. Much of the physics of Weyl semimetals can
be understood by analyzing the properties of the one-particle
wave function. For example the anomaly can be understood

as the effect of non-vanishing Berry flux through the Fermi
surface, and chirality manifests itself as monopole like singu-
larity of the Berry connection [8]. These notions are of course
bound to the validity of a quasiparticle picture in which inter-
actions play a subordinate role. The question arises then if
the salient features of Weyl semimetals do persist in a strong
coupling context in which there are no clear quasiparticle ex-
citations.

The holographic duality (also known as AdS/CFT corre-
spondence and gauge/gravity duality) has been used over the
last decade and a half as a tool to investigate precisely this
type of questions. No attempt will be made here to give
a concise account of the workings of the holographic dual-
ity. There are excellent reviews available in refs. [9-13]. In
fact the holographic duality has provided already outstand-
ing results. The modern understanding of hydrodynamics as
a derivative expansion and its validity is put to an all new
and sound footing using insights from holography [14, 15].
Anomaly induced transport properties [16, 17] such as the
chiral magnetic and chiral vortical effects and their relations
to anomalies can be most easily understood with the means
of holographic duality [18, 19]. The reader is reminded of
the conceptual difficulties in the interpretation of the formula
for chiral magnetic effect. This is in sharp contrast with the
clarity of its theory in holography. It is by now well-known
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that the chiral magnetic effect vanishes in equilibrium but it is
probably not universally acknowledged that this has been cal-
culated first in holographic models [20]. Another example is
the direct connection between the temperature dependence of
the chiral vortical effect and the gravitational contribution to
the chiral anomaly [21, 22]. Therefore holographic duality is
not only interesting because of its inherently strongly coupled
nature but also because it gives valuable insight via the holo-
graphic perspective on conceptually difficult problems such
as anomaly induced transport. This provides more than suffi-
cient theoretical motivation for studying holographic models
of Weyl semimetals. It is also noteworthy that hydrodynam-
ics and thus strongly coupling behavior has been reported for
the Weyl semimetal WP2 [23]. It is possible that holographic
models can serve as models for such type of materials. As we
will review here, also in the case of Weyl semimetals holog-
raphy is able to provide new perspectives, leading to new di-
rections of research and even allowing the discovery of new,
possibly unexpected transport phenomena.

The review is organized as follows. In sect. 2 we give a
flash review of the holographic duality. Then we introduce
the holographic model of a (time reversal symmetry break-
ing) Weyl semimetal in sect. 3. The most important results
stemming from working with this model are also reviewed.
These include the existence of a quantum phase transition be-
tween the Weyl semimetal and a topological trivial state, cal-
culation of the Hall conductivity, the calculation of topologi-
cal invariants via fermionic holographic spectral functions, fi-
nite temperature and viscosities, in particular the appearance
of Hall viscosity at the critical point of the quantum phase
transition, the calculation of the axial Hall conductivity, the
effects of disorder and the properties of quantum chaos across
the quantum phase transition.

All these results are obtained in models that show a tran-
sition between the Weyl semimetal and a trivial semimetal.
In sect. 4 a new model is introduced in which the transition
is between the Weyl semimetal and an insulating state. In
sect. 5 a generalization to holographic nodal line semimet-
als is discussed. We briefly point to alternative approaches
of applications of the holographic duality to the physics of
Weyl semimetals in sect. 6. In sect. 7 we first briefly summa-
rize and then give an outlook on possible interesting future
directions of research.

2 A short review on the holographic duality

We now give a flash review on the holographic duality [9-12].
The origin of the holographic duality lies in string theory. In
its original form it states that a certain type of string theory
(type IIB) on the space AdS5 × S5 is dual to N = 4 super-

symmetric gauge theory with gauge group S U(Nc) in four di-
mensions [24]. String theory needs ten dimensions and that is
why there is the compact five sphere. The isometry group of
this five dimensional sphere is SO(6). In the dual field theory
this is the internal global symmetry of the N = 4 gauge the-
ory. The metric of the five dimensional anti de-Sitter (AdS)
space is

ds2 =
r2

L2

(
−dt2 + dx2

)
+

L2

r2 dr2, (1)

where 1/L2 is a measure for the curvature of the AdS space.
The N = 4 supersymmetric gauge theory with gauge group

S U(Nc) in four dimensions is characterized by two physical
parameters the Yang-Mills coupling gYM and the rank Nc of
S U(Nc). On the dual string theory side, there are two param-
eters, the fundamental length scale ls and the string coupling
gs (the amplitude for a string to split in two). The AdS5 ge-
ometry has curvature R = −20/L2 where L is an AdS radius
scale. These parameters are related in the AdS/CFT corre-
spondence as the following way:

g2
YMNc ∝

L4

l4s
, (2)

1/Nc ∝ gs. (3)

From the above relations, we can see that the AdS/CFT cor-
respondence is a strong weak duality. From eq. (2), for weak
curvature on the string theory side the AdS radius L is large
which indicates a large ’t-Hooft coupling constant on the field
theory. In this parameter regime we can neglect the stringy ef-
fects and use type IIB supergravity to approximate the string
theory. If we further take the rank Nc of the gauge group to
be very large, i.e., the large Nc limit, for the string theory gs

is very small, we can ignore the quantum loop effects and end
up with the theory of classcal supergravity!

From the above analysis, we found that the classical
(super-)gravity on AdSd+1 space is the infinite coupling and
infinite rank limit of a gauge theory in d dimensions. This
is known as the AdS/CFT correspondence in its most useful
form for applications to quantum many body physics. Here
we have allowed ourselves to be already a bit more general.
Once we have understood the original example based on the
maximally supersymmetric four dimensional field theory, we
conjecture that every gravitational theory with some addi-
tional suitably chosen matter fields on AdSd+1 is dual to a cer-
tain d dimensional quantum field theory. We take this point
of view in the applications of the AdS/CFT correspondence
to quantum many body systems. The additional matter fields
chosen on the gravity side is according to a particular sym-
metric property of the underlying quantum field theoretical
system that one is interested in.
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The dual field theory lives in the four dimensional space-
time parametrized by (t, x), where x denotes the vector of
spatial coordinates (x, y, z). It is sometimes said that the dual
field theory lives on the the boundary of AdS space when tak-
ing the limit r → ∞. But this is not really true, all of the bulk
has a field theory interpretation. The best way of thinking
about the “holographic” direction is as an energy scale. The
high energy limit of the theory is given by r → ∞ and vice
versa the infrared limit is r → 0. This allows a direct geo-
metric interpretation of the renormalization group flow of a
holographic theory from the ultraviolet (UV) to the infrared
(IR).

The other important ingredient of the holographic dictio-
nary, the rules that allow us to extract field theory information
from gravitational physics is the identification between fields
in AdS and operators and couplings of the dual field theory.
If we consider the solution to a (second-order) field equation
in AdS space it allows an expansion for large r of the form:

Φ =
1

r∆−

(
Φ0(x) + O

( 1
r2

))
+

1
r∆+

(
Φ1(x) + O

( 1
r2

))
. (4)

We assume there that ∆± ≥ 0 and ∆− < ∆+. Φ0(x) is the
boundary value (non-normalizable mode) of the field Φ(r, x)
in AdS space and at the same time it is interpreted as a cou-
pling or source for an operator in the dual field theory. When
we do the path integration over the fields in AdS, we have
to keep the boundary values Φ0(x) fixed. What we obtained
finally is a functional Z[J] of the form:

Z[J] =
∫

J(x)=Φ0

[dΦ] exp(−iS [Φ]), (5)

where the source J(x) is the boundary field Φ0(x). This
source J(x) couples to a (gauge invariant) operator O(x)
with conformal dimension ∆+ in the field theory1). Perform-
ing functional differentiation of eq. (5) with respect to the
sources, we can obtain the connected correlation functions of
the gauge invariant operators O(x) in the quantum field the-
ory:

⟨O1(x1) · · · On(xn)⟩ = δn log Z
δJ1(x1) · · · δJn(xn)

. (6)

These are of course rather formal expressions. In general one
does not know how to do this type of path integral including
the metric degrees of freedom or even the proper string the-
ory dual. In the large Nc and large coupling g2

YMNc limit,
the gravitational theory becomes classical. The path inte-
gral eq. (5) now is dominated by the classical solutions from

the equations of motion for fields. The generating functional
log Z can be simplified and computed by the classical action
evaluated on the classical solution. In this case in the asymp-
totic expansion eq. (4) the coefficient Φ1(x) is the vacuum
expectation value of the dual operator sourced by Φ0:

⟨O(x)⟩ ∝ Φ1(x). (7)

This scheme applies to all fields in AdS, also to the met-
ric itself. The operator that corresponds to the metric is
the energy-momentum tensor. In the same way the opera-
tor that corresponds to a gauge field in AdS is a current. The
essentials of the holographic dictionary are summarized in
Table 1.

One can use this dictionary to generate new solutions that
are deformations of the simple AdS space (eq. (1)) by switch-
ing on certain couplings. In practice this means that one de-
mands specific boundary conditions on suitably chosen AdS
fields that represent couplings in the dual field theory. Let us
now explain how this strategy can be implemented to obtain
a holographic version of a Weyl semimetal.

3 The holographic Weyl semimetal

To find the holographic background solution we first must
identify what kind of deformations we need to introduce
in AdS space to mimic the essential features of a Weyl
semimetal. In order to do so we first review quickly a quan-
tum field theoretical model of a Weyl semimetal.

3.1 Weyl semimetal from Dirac equation

In Weyl semimetal, the physics around the nodal points can
be described by a quantum field theoretical model which
takes the following form of a “Lorentz breaking” Dirac equa-
tion [26, 27]:(
i/∂ − e/V − γ5γ · b + M

)
ψ = 0 , (8)

where /X = γµXµ with Xµ ∈ {∂µ,Vµ}, Vµ is the electromagnetic
gauge potential, γµ is the Dirac matrices, and γ5 = iγ0γ1γ2γ3.
We can define left- or right-handed spinors via (1 ± γ5)ψ =
ψL,R. The axial gauge field b breaks the time reversal

Table 1 The essentials of the holographic dictionary

Field in AdS Dual operator

Metric gµν Energy-momentum tensor Tµν

Gauge field Aµ Current Jµ

Scalar field Φ Scalar operator O

1) This choice is known as standard quantization. When d
2 ≤ ∆+ ≤

d
2 + 1, for the dual field theory we could add a double trace deformation

∫
dd xO(x)2

which is irrelevant close to the fixed point, to generate a flow to a new fixed point. In this case ∆+ and ∆− exchange their roles, i.e., Φ1(x) is now interpreted as
the source J(x) which couples to an operator O(x) of conformal dimension ∆−. This is known as alternative quantization of the bulk theory [25].
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symmetry and is introduced to separate the Weyl points in
the momentum space as we will show from the perspectives
of energy spectrum. For simplicity we take b = bez. M is the
mass of the Dirac field.

The energy spectrum of eq. (8) is shown in Figure 1. When
|b| > |M| the spectrum is ungapped. There is a band inversion
in the spectrum and at the crossing points the wave function
is described by the one of Weyl fermions. The separation of
the Weyl points in momentum space is given by 2

√
b2 − M2

along the direction indicated by the vector b. At low energies
it is described by the the effective theory with the Lagrangian
of the form eq. (8) with Meff = 0 and beff =

√
b2 − M2ez. For

|b| < |M| the system is gapped with gap 2Meff = 2(|M| − |b|).
The axial anomaly

∂µJµ5 =
1

16π2 ε
µνρλFµνFρλ + 2Mψ̄γ5ψ (9)

indicates there is an anomalous Hall effect in the Weyl
semimetal phase [28-33]

J =
1

2π2 beff × E . (10)

Thus by tuning M/b, from the band structure we see that
there is a quantum phase transition from topologically non-
trivial Weyl semimetal phase to a trivial insulating phase.
This phase transition is beyond the Landau classification and
is an example of a topological phase transition. In both
phases of the system, the same symmetries of the underlying
theory are explicitly broken by the the couplings M, b. Due
to the fact that in the topologically nontrivial phase there is
a nontrivial Hall effect while in the topological trivial phase
there is trivial Hall effect, the Hall conductivity can be taken

(a) (b) (c)

Figure 1 (Color online) Phases of the Dirac equation (eq. (8)). The fig-
ure shows the dispersion relation as a function of p⊥ and p3. (a) Deep in
the Weyl semimetal phase; (b) the critical point in between the two; (c) the
gapped phase.

as the order parameter2) of this special topological phase tran-
sition [34]. In more general case, additional massless Dirac
fermions might show up, and the topologically trivial phase
might be a semimetal instead of a gapped trivial phase. Then
this quantum phase transition goes from a topologically non-
trivial semimetal to a trivial semimetal. This will be exactly
the case of our holographic model in the next subsection. In
sect. 4 we will improve on this and discuss a holographic
model with a phase transition to a Chern insulator.

The anomalous Hall effect (eq. (10)) in the quantum field
theory is obtained from a one-loop contribution to the polar-
ization tensor. However, there are infamous regularization
ambiguities [35] in the quantum field theory. There are some
ways to resolve the ambiguity, e.g. by considering anomaly
cancellation arising from chiral edge states at the boundaries
(Fermi arcs) [36] or by matching to a tight-binding model
[26, 33].

What can we learn from this for building a holographic
model? First we see that there are two U(1) symmetries at
play. One of them, the axial one, is anomalous and explic-
itly broken by the mass term in the Dirac equation. The
anomaly gives rise to the quantum Hall effect eq. (10) as
long as

√
b2 − M2 > 0. The mass term can be identified as

a source for the operator ψ̄ψ. We can take the mass to be the
expectation value of a complex classical scalar field that is
charged under the axial U(1) symmetry. Because of this an
expectation value breaks the axial symmetry already on the
classical level. Under a chiral rotation ψ → iαγ5ψ the op-
erator ψ̄ψ transforms into ψ̄ψ → 2iαψ̄γ5ψ. Furthermore the
parameter b or more generally bµ couples to the axial current
Jµ5 = ψ̄γ5γ

µψ and can therefore be understood as the back-
ground value of an axial gauge field. These considerations
give us the ingredients we need to implement in the holo-
graphic model.

3.2 Holographic model

A holographic action allowing the implementation of the
above symmetries and breaking pattern is

S =
∫

d5x
√−g

[
1

2κ2

(
R +

12
L2

)
− 1

4
F 2 − 1

4
F2

+ ϵabcdeAa

(
α

3

(
FbcFde + 3FbcFde

)
+ ζR f

gbcRg
f de

)
− (DaΦ)∗(DaΦ) − V(Φ)

]
, (11)

where κ2 is the Newton constant, L is the AdS radius and
α, ζ are the Chern-Simons coupling constants3). In field the-

2) It is not a traditional order parameter but Hall effect is known to serve as signature of topologically non-trivial Fermi surfaces [28].
3) Note that ϵabcde =

√−gεabcde with ε0123r = 1. Our conventions for indexes are as follows: latin indexes from the beginning of the alphabet {a, b, . . . } are
five dimensional ones, greek indexes are four dimensional ones and latin indexes from the middle of the alphabet {i, j,m, n} are purely spatial indexes.
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ory, we have conserved electromagnetic current and non-
conserved axial current. As shown in Table 1, the conserved
currents in the field theory are dual to gauge fields in AdS
space. The electromagnetic U(1) current is dual to the bulk
gauge field Va in AdS with field strength F = dV . The axial
U(1) current is dual to the gauge field Aa in AdS with field
strength F = dA. Since the axial symmetry is anomalous in
the field theory and in the bulk the anomaly is characterized
by the Chern-Simons part of the action (eq. (11)) with cou-
pling constants α and ζ. The gauge invariant regularization
corresponds to this choice of Chern-Simons term with which
the electromagnetic U(1) symmetry remains non-anomalous.
The anomaly arises in a gauge variation of the axial gauge
field δAa = ∂aθ as a boundary term:

A =∫
d4x
√−gθ

(
α

3
ϵµνρλ

(
FµνFρλ + 3FµνFρλ

)
+ ζRα

βµνR
β

αρλ

)
.

(12)

We have included here the usual axial anomaly due to elec-
tromagnetic field, the purely axial anomaly due to axial
gauge fields and the gravitational4) contribution to the ax-
ial anomaly. All three will play a role in the physics of
holographic Weyl semimetals. The factor of 3 in the axial
anomaly reflects the symmetry factor that arises in the cor-
responding triangle diagram in quantum field theory. We
will introduce the mass deformation via a boundary value
of the scalar field Φ [37]. Since the dual axial symme-
try is explicitly broken, in the bulk this scalar field is in-
troduced to be only axially charged. The covariant deriva-
tive is DaΦ = (∂a − iqAa)Φ. The scalar field potential is
m2|Φ|2+ λ

2 |Φ|4. The AdS bulk mass m2L2 = −3 is chosen such
that the dual operator has conformal dimension three and its
source has conformal dimension one. The electromagnetic
and axial currents5) are defined as:

Jµ = lim
r→∞

√−g
(
F µr + 4αϵrµβρσAβFρσ

)
, (13)

Jµ5 = lim
r→∞

√−g
(
Fµr +

4α
3
ϵrµβρσAβFρσ

)
. (14)

The model was first studied in the probe limit in ref. [38] and
then in the backreacted case in ref. [39].

We are looking for asymptotically AdS solutions. The
mass parameter and the time-reversal symmetry breaking pa-
rameter in the field theory are introduced through the confor-
mal boundary conditions:

lim
r→∞

rΦ = M , lim
r→∞

Az = b . (15)

We take the following ansatz for the zero temperature solu-
tion:

ds2 = u(−dt2 + dx2 + dy2) +
dr2

u
+ hdz2 ,

A = Azdz , Φ = ϕ ,
(16)

where u, h, Az, ϕ are functions of r. In this case M/b is the
only tunable parameter of the system due to the conformal
symmetry. We set 2κ2 = L = 1.

Critical solution The following Lifshitz solution is an
exact solution of the system:

ds2 = u0r2(−dt2 + dx2 + dy2) +
dr2

u0r2 + h0r2βdz2 ,

Az = rβ, ϕ = ϕ0 .

(17)

It exists an anisotropic Lifshitz symmetry (t, x, y, r−1) →
s(t, x, y, r−1) and z → sβz. The irrelevant deformations can
be introduced to flow it to UV with the boundary conditions
eq. (15). The four constants {u0, h0, β, ϕ0} in eq. (17) are
determined by the values of λ, m and q.

It turns out that the following irrelevant perturbations
around the Lifshitz fix point can flow the geometry to asymp-
totic AdS u = u0r2(1 + δu rα

)
, h = h0rβ

(
1 + δh rα

)
, Az =

rβ
(
1 + δa rα

)
, ϕ = ϕ0

(
1 + δϕ rα

)
. Only the sign of

δϕ is a free parameter and the geometry can flow to AdS
with δϕ = −1. In the case q = 1, λ = 1/10, we
have (u0, h0, β, ϕ0, α) ≃ (1.468, 0.344, 0.407, 0.947, 1.315)
and (δu, δh, δa) ≃ (0.369,−2.797, 0.137)δϕ. We obtain the
critical value M/b ≃ 0.744, which corresponds to the transi-
tion point.

Topological nontrivial phase At leading order the second
type of solution in the IR is

u = r2, h = r2, Az = a1 +
πa2

1ϕ
2
1

16r
e−

2a1q
r ,

ϕ =
√
πϕ1

(a1q
2r

)3/2
e−

a1q
r ,

(18)

a1 can be set to a numerically convenient value. Later on we
rescale to b = 1.

Starting from the near horizon solution eq. (18), the equa-
tions can be numerically integrated towards the UV. ϕ1 can be
taken as the shooting parameter to obtain an AdS5 to AdS5

domain wall. For the values q = 1, λ = 1/10 this type of
solution exists only for M/b < 0.744.

Topological trivial phase The third type of solution at
leading order in IR is

u =
(
1 +

3
8λ

)
r2, h = r2, Az = a1rβ1 , ϕ =

√
3
λ
+ϕ1rβ2 , (19)

4) A contribution due to the extrisic curvature vanishes on asymptotic boundary of AdS [22].
5) These are the consistent currents. The vector current Jµ is conserved while the conservation of the the axial current Jµ5 is broken explicitly by the scalar

field and spontaneously by the anomaly [37]. The covariant currents can be defined by dropping the Chern-Simons terms.
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where (β1, β2) =
(√

1 + 48q2

3+8λ − 1, 2
√

3+20λ
3+8λ − 2

)
. For our

choice of λ and q (β1, β2) =
(√

259
19 − 1, 10√

19
− 2

)
. a1 can

be set to be 1. ϕ1 can be taken as the shooting parame-
ter to obtain the AdS5 to AdS5 domain wall. For the val-
ues q = 1, λ = 1/10 this type of solution only exist for
M/b > 0.744.

Figure 2 shows the profiles of the scalar field ϕ and the
gauge field Az. Only one of the above three types of solu-
tions exists at a given value of M/b. The horizon value of Az

varies continuously between the two phases while the horizon
value of ϕ jumps discontinuously. Close to the phase transi-
tion point, the deep IR geometry eq. (18) or (19) quickly
flows to the critical Lifshitz solution in the intermediate IR
region.

The free energy density can be computed by adding stan-
dard holographic counterterms and is behaved continuously
and smoothly at the critical value [39]. Note that the free
energy does not depend on the Chern-Simons coupling con-
stant. It does not probe the topological nature of the quan-
tum phase transition, in contrast to the anomalous Hall
conductivity.

3.3 Anomalous Hall conductivity

The essential hall-mark of the topological character of the
Weyl semimetal state is the presence of anomalous Hall con-
ductivity. In the case we are interested in it is anomalous Hall
conductivity for the vector type current. A fast way of calcu-
lating it in holography is as follows. First one observes that
the quantity

jµ(r) = F µr + 4αϵrµβρσAβFρσ (20)

fulfills a radial conservation equations as a consequence of

the holographic equations of motion in the bulk space-time

d
dr

jµ(r) = ∂µX . (21)

The precise form of X is not important since from now on we
integrate over space and take the zero frequency limit such
that the right hand side of this conservation equation van-
ishes. It follows then that in this situation the holographic
expectation value of the current is given by the value of jµ(r)
at the horizon:

Jµ = jµ(rh) . (22)

Since due to the Bianchi identity the electric field is constant
along the AdS bulk direction r, the current at zero tempera-
ture is given by the Hall current [40]:

Jx = 8αAz(0)Ey . (23)

The anomalous Hall conductivity is completely determined
by the horizon value of the axial gauge field [38, 39]. In par-
ticular in holography it is only non-vanishing in the topolog-
ical phase but vanishes at the quantum critical point and in
the non-topological phase. This is exactly the same behavior
the weak coupling Dirac like model shows. The anomalous
Hall conductivity (eq. (23)) is shown in Figure 3 for different
values of model parameters.

3.4 Universality of the quantum phase transition

The precise value of M/b at which the topological quantum
phase transition from the Weyl semimetal to the trivial the-
ory arises depends on the model parameters. Using the holo-
graphic duality one can investigate the critical values of M/b
as a function of the quartic scalar self coupling λ for various
values of the axial charge q of the scalar field [40]. The result
is shown in Figure 4.
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Figure 2 (Color online) The bulk profile of background Az (a) and ϕ (b) for M/b = 0.695 (blue), 0.719 (green), 0.743 (brown), 0.744 (red-dashed), 0.745
(orange), 0.778 (purple), 0.856 (black). Figures from ref. [39].
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Figure 3 (Color online) The zero temperature anomalous Hall conductivity
is given by the value of the axial gauge field on the degeneratre horizon at
r = 0. It is plotted here for different model parameters, specifically m2 = −2,
λ = 1/10 (red), m2 = −3, λ = 1/10 (green), m2 = −3, λ = 1 (blue). It can be
observed how the critical value for the M/b parameter where the conductiv-
ity goes to zero changes in the different cases. Figure from ref. [40].
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Figure 4 (Color online) The critical value of M/b as a function of the
quartic scalar self coupling λ for different values of the axial charge q = 1,
q = 1.5 and q = 2. As can be seen the value of M/b diverges at some fi-
nite values of λ. This means that in these cases the scalar self interaction
suppresses the phase transition to the trivial phase. Figure from ref. [40].

Interestingly for a given charge value there is a maximum
value of λ beyond which the phase transition does not occur
at any finite value of M/b. This has an interesting interpreta-
tion in terms of the holographic duality. The spacetime cur-
vature can be taken as a measure of the degrees of freedom.
In the cases in which the phase transition cannot take place
anymore it turns out that the holographic number of degrees
of freedom in the infrared in the trivial phase would be larger
than in the critical phase. Intuitively one expects that more
degrees of freedom are gapped out in the IR than at the criti-
cal point. This intuition would be violated if the trivial phase
could still be reached for high values of the self coupling.
Fortunately direct inspection shows that this is not the case.

3.5 Holographic Fermi arcs

One of the key signatures of Weyl semimetals is the presence
of topologically protected surface states, the so-called Fermi-
arcs. A simple and efficient field theory model of Fermi arcs
follows from the thinking about the low energy description in
terms of the deformed Dirac operator (eq. (8)). The effective
separation of the Weyl cones in the Brillouin zone enters the
Dirac equation like a gauge field with the key difference that
it couples with different signs to left- and right-handed Weyl
fermions. If this parameter varies spatially it can induce an
axial magnetic field b5 = ∇ × b. A standard argument shows
now that such a spatial dependence is inevitable. Inside the
Weyl semimetal we describe the system by a Dirac equation
with axial gauge field A5 = b. But outside the material there
are no low energy states available for the electrons. This is
equivalent to describing the outside by a Dirac equation with
a very large mass and vanishing axial gauge field. In turn this
means that on the edge of the material there is necessarily a
strongly localized axial magnetic field. Now one can invoke
an index theorem that states that the number of zero modes
in the axial magnetic field is given by the degeneracy of the
Lowest Landau level |b5|/(2π). In a usual magnetic field there
would be zero-modes of both chiralities but in the axial mag-
netic field the zero modes from both the right-handed and
left-handed fermions have the same chirality. If one pop-
ulates these zero modes by turning on a chemical potential
they will lead to an edge current of the form:

Jedge =
µ

2π2 b5 . (24)

This can also be viewed as an instance of an anomaly induced
transport phenomenon, the axial magnetic effect [17].

At strong coupling or more generally in the absence of
quasiparticle excitations Fermi-arcs per se can not be ex-
pected to be seen. But the topologically protected edge cur-
rents should still exist6). This is exactly what ref. [41] inves-
tigated. The authors numerically constructed solutions with
spatial dependent boundary conditions of the form:

Az(r, x)
∣∣∣∣
r→∞
=


bL, for x < −l,

p(x), for − l ≥ x ≤ l,

bR, for x > l,

(25)

where p(x) is a suitably chosen smooth interpolating func-
tion. The scalar field was kept fixed and the chemical poten-
tial is introduced as:

lim
r→∞

rΦ(r) = M, lim
r→∞

Vt = µ , (26)

6) It might be however that Fermi arcs exist also in the spectral functions of probe fermions. Indeed as we will review in the next section, probe fermions
do carry the signatures of the non-trivial topology of momentum space.
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with the understanding that Vt = 0 at the horizon. They found
that indeed a current flows on the interface between the two
asumptotic regions and the total current in the y direction is
given by

Jy = 8αµ(beff,L − beff,L) = 8αµ
(
σAHE,L − σAHE,R

)
. (27)

This is exactly what one can expect since in the effective low
energy theory

∫
dxB5 = beff,L − beff,R. Moreover, the current

distribution is concentrated on the interface as can be seen
from Figure 5.

3.6 Fermionic probes and the topological invariant

Various bulk calculations have shown that the dual system
should be a Weyl semimetal having Weyl cones with an effec-
tive momentum separation in the direction of b. A direct ob-
servation of the Weyl cones needs to employ the holographic
fermionic probes whose spectral function at zero tempera-
ture would show two poles separated in the momentum space
in the b direction. Besides a direct observation of the two
Weyl cones, an important further evidence is to compute the
topological invariant for the dual strongly coupled topologi-
cal semimetal states, which would also require a calculation
of the Green’s function of probe fermions in the bulk. In
the following we will first introduce how topological invari-
ants for strongly coupled systems could be calculated directly
from the bulk fermionic Green’s function and then show how
fermionic spectral functions could be calculated for the holo-
graphic Weyl semimetal background and obtain the corre-
sponding topological invariant accordingly.

Mathematically topological invariants are properties that
are invariant under homeomorphisms. Similarly in physics

x

x
M

Figure 5 (Color online) Current distribution along the x-direction for dif-
ferent choices of interpolating functions with widths l = 0.1, 0.5, 1, 4. As
expected the current in localized in the region in which the effective low
energy axial gauge field shows non-vanishing curl. This is the direct holo-
graphic counterpart of the Fermi-arcs associated to the surface of a Weyl
semimetals. Figure with permission reproduced from ref. [41], c⃝2017 by
the American Physical Society.

topological invariants can be defined for topological mat-
ter, which are invariant under adiabatic deformations of the
Hamiltonian that protect the topology of the underlying sys-
tem.

For weakly coupled topological systems, in momentum
space we can define the topological invariants from the Bloch
states, i.e. the eigenstates of the weakly coupled Hamiltoni-
ans. The Berry phase [42], which is the phase accumulated
along a closed loop γ in the momentum space for the Bloch
states |nk⟩, is defined as ϕ =

∮
γ
Ak · dk where the Berry con-

nection is determined by the eigenstates |nk⟩ of the momen-
tum space Hamiltonian as Ak = i

∑
j⟨nk|∂k|nk⟩ with j runs

over all occupied bands. The Berry phase with value 0 or π
is one simple example of a topological invariant.

There is another way to compute the Berry phase. Us-
ing the Berry curvature Ωi = ϵi jl

(
∂k jAkl − ∂klAk j

)
associated

to the the Berry connection and choosing a surface S whose
boundary is the closed loop γ, we have ϕ =

∫
S Ω · dS .

An equivalent way to calculate the topological invariant is
to use the Green’s function:

N(kz) =
1

24π2

∫
dk0dkxdkyTr

[
ϵ µνρzG∂µG−1G∂νG−1G∂ρG−1

]
,

(28)

where µ, ν, ρ ∈ k0, kx, ky and k0 = iω is the Matsubara fre-
quency. For free systems, the Green’s function takes the form
G(iω, k) = 1/(iω − h(k)) where h(k) is the Hamiltonian ma-
trix H =

∑
k c†kh(k)ck. We can also use this formula to com-

pute topological invariant for interacting systems, however,
for strongly interacting systems it is difficult to compute prac-
tically since it involves an integration in the iω direction.

Refs. [43-45] show that the Green’s function at zero fre-
quency G(0,k) contains all the topological information of the
system. An effective topological Hamiltonian can be defined

Ht(k) = −G−1(0,k) (29)

and the eigenvectors can be obtained from this effective topo-
logical Hamiltonian. As long as there is no pole at nonzero ω
in G(iω, k), the topological invariants derived from the effec-
tive Hamiltonian Ht(k) would be the same as those defined
in the original system. Thus topological invariants can be de-
fined using negative valued eigenvectors of Ht(k), i.e. effec-
tive occupied states nk withHt(k)|nk⟩ = −Et|nk⟩ and Et > 0.

Having shown that topological invariants for strongly cou-
pled fermionic systems could be directly calculated from
the zero frequency Green’s function, we now show how
fermionic Green’s function could be calculated for the holo-
graphic Weyl semimetal. In holography, probe fermions in
the bulk have been studied for various backgrounds at finite
density in refs. [46, 47] to obtain the dual fermion spec-
tral functions. Here for the holographic Weyl semimetal, to
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probe the dual fermion spectrum we add a probe fermion on
the background geometry (eq. (16)) and calculate the dual
Green’s functions from the holographic dictionary [48]. One
important difference here is that we work in five dimensions,
and now a bulk four component spinor corresponds to a two
component spinor of the dual field theory in four dimensions
[49]. Therefore in the bulk we use two spinors Ψ1 and Ψ2

with opposite sign masses and axial charges and choose one
with standard quantization while the other with alternative
quantization to correspond to four component spinor with
two opposite chiralities.

From the point of view of the dual field theory these probe
fermions correspond to composite operators of a scalar field
with the fundamental fermions. A priori it is these funda-
mental fermions that carry the non-trivial topology. As we
will show now this topology is still present in the strongly
coupled bound state that are the probe fermions.

The action of probe fermions is as follows:

S = S 1 + S 2 + S int ,

S 1 =

∫
d5x
√−giΨ̄1

(
ΓaDa − m f − iAaΓ

a)Ψ1 ,

S 2 =

∫
d5x
√−giΨ̄2

(
ΓaDa + m f + iAaΓ

a)Ψ2 ,

S int = −
∫

d5x
√−g

(
iη1ΦΨ̄1Ψ2 + iη∗1Φ

∗Ψ̄2Ψ1
)
,

(30)

where Da = ∂a − i
4ωmn,aΓ

mn . The coupling constant in front
of Az is opposite for the two spinors. Here Γa = e a

mΓ
m with

Γm the Γ-matrices in five dimensional Minkowski spacetime.
From this form of bulk action for probe fermions, we can

obtain the retarded Green’s function from the boundary val-
ues of the two bulk fermionic fields at different momenta
[48]. In the simplest M/b → 0 limit, it could easily been
shown that two poles exist separately in the z direction in the
momentum space. At small M/b limit, this could also be ob-
tained with some semi-analytic method.

As a simple example we first show how this procedure
works for the pure AdS case, which of course would give
a trivial topological invariant. In this case, in fact the system
is degenerate at zero frequency, i.e. the two Weyl nodes co-
incide to form a Dirac node. The fermionic retarded Green’s
functions for one chirality for ω > k has already been ob-
tained in ref. [49]. The topological HamiltonianHt is defined
as −G−1(0,k) from eq. (29). The two eigenvectors are |n1⟩ =
n0

1
(
kz + k, kx + iky, 0, 0

)T and |n2⟩ = n0
2
(
0, 0, kz − k, kx + iky

)T

where n0
l = 1/

√
2k(k − (−1)lkz) with l ∈ {1, 2}. In fact these

two eigenvectors are the same as the ones in the free mass-
less Dirac Hamiltonian. |n1⟩ has positive chirality and is the
eigenvector of the positive chirality Hamiltonian while |n2⟩
has negative chirality and is the eigenvector of the negative
chirality Hamiltonian.

The topological invariants can be calculated as follows.
Around the Dirac node, we can define a sphere S to en-
close it. On this sphere the system is gapped. The topo-
logical invariant can be computed from Cl =

1
2π

∮
S Ωl · dS ,

where Ωi = ϵ i jkFi j with (i , j , k) ∈ {kx , ky , kz} and F is the
Berry curvature. Note that the topological number is an in-
teger number and it stays as a constant when we deform
the shape and exact shape and radius of the sphere with-
out passing through a Dirac node. We can parameterize the
sphere as S = k0(sin θ cos ϕ, sin θ sin ϕ, cos θ) and we have
Ωl = (−1)leρ/2k2

0. We obtain C1 = −1 for |n1⟩ and C2 = 1 for
|n2⟩. Then the total topological invariant is zero. This is due
to the fact that the zero density state dual to pure AdS5 is a
Dirac semimetal.

Now we continue to calculate the topological invariants
for the holographic Weyl semimetal. In Weyl semimetals,
we can define the topological invariant as the integration of
Berry curvature on a closed surface S which encloses one
of the Weyl nodes in the momentum space. This result
will be insensitive to the shape and size of the closed sur-
face. From semi-analytic calculations, we obtained that when
M/b is very small, the topological invariants are ±1 which
are precisely the same as the results from weakly coupled
WSM model. For larger M/b numerics has to be involved.
The topological invariant for finite temperature case has been
studied in ref. [50]. The total topological invariants are zero
due to the Nielsen-Ninomiya theorem [51].

In addition to the anomalous Hall conductivity and
edge states, the nontrivial topological invariants serve
as further nontrivial evidence that the holographic Weyl
semimetal models are strongly coupled topologically nontriv-
ial semimetals.

3.7 Finite temperature, conductivities and viscosities

In the previous subsections, the studies are mainly for the
zero temperature case. Now we will turn to finite tempera-
ture physics and the interesting transport physics.

We use the following ansatz to study the finite temperature
solutions [39]:

ds2 = −udt2 +
dr2

u
+ f (dx2 + dy2) + hdz2 ,

A = Azdz , Φ = ϕ ,
(31)

where all the fields u, f , h, Az, ϕ are functions of r. At the
regular horizon r = r0, u has a simple zero whereas all
these functions are analytic. This geometry is a black hole
with horizon located at r = r0 and Hawking temperature
4πT = u′(r0). According to the holographic dictionary,
the Hawking temperature of this black hole geometry cor-
responds to the physical temperature of the dual field theory.
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By using the scaling symmetries of the system and the con-
straints from the equations of motion near the horizon, there
are only two independent dimensionless parameters, which
can be parametrized by M/b and T/b in the UV.

A cartoon illustration for the phases is shown in Figure 6
[52]. At zero temperature the model undergoes the already
discussed topological quantum phase transition between a
topological semimetal state and a trivial semimetal state. At
the critical phase transition point there is an emergent Lifshitz
symmetry at zero temperature. At finite temperature there is
a quantum critical regime whose physics is governed by the
Lifshitz symmetry. Meanwhile, this quantum phase transition
becomes a smooth crossover behavior.

Conductivities can be computed with Kubo formula via re-
tarded correlation functions:

σmn = lim
ω→0

1
iω
⟨JmJn⟩(ω, k = 0) . (32)

According to the holographic dictionary, we can obtain the
retarded Green’s functions by studying the gauge field fluctu-
ations around the background with infalling boundary condi-
tions at the horizon. We obtain

σAHE = 8αAz(r0) , σxx = σyy =
√

h(r0) . (33)

From the fact that r0 = 0 and h(0) = 0 at zero temperature
one concludes that the diagonal conductivities vanish. The
anomalous Hall effect (Figure 7) is completely determined
by the horizon value of the axial gauge field.

The longitudinal electric conductivity can be computed by
studying the fluctuation δVz = vze−iωt in the bulk. At zero
temperature we obtain σzz = 0 and for finite temperature
σzz =

f√
h

∣∣∣∣
r=r0

.

The diagonal components of electric conductivities at fi-
nite temperature as a function of M/b is shown in Figure 8.
We can see that at the critical value there is a peak (mini-
mum) for the transverse (longitudianl) diagonal conductivi-
ties. Both the height of the peak and depth of the minimum
grow with temperature. At zero M we have σxx,yy,zz = πT and
for large M the conductivities σxx,yy,zz = cπT with a temper-
ature independent c smaller than 1. This is due to that in the
trivial phase some but not all degrees of freedom are gapped
out. The quantum phase transition is between a topological
semimetal and a trivial semimetal.

Now let us explain the behavior of viscosities in this sys-
tem. It is known that in an axisymmetric system which has
time reversal symmetry breaking by vector b there are seven7)

independent viscosities [53] in which two of them are inde-
pendent odd viscosity tensor components. The viscosities can

be computed from the Kubo formula

ηi j,kl = lim
ω→0

1
ω

Im
[
GR

i j,kl(ω, 0)
]
, (34)

where the retarded Green’s function of the energy momentum
tensor

GR
i j,kl(ω, 0) = −

∫
dtd3xeiωtθ(t)⟨[Ti j(t, x),Tkl(0, 0)]⟩ . (35)

Since we chose b = bêz, the two shear viscosities [54-56]
are obtained from the symmetric part of the retarded Green’s
function under the exchange of (i j)↔ (kl)

η∥ = ηxz,xz = ηyz,yz , η⊥ = ηxy,xy = ηT,T (36)

and the two odd or Hall components of viscosity are related
to the antisymmetric part by

0 (M/b)c M/b

T

Weyl

semimetal

Quantum

critical

Topologically

trivial semimetal

Figure 6 (Color online) The cartoon picture for the holographic Weyl
semimetal at different temperatures as a function of M/b. Figure from ref.
[39].
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Figure 7 (Color online) Anomalous Hall conductivity as a function of
M/b at different temperatures. The solid lines are obtained from the holo-
graphic Weyl semimetal. For zero temperature a sharp but continuous phase
transition occurs at a critical value of M/b (blue), which becomes a smooth
crossover at finite temperature. The curves are for T/b = 0.1 (black), 0.05
(purple), 0.04 (red), 0.03 (brown). The dashed (green) line is for the weak
coupling model. Figure from ref. [39].

7) These seven components includ three shear viscosities, two odd viscosities and two bulk viscosities. We focus on four of them and will not consider the
other two bulk viscosities and one shear viscosity which are from the spin zero sector.
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Figure 8 (Color online) The diagonal components of electric conductivi-
ties as a functional of M/b for different temperatures. The solid lines are for
σxx = σyy and the dashed lines are for σzz from holographic Weyl semimetal
with T/b = 0.05 (purple), 0.04 (red), 0.03 (brown). The dashed gray line is
the critical value of M/b at the topological quantum phase transition. Figure
from ref. [39].

ηH∥ = −ηxz,yz = ηyz,xz , ηH⊥ = ηxy,T = −ηT,xy, (37)

where the index T denotes the component xx − yy. Note that
ηH⊥ is the odd or Hall viscosity in the plane orthogonal to b
while ηH∥ is specific to axisymmetric three dimensional sys-
tems8).

In holography the viscosities can be computed via switch-
ing on the following perturbations δgiz = hiz(r)e−iωt , δAi =

ai(r)e−iωt for i ∈ {x, y}. For the other components of vis-
cosities can be computed by considering the perturbations
δgxx − δgyy = 2hT (r)e−iωt , δgxy = hxy(r) e−iωt. From the
holographic dictionary we obtain the following viscosity co-
efficients:
dissipative viscosity:

η∥ = ηxz,xz = ηyz,yz =
f 2

√
h

∣∣∣∣∣
r=r0

, (38)

η⊥ = ηxy,xy = ηT,T = f
√

h
∣∣∣∣
r=r0

, (39)

dissipationless odd viscosity:

ηH∥ = ηyz,xz = −ηxz,yz = 4ζ
q2Azϕ

2 f 2

h

∣∣∣∣∣
r=r0

, (40)

ηH⊥ = ηxy,T = −ηT,xy = 8ζq2ϕ2 f Az

∣∣∣∣
r=r0

. (41)

The dissipative viscosity is a form of shear viscosity and it
is interesting to express it normalized to the entropy density
η∥
s =

f
4πh |r=r0 . As can be seen from Figure 9 the shear vis-

cosity drops significantly below the standard result of KSS
bound [58]. In view of the various results of violation of the
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Figure 9 (Color online) The longitudinal shear viscosity over entropy den-
sity 4πη∥/s as a function of M/b at different temperatures. Figure from ref.
[52].

KSS bound in anisotropic theories [59, 60] this is not unex-
pected. Still it is very interesting to note that the shear vis-
cosity reaches a minimum in the quantum critical region of
M/b ≈ 0.744. In contrast the transverse viscosity obeys the
KSS bound is exactly η⊥/s = 1/4π.

A particular interesting fact about odd viscosities is that
they are directly proportional to the mixed axial-gravitational
anomalous constant which is the gravitational contribution to
the axial anomaly ζ in eq. (12). Therefore at least in this
holographic model they are a new example of an anomaly
induced transport coefficient. Figure 10 shows the odd vis-
cosities ηH∥ and ηH⊥ as a function of M/b at small but finite
temperatures. In the topologically nontrivial phase the odd
viscosity is highly suppressed. It rises steeply when M/b en-
ters into the quantum critical region, peaks around the critical
value of M/b and then falls off slowly when M/b increases.
In the limit M/b→ ∞ the odd viscosity vanishes.

The appearance of odd viscosity in the quantum critical
region can be considered to be a prediction from holography.
Its relation to the gravitational anomaly suggests that this is
a universal property. Indeed recently anomalous Hall viscos-
ity has also been obtained in a weakly coupled quantum field
theory model of the quantum critical point in ref. [61]. The
relation to anomalies in the weakly coupled theory is far from
clear. We expect that further investigation of the holographic
model and its RG flow to the critical point can give valuable
insight into the origin of this type of odd viscosity.

Note that from the analytic results on the viscosities and
conductivities we obtain the non-trivial relation:

η∥
η⊥
=

2ηH∥

ηH⊥
=
σ∥
σ⊥
=

f
h

∣∣∣∣∣
r=r0

, (42)

8) There exists odd viscosity ηH∥ by considering the coupling of elastic gauge fields to the electron gas in Weyl semimetals [57]. It was shown in ref. [57]
that this effective odd viscosity is related to the Hall conductivity of the electron gas and arises from the electronic point of view as an axial Hall conductivity.
Here in holography the Hall viscosity should be viewed as an intrinsic property of the strongly coupled electron fluid.
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Figure 10 (Color online) Odd viscosity ηH∥ (a) and ηH⊥ (b) as a function of M/b at different temperatures. Figures from ref. [52].

where σ∥ = σzz =
f√
h

∣∣∣
r=r0

, σ⊥ = σxx = σyy =
√

h
∣∣∣
r=r0

.

Furthermore, in the quantum critical regime there exists in-
teresting temperature scaling behaviour of conductivities and
viscosities. At T = 0, there is an emergent Lifshitz symme-
try in the IR at the quantum phase transition point. The IR
physics is invariant under (t, x, y, r−1)→ l(t, x, y, r−1), z→ lβz
and f → l−2 f , h → l−2βh, Az → l−βAz, ϕ → ϕ, where β is
the anisotropic scaling exponent [39]. At very low temper-
ature, since T → l−1T the temperature scaling dependence
of the viscosities and conductivities near the critical region
can be obtained from the scaling arguments. At the critical
regime, we have η∥/s ∝ T γ1 , ηH∥ ∝ T γ2 , ηH⊥ ∝ T γ3 with
(γ1, γ2, γ3) = (2 − 2β, 4 − β, 2 + β) and σ∥ ∝ T γ4 , σ⊥ ∝
T γ5 , σAHE ∝ T γ6 with (γ4, γ5, γ6) = (2 − β, β, β) for low
temperatures. Figure 11 shows the temperature scaling ex-
ponents γi with i ∈ {1, . . . , 6} of the numerical results at
low temperatures at the critical value of M/b. At sufficient
low temperature, these scaling exponents approaches the an-
alytic values from scaling analysics. Furthermore, the scaling
behaviors explain the peak/dip behaviors of the conductivi-
ties/viscosities of holographic Weyl semimetal in the quan-
tum critical regime.

The chiral vortical conductivity for the holographic Weyl
semimetal has been calculated in ref. [62]. We can first com-
pute the chiral vortical conductivity and then perform a suit-
able renormalization via the anomalous Hall conductivity and
temperature squared. It was shown that at sufficiently low
temperature this renormalized ratio stays as universal con-
stants in both the Weyl semimetal phase and the quantum crit-
ical region. Furthermore, in the critical region the renormal-
ized ratio is fully determined by the emergent Lifshitz scaling
exponent at the critical point [62].

3.8 Axial Hall conductivity

Formally in quantum field theory the axial current can be cou-
pled to an axial gauge field just as the electric current couples

to the electric gauge field. There is however a big difference
in the possible dynamics of these fields. The dynamics of the
true gauge field is given by Maxwell’s equations. For a gauge
field that couples to an anomalous current, such as the axial
current this is mathematically inconsistent. A simple way of
seeing this is to note that Maxwells equations imply that the
divergence of the current vanishes

∂µJµ = ∂µ∂νFµν = 0 . (43)

In nature on a fundamental level anomalous currents are not
coupled to gauge fields.

Nevertheless such fields can arise as effective fields in con-
densed matter systems. It has been shown in refs. [57,63-65]
that axial electric and magnetic fields can be induced by ap-
plying strain on Weyl semimetals. These are effective low
energy couplings in the theory and certainly do not obey
Maxwell’s equations and consequently do not jeopardize the
consistency of the theory. Therefore it seems a legitimate
physics question to ask if there is a purely axial analogue of
the anomalous Hall effect in Weyl semimetals. This again is a
question that can be nicely addressed in holographic models
and leads to some important insights.

Since the anomalous Hall effect is a direct consequence
of the anomaly let us have another look into it and see what
could be expected. A remarkable fact is that the anomaly
(eq. (12)) in the axial gauge fields is weaker by a factor of
1/3 compared to the electromagnetic contribution. One use-
ful way to think about this factor is to consider the origin of
the anomaly in a triangle Feynman diagram. In the case of
the purely axial anomaly this is a diagram with three identi-
cal axial currents on the vertices. Elementary Feynman rules
instruct us therefore to multiply the diagram with a symmetry
factor of 1/3!. In comparison the electromagnetic contribu-
tion comes from a triangle diagram with two electric currents
and one axial current. There are only two identical operators
on the vertices and thus the symmetry factor is only 1/2! with
gives a relative factor of 1/3.
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Figure 11 (Color online) The temperature scaling exponents γi with i ∈ {1, . . . , 6} for viscosities η∥, ηH∥ and ηH⊥ (a) and for conductivities σ∥, σ⊥ and σAHE

(b) in the quantum critical regime. The dashed lines represent the analytic values of the scaling exponents from the scaling analysis. Figures from ref. [52].

The natural expectation is therefore, that the purely axial
Hall conductivity, e.g. the transverse axial current induced by
an axial electric current is weaker by a factor of 1/3 compared
to the electric Hall conductivity.

While the electric Hall conductivity can be computed in
an easy way from the horizon data, the calculation of the ax-
ial Hall conductivity is more cumbersome. It is complicated
by the fact that the axial symmetry is broken not only by the
anomaly but also by the expectation value of the scalar field
(the dual of the mass term in the Dirac equation).

The effect of this scalar field is that the axial background
field b is screened along the holographic direction. Since the
holographic direction encodes the RG flow, we can define the
analogue of a wave-function renormalization factor by√

ZAbUV = bIR . (44)

This implies that the axial Hall conductivity also suffers from
this wave-function renormalization. Taking it into account
one arrives at the prediction

σ5
AHE =

ZA

3
σAHE . (45)

In other words the axial Hall conductivity is exactly 1/3 of
the electric Hall conductivity once the wave-function renor-
malisation of the axial gauge fields in IR is taken into ac-
count. This was investigated in ref. [40] and indeed found
to be correct. Moreover since the prediction that the axial
Hall conductivity is 1/3 of the electric Hall conductivity is
a fundamental property of the theory it should hold for all
states. Again this can be checked by using the finite tempera-
ture backgrounds and indeed it is found that the relation holds
exactly and independent of the temperature.

3.9 Disorder

Disorder is an integral component of any real condensed mat-
ter system. It is therefore not only interesting but also manda-
tory to study the effects of disorder even in semi-realistic

models. In the case of the holographic Weyl semimetal, this
has been initiated in ref. [66]. The authors study the effect of
disorder in form of random Gaussian noise in the boundary
value of the axial gauge field

lim
r→∞

Az(r) = b0 + 2γ
N−1∑
i=1

√
S (ki)

√
∆k cos(kix + δi) (46)

with equally distributed momenta ki = ik0/N, and random
phases δi. The analysis is restricted to the so-called decou-
pling limit of holography in which the backreaction of the
bulk matter fields on the AdS metric is neglected. Never-
theless the authors find rather interesting signatures of disor-
der on the quantum phase transition. In general the quantum
phase transition is smeared due to the disorder. They also
show the appearance of rare regions and indications of log-
oscillatory structures in the Hall conductivity.

3.10 AC conductivities

The electrical AC conductivity in a holographic Weyl
semimetal model was investigated in ref. [67]. A particu-
larly interesting effect was pointed out in relation to the quan-
tum critical behavior near the phase transition. On general
grounds one expects the (zero temperature) optical conduc-
tivity to scale linearly with the frequency for low enough fre-
quencies

σ(ω) = cω . (47)

This is simply enforced by the scaling symmetry of the Weyl
fermions. The constant c is proportional to the number of
active Weyl fermions. It was pointed out in ref. [67] that
this can get modified for higher frequencies near the quan-
tum phase transition. The frequency dependent optical con-
ductivity enters then the quantum critical region whose scal-
ing properties are determined by the scaling exponents of the
Lifshitz critical point at the phase transition. The expected
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change in scaling is

σ∥(ω) ∝ ω2−β , σ⊥ ∝ ωβ . (48)

Most interestingly such a sudden change in frequency depen-
dence of the optical conductivity at low temperature of the
Weyl semimetal TaAs was experimentally observed in ref.
[68]. The authors of ref. [67] suggest that this might be ex-
plained by assuming that one enters the quantum critical re-
gion in TaAs at a frequency around 30 meV. They find that a
fit to the data gives a scaling exponent of β = 0.14 for the
transverse conductivity in the Lifshitz quantum critical re-
gion. It should be noted that there are also other candidate
explanations, such as activating of additional Weyl points
at higher frequencies. Nevertheless the predicted change in
scaling of the optical conductivity once the frequency is high
enough to enter the quantum critical regime seems a robust
prediction and is in principle accessible by experiments. It
would be very interesting to see then if the scaling exponents
of longitudinal and transverse optical conductivities can be
fitted to weak coupling models or to predictions from holo-
graphic models.

3.11 Butterfly velocity

Holography has also contributed in recent years to the under-
standing of chaos in quantum many body systems. Quantum
chaos can be characterized by the late time behavior of the
out of time order correlation function (OTOC):

⟨[V(t, x),W(0, 0)]2⟩ ∼ eλL(t−t∗−|x|/vB) , (49)

where λL is the Lyapunov exponent, t∗ the so-called scram-
bling time and vB the Butterfly velocity. The Lyapunov expo-
nent obeys the bound [69]:

λL ≤ 2πT, (50)

where T is the temperature of the system. It is saturated by
holographic field theories. For a review on quantum chaos
and holography see ref. [70]. Of particular interest is the be-
havior of the Butterfly velocity across a quantum phase tran-
sition. This question was addressed for the holographic Weyl
semimetal model in ref. [71]. There the authors computed
the Butterfly velocity in a holographic model with metric:

ds2 = −gtt(r)dt2 + grrdr2 + h⊥(r)dx2
⊥ + h∥(r)dx2

∥ . (51)

This is precisely the metric that arises in the holographic
Weyl semimetal where we chose x∥ = z and x⊥ = (x, y). The
result can be seen in Figure 12.

It shows the surprising feature that the parallel component
of the Butterfly velocity has a minimum whereas the perpen-
dicular component shows a maximum at the quantum phase

transition. The Butterfly velocity therefore does not show a
universal behavior across the phase transition. This motivates
the authors of ref. [71] to introduce a new quantity, the infor-
mation screening length L = 1/µ. It is defined as follows.
First one introduces Mη = λl/v

η
B where η ∈ {⊥, ∥} and defines

then

µ2 =
1
L2 =

M2
η

hη(rh)
. (52)

This definition manages to get rid of the anisotropy such that
a unique L independent of the direction can be defined. The
authors show that L is maximal at the quantum critical point
and they conjecture that the information screening length
obeys

2L ≤ 1
D⊥ + βD∥

= 2Lc, (53)

where β is the Lifshitz scaling exponent of the anisotropic di-
rections, D⊥ is the number of spatial dimensions with scaling
exponent equal to one and D∥ is the number of spatial direc-
tions with scaling β. They also point out that in holography
the null energy condition restricts the scaling β ≤ 1.

4 Weyl semimetal/Chern insulator transition

The phase diagram for Weyl semimetal is richer and it could
go through a phase transition to a normal band insulator
[31, 72] or to a Chern insulator [31, 73, 74] or to a metal
[75] etc. However, the holographic Weyl semimetal model
in sect. 3 goes through a quantum phase transition to a triv-
ial semimetal phase in which only a part of degrees of free-
dom has been gapped out. This section reviews a holographic
model describing a topologically nontrivial Weyl semimetal
goes through a quantum phase transition to an insulating
phase where all the degrees of freedom are gapped.

A generation of holographic Weyl semimetal model can be
constructed as follows. We use the Stueckelberg trick to re-
place the complex scalar field Φ in eq. (11) by two real scalar
fields ϕ and θ and introduce the general dilatonic couplings
in front of the kinetic terms [76]:

S =
∫

d5x
√−g

[ 1
2κ2

(
R + 12 − 1

2
(∂ϕ)2 − V(ϕ)

)
− Y(ϕ)

4
F 2

− Z(ϕ)
4

(F)2 +
α

3
ϵabcdeAa

(
FbcFde + 3FbcFde

)
− W(ϕ)

2
(Aa − ∂aθ)2

]
. (54)

Up to the anomaly the action eq. (54) is invariant under
θ → θ+ χ, Aa → Aa + ∂aχ. One can show that the dual Ward
identity for the conserved currents, which should be indepen-
dent of the coupling strength of the system, is exactly the
same as the one obtained from weakly coupled theory. The
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(a) (b)

Figure 12 (Color online) Butterfly velocities as function of the dimensionless parameter M̄ = M/b for different values of the temperature. (a) The parallel
Butterfly velocity; (b) the perpendicular Butterfly velocity. As one can see the results are quite different, whereas the parallel one has a minimum, the perpen-
dicular one develop a minimum. The lines show different temperatures T/b = 0.005, 0.05, 0.1 corresponding to the colors red, blue and green. Figures from
ref. [71] CC BY 4.0.

holographic Weyl semimetal model in sect. 3 can be recov-
ered via defining Φ = 1√

2
ϕeiθ which is axially charged under

the axial gauge field and setting Y(ϕ) = Z(ϕ) = 1, W(ϕ) =
q2ϕ2, V(ϕ) = m2

2 ϕ
29).

This section will focus on the physics at zero tempera-
ture. At T = 0 we use the same ansatz for the background
fields as eq. (16) in sect. 3. To realise a holographic Weyl
semimetal/insulator transition, the following dilatonic cou-
plings are chosen:

Z(ϕ) = 1 , W(ϕ) = −q0

1 − cosh

√2
3
ϕ

 ,
V(ϕ) =

9
2

1 − cosh

√2
3
ϕ

 ,
(55)

and

Y(ϕ) = cosh

√2
3
ϕ

 . (56)

Note there is a Z2 symmetry ϕ → −ϕ for eq. (54). When
ϕ → 0, W(ϕ) ≃ q0

3 ϕ
2 and V(ϕ) ≃ − 3

2ϕ
2. Thus q0 plays a sim-

ilar role as the axial charge. In the following we restrict to
q0 > 0. Near the conformal boundary, ϕ → 0, the potential
in eq. (55) behaves as V(ϕ) = 1

2 m2ϕ2 + . . . with m2 = −3. As
already discussed in sect. 3, close to the boundary (r → ∞)
we have ϕ = M

r + . . . , Az = b + . . . .
At zero temperature, we first give the near horizon solu-

tions. Similar to the holographic model in sect. 3, there are
again three different kinds of near horizon geometries. Then
we turn on irrelevant perturbations to get the full solutions.

Insulating phase The first kind of near horizon geometry

is

u = r(1 + r) , h = r(1 + r) , Az = a1r
1
4 (
√

1+8q0−1) ,

ϕ = −
√

3
2

log
r

1 + r
,

(57)

where a1 is a free parameter which will make the geometry
flow to AdS5 with different value M/b. At the leading or-
der, the geometry is known as the GPPZ gapped geometry
[79]. Here we have a nontrivial Az such that we will have an
anisotropic geometry.

Weyl semimetal phase The second kind of geometry near
the horizon is

u = r2 , h = r2 , Az = a0 +
ϕ2

0

4a0r
e−

2a0
√q0√
3r ,

ϕ =
ϕ0

r3/2 e−
a0
√q0√
3r .

(58)

At the leading order, the IR geometry is an AdS5 with a con-
stant Az. a0 can be rescaled to 1. The exponential terms play
the role of the irrelevant perturbations. This near horizon
geometry also shows up as the holographic Weyl semimetal
phase in sect. 3.

Critical point The third kind of near horizon geometry is

u = u0r2(1 + δurαc
)
, h =

q0

9
r2β(1 + δhrαc

)
, (59)

Az = rβ
(
1 + δarαc

)
, ϕ =

√
3
2

(log ϕ1)
(
1 + δϕrαc

)
. (60)

In the case of q0 = 15, we have (u0, β, ϕ1, αc) ≃ (1.150, 0.769,
1.797, 1.230) and (δu, δh, δa) ≃ (0.147,−1.043, 0.591)δϕ.
At the leading order the system has a Lifshitz symmetry
(t, x, y, r−1) → c(t, x, y, r−1), z → cβz. We can use it to set

9) Studies on constructing insulating phases from generic holography with dilatonic coupling can be found in refs. [77, 78].

https://creativecommons.org/licenses/by/4.0/
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δϕ = −1. The irrelevant perturbations can flow the above
geometry to AdS5. In the boundary we get (M/b)c ≃ 0.986.
For arbitrary q0 > 0, all the relevant perturbations around the
above fixed point have complex scaling exponent, indicating
that this fixed point is unstable [80, 81] which will be con-
firmed by studying the free energy.

The full solutions can be obtained by integrating the above
near horizon geometries to the boundary. Different from the
holographic semimetals in sect. 3, the near horizon behav-
ior eq. (58) flows to AdS5 with a nontrivial M/b that takes
from zero to (M/b)t+ with (M/b)t+ > (M/b)c and then de-
creasing to (M/b)c. The near horizon geometry (57) flows
to AdS5 with M/b whose value is from infinity to (M/b)t−
with (M/b)t− < (M/b)c and then increasing to reach (M/b)c

finally. Figure 13 shows the profiles of the matter fields at dif-
ferent M/b. Near the critical M/b, the matter fields shows os-
cillatory behavior (dashed color lines), which can be viewed
as a sign of unstable critical solution.

With the bulk solution the free energy can be obtained nu-
merically. Near the phase transition the behavior for free en-
ergy is shown in Figure 14. Different from the holographic
model in sect. 3, for this holographic system at zero temper-
ature there is a first order phase transition from the topologi-
cally nontrivial Weyl semimetal phase to an insulator phase.
The different order of the quantum phase transition may in-
dicate different underlying mechanisms for these two kinds
of phase transitions. It can be easily checked that the phase
transition is always of first order for any q0 > 0.

The exact nature of the stable phases can be figured out by
studying the conductivities. The real part of the optical longi-
tudinal electric conductivity σzz of the holographic system at
different M/b is shown in Figure 15. In the Weyl semimetal
phase, σzz is linear in frequency at both small and large fre-
quency regimes, which is quite similar to the discussion in
sect. 3.10. There is a hard gap for σzz in the insulating phase,
which indicates that it is indeed an insulating phase. Above

the gap there is a continuous gapless spectrum and σzz even-
tually becomes also linear in frequency at large frequency.
The width of the gap depends on M/b in a similar way com-
paring to the weakly coupled result, i.e. it monotonically
increases when M/b increases and for sufficient large M/b,
∆/b ∝ 0.22(M/b − 0.3).

The transverse conductivities can be calculated by consid-
ering fluctuations δVx = vx(r)e−iωt, δVy = vy(r)e−iωt. Define
v± = vx ± ivy, from the holographic dictionary we can obtain
the Green’s functions G±, from which we can compute Gxx,
Gyy and Gxy. We have σxy ± iσxx = ±G±

ω
, i.e.

σT = σxx = σyy =
G+ +G−

2iω
,

σAH = 8αb − σxy = 8αb − G+ −G−
2ω

.

(61)

Figure 16 shows the full frequency dependence of transverse
conductivities. Similar to the longitudinal conductivities,
there is a gapless spectrum for Re[σxx(ω)] and Re[σyy(ω)]
in the Weyl semimetal phase, while there exists a contin-
uous gapless spectrum above a hard gap ∆/b in the insu-
lating phase. The difference comparing to the longitudinal
one is that if we increase M/b in the Weyl semimetal phase,
Re[σT]/ω increases at small ω. Figure 16(b) shows the real
part of optical anomalous Hall conductivity at different values
of M/b. In the insulating phase at zero frequency the anoma-
lous Hall conductivity goes to a nonzero value. Furthermore,
the optical anomalous Hall conductivity has a smooth change
at ω = ∆ in the insulating phase.

As already explained in sect. 3, the order parameter of the
quantum phase transition is the DC anomalous Hall conduc-
tivity. In the topological phase, the DC conductivities can be
analytically obtained σAHE = 8αAz(0), σxx = σyy = 0 . In the
gapped phase, there is no simple analytical formula for σAHE.
The DC anomalous Hall conductivity can only be calculated
numerically by taking ω→ 0 limit of Re[σAH(ω)], which is
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Figure 13 (Color online) The plots are for the profiles of Az (a) and ϕ (b) at M/b = 0.941 (green), 0.983 (blue), 0.987 (dashed cyan), 0.986 (dashed black),
0.984 (dashed brown), 0.987 (orange), 1.019 (purple). The solid lines are for the stable phase while dashed lines are for the unstable phase. Figures from ref.
[76].
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Figure 14 (Color online) This plot shows the free energy density. Here
q0 = 15. The blue (dashed) lines are for solutions from eq. (58) while the
red (dashed) line are from eq. (57). The black dot is for the free energy at
the unstable critical point. Figure from ref. [76].
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Figure 15 (Color online) The real part of optical longitudinal electric con-
ductivity at M/b = 0.941 (green), 0.983 (blue), 0.987 (orange), 1.019 (pur-
ple). Figure from ref. [76].

different from the case for topological trivial semimetal in
sect. 3.

Figure 17 shows the DC σAHE depending on M/b. When
M/b increases, the anomalous Hall conductivity decreases
and jumps at to another nonzero value. After the phase tran-
sition, σAHE looks insensitive to M/b. The discontinuity in
σAHE indicates that the holographic quantum phase transition
is indeed of first order. After the phase transition, in the diag-
onal components of the conductivities there exists a continu-
ous gapless spectrum above a hard gap, whereas the DCσAHE

is nonvanishing. These properties are exactly of a topologi-
cal Chern insulator. Thus the holographic model introduced
in this section describes a first order quantum phase transition
from a strongly interacting topological Weyl semimetal to a
topological Chern insulator.

From the field theoretical approach the phase diagrams
for interacting Weyl semimetals have been studied in refs.
[31, 72-74]. In ref. [72] it was found that for sufficiently
strong interactions the Weyl semimetal can go through a first

order quantum phase transition to a normal band insulator.
The holographic model shows that the strongly interacting
Weyl semimetal can also go through a first order quantum
phase transition to a Chern insulator. Thus it reveals the in-
triguing phase structure for strongly correlated topological
Weyl semimetal. The holographic model provides a novel
framework to further explore the physics of strongly interact-
ing topological states of matter.

5 Holographic nodal line semimetals

In addition to Weyl semimetals, there are several other ex-
amples of topological states of matter, including topolog-
ical nodal line semimetal (NLSM), topological insulators,
anomalous Hall states, topological superconductors and so
on. In this section, we will focus on the physics of nodal line
semimetals from holography.

In a NLSM [82] the shape of Fermi surface is a one dimen-
sional circle in stead of nodal points in Weyl semimetals (see
ref. [83] for a review). When it is topologically nontrivial,
the system cannot be gapped by small perturbations unless
going through a topological phase transition to another state.

5.1 Quantum field theoretical model

In Weyl semimetal, two Weyl points in the momentum space
are separated at b while in nodal line semimetal there is a one
dimensional circle of nodal line. Their low energy effective
theories are also different. The Weyl semimetal is described
by a Dirac field coupled to a time reversal symmetry break-
ing field, i.e. the axial gauge field Az. Whereas for NLSM, it
is described by a Dirac field coupled to a two form effective
field bµν which breaks both time reversal and charge conju-
gate symmetry,

L = −iψ̄
(
γµ∂µ − m − γµνbµν

)
ψ, (62)

where γµν = i
2 [γµ, γν] and bµν = −bνµ is an antisymmetric

two form field. Note that we take the (−,+,+,+) signature.
Without loss of generality, a source of a two form bxy is turned
on. Then this system has the energy spectrum:

E± = ±
√

k2
z +

(
2bxy ±

√
m2 + k2

x + k2
y

)2
. (63)

The corresponding energy spectrum is shown in Figure 18.
For m2 < 4b2

xy, the system is a topologically nontriv-
ial nodal line semimetal with a circle nodal line of radius√

4b2
xy − m210). For m2 > 4b2

xy, the system becomes an in-

sulator and m2 = 4b2
xy is the quantum phase transition point.

10) Note that the other components of bµν could also deform the nodal points to nodal line, e.g. nonzero btz would generate an accidental nodal line
semimetal.
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Figure 16 (Color online) The real part of the transverse optical electric conductivity (a) and the optical anomalous Hall conductivity (b) at M/b = 0.941
(green), 0.983 (blue), 0.987 (orange), 1.019 (purple) in the topological and the insulating phases. Figures from ref. [76].
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Figure 18 (Color online) The energy spectrum as a function of kx, ky for kz = 0. (a) A nodal line appears at the band crossing when m2 < 4b2
xy; (b) for

m2 > 4b2
xy the system is gapped. Figures from ref. [84].

In the nodal line semimetal phase, close to the nodal line, the

dispersion is linear in
√

k2
x + k2

y −
√

4b2
xy − m2 with velocity√

1 − m2

4b2
xy

at kz = 0 and linear in kz with velocity 1 when√
k2

x + k2
y =

√
4b2

xy − m2.

With a nontrivial background two form field bµν, the elec-
tric current Jµ = ψ̄γµψ is still conserved while the axial cur-
rent Jµ5 = ψ̄γ

µγ5ψ is no longer conserved. The following are
the conservation equations:

∂µJµ = 0 , ∂µJµ5 = −2mψ̄γ5ψ − 2bµνψ̄γµνγ5ψ , (64)

where anomaly terms have been ignored.

5.2 Holographic model

The NLSM model eq. (62) has shown that a coupling term
ψ̄γµνψ plays the role of deforming the single nodal point to a
nodal loop. In holography we introduce on the gravity side
a massive 2-form field Bab which is dual to an antisymmetric
tensor operator and is expected to play a similar role as the
ψ̄γµνψ operator. Similar to the holographic Weyl semimetal
model, we also introduce an axially charged complex scalar



K. Landsteiner, et al. Sci. China-Phys. Mech. Astron. May (2020) Vol. 63 No. 5 250001-20

fieldΦwhose boundary value explicitly breaks the axial sym-
metry to generate the gap. The holographic NLSM can be
realized from the following action [84]:

S =
∫

d5x
√−g

[ 1
2κ2

(
R +

12
L2

)
− 1

4
F 2 − 1

4
F2

+
α

3
ϵabcdeAa

(
3FbcFde + FbcFde

)
− (DaΦ)∗(DaΦ) − V1(Φ) − 1

3η
(D[aBbc]

)∗(D[aBbc])
− V2(Bab) − λ|Φ|2B∗abBab

]
,

where parts that do not involve Bab are the same as the holo-
graphic Weyl semimetal (eq. (11)) in sect. 3. Bab has to
be axially charged since its dual operator’s source explicitly
breaks the axial symmetry. The potential terms in the action
are

V1 = m2
1|Φ|2 +

λ1

2
|Φ|4 , V2 = m2

2B∗abBab , (65)

where m1,2 are mass of Φ and Bab. Without loss of gener-
ality, Bxy component will be turned on in the following. In
the following we set q1 = q2 = 1, λ = η = 1, λ1 = 0.1 for
simplicity.

Since the operators ψ̄γµνψ and ψ̄γµνγ5ψ are not indepen-
dent, which indicates that there should be a self-duality in
the real and imaginary part of the complex dual field Bab,
our strategy here is instead to consider a two form antisym-
metric operator different from ψ̄γµνψ and does not have the
property of self duality. Note that some holographic QCD
models [85, 86] considered the self-duality effect of the two
form field.

We will focus again on the zero temperature physics and
take the following ansatz:

ds2 = u(−dt2 + dz2) +
dr2

u
+ f (dx2 + dy2) ,

Φ = ϕ(r) , Bxy = B(r) .
(66)

Near the UV boundary r → ∞, the expansions for the two
matter fields ϕ(r) and B(r) are

ϕ =
M
r
+ · · · , B = br + · · · , (67)

where M and b are the sources associated to the dual opera-
tors. At zero temperature, it turns out there are again three
different kinds of near horizon geometries. Similar to the
holographic Weyl semimetal, adding some irrelevant defor-
mations, the near horizon geometries flow to an AdS5 in the
UV with some values of M/b.

Topological phase The first kind of near horizon geome-
try is

u =
1
8

(11 + 3
√

13)r2
(
1 + δu rα1

)
,

f =

√
2
√

13
3
− 2 b0rα

(
1 + δ f rα1

)
,

ϕ = ϕ0rβ , B = b0rα
(
1 + δb rα1

)
,

where (α, β, α1) = (0.183, 0.290, 1.273), (δ f , δb) = (−2.616,
−0.302)δu. We can further set b0 to 1. At leading order there
is a Lifshitz symmetry for the solution

(t, z, r−1)→ c(t, z, r−1) , (x, y)→ cα/2(x, y) , (68)

which can set δu = ±1 where δu = −1 flows the geometry
to AdS5. Thus we have a unique free parameter ϕ0 in the
system.

It turns out we only get solutions with M/b < 1.717
in the UV. As ϕ0 grows from 0, M/b also grows from the
value 0 and becomes closer and closer to the critical value
1.717. From the property of holographic fermion spectral
functions, one concludes the dual phase is a topological nodal
line semimetal.

Critical point The second kind of near horizon geometry
including irrelevant deformations is

u = ucr2(1 + δu rβ1 ) , f = fcrαc (1 + δ f rβ1 ) ,

ϕ = ϕc(1 + δϕ rβ1 ) , B = bcrαc (1 + δb rβ1 ) ,

with (uc, fc, αc, ϕc) ≃ (3.076, 0.828bc, 0.292, 0.894) , and
β1 = 1.272 , (δu, δ f , δb) = (1.177,−2.771,−0.409)δϕ .

We can set bc to be 1. At the leading order there exists a
same type of Lifshitz symmetry eq. (68) with a different scal-
ing exponent αc instead of α. This Lifshitz symmetry can set
δϕ to be −1 to flow to AdS5 in UV. Therefore there is only
one single such solution. We get the solution with the critical
value M/b ≃ 1.717.

Trivial phase The third kinds of near horizon geometry
is

u =
(
1 +

3
8λ1

)
r2 , f = r2 ,

ϕ =

√
3
λ1
+ ϕ1r

2
√

160λ2
1+84λ1+9

3+8λ1
−2
, B = b1r2

√
2
√

3λ+λ1
3+8λ1 .

The ϕ1- and b1-terms above are the irrelevant deformations
that flow the geometry to asymptotic AdS5 solutions. In this
case we only get solutions with M/b > 1.717.

Figure 19 shows the bulk profiles of matter fields ϕ and
B/ f at different M/b. Close to the critical M/b the IR solu-
tion flows quickly to the one for critical solution. The free
energy of the system can be numerically studied and we find
that when the phase transition occurs, the system is very con-
tinuous though the bulk IR solutions are discontinuous at the
horizon. In holography this is a quite common feature for
continuous quantum phase transitions.
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5.3 A generic framework for topological states from
hologrphy

This holographic nodal line semimetal has the same mathe-
matical structure as the holographic Weyl semimetal in sect.
3. Ref. [84] proposed a general framework in holography to
describe the strongly coupled gapless topological states. The
bulk topological structure arises as follows.
• In the holographic system, there are at least two inter-

acting matter fields. One of them dual to the operator which
plays the role of mass effect, and the other dual to an operator
which deforms the topology of the Fermi surface. For illus-
tration these two fields are labeled as ϕ and A. The interaction
between ϕ and A in deep IR generates interesting topological
structure of the solution space.
• At zero temperature usually there exist three different

kinds of solutions at the horizon. Two of them are the solu-
tion that at leading order A (or ϕ) is nonvanishing with r−δ

A,ϕ
−

while at subleading order ϕ (or A) is sourced by A (or ϕ).
There also exists a critical solution where both ϕ and A are
subleading and sourcing each other. Because these two fields
cannot be of leading order at the same time with r−δ

A,ϕ
− in IR,

the semimetal phase cannot be gapped by small perturbations
and is therefore topologically nontrivial.

The existence of a universal topological structure in the
bulk suggests that in principle from holography we could ob-
tain a large class of topologically nontrivial strongly coupled
gapless systems.

5.4 Fermionic probe on the holographic nodal line
semimetal

Although in NLSMs there is no sharp order parameter like
anomalous Hall conductivity for Weyl semimetals, we could
show that indeed there exists a circle of nodal loop in the dual
fermionic spectral functions by probing fermions in the bulk.

Similar to the discussion for holographic Weyl semimetal
in sect. 3.6, we utilize two spinors in the bulk to describe a

Dirac operator in the dual field theory. In the bulk the cou-
pling terms between the spinors and the scalar field are the
same as the ones in the Weyl semimetal. There is one most
natural way to couple the two bulk spinors to the two form
field Bab. We use the following action for the probe fermion:

S = S 1 + S 2 + S int , (69)

S 1 =

∫
d5x
√−giΨ̄1

(
ΓaDa − m f

)
Ψ1 ,

S 2 =

∫
d5x
√−giΨ̄2

(
ΓaDa + m f

)
Ψ2 ,

S int = −
∫

d5x
√−g

(
iΦΨ̄1Ψ2 + iΦ∗Ψ̄2Ψ1 +LB

)
, (70)

and

LB = −i(η2BabΨ̄1Γ
abγ5Ψ2 − η∗2B∗abΨ̄2Γ

abγ5Ψ1) . (71)

Note that in the bulk the Lorentz invariance in the tangent
space has been explicitly broken.

The system has a rotation symmetry in the kx-ky plane and

only depends on kx−y =
√

k2
x + k2

y . Without loss of generality
we set ky = 0. From the holographic dictionary, we can com-
pute the retarded Green’s function G. Then we could get its
four eigenvalues and the spectral function. In the following
we summarize the properties for the Green’s function in the
holographic nodal line semimetal.
• In all the three phases, for nonzero kz, the retarded

Green’s function at zero frequency is real.
• In the trivial phase, the retarded Green’s function is

real for all values of kx, ky, kz , 0. The pole is located at
kx = ky = kz = 0 and this is consistent with the explanation
that this trivial semimetal phase is only partially gapped.
• For the critical point, among the four eigenvalues of the

Green’s function, two of them have peaks in the imaginary
part at kx = ky = 0 and the other two are still small for all
kx, ky.
• Figure 20 shows the spectral function G−1(0, kx) for a

finite regime of kx at kz = ω = 0, M/b ≃ 0.0013 and
m f = −1/4. All the Green’s function’s four eigenvalues are
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Figure 19 (Color online) The bulk profile for the scalar field ϕ (a) and the two form field B/ f (b) for M/b = 1.682 (green), 1.702 (brown), 1.717 (red), 1.733
(purple), 1.750 (black). Figures from ref. [84].
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real. They have the form (g1,−g1, g2,−g2) with both g1 and
g2 are positive and g1 ≥ g2. The two eigenstates with eigen-
values g1,−g1 are labeled as “bands I” and the other two with
g2,−g2 as “bands II”. In Figure 20 different colors are used
to distinguish different bands. Furthermore, since −G−1(0, k)
can be treated as a topological Hamiltonian [43,45], the spec-
tral density plot should qualitatively agree with the plot for
eigenvalues in the ω-kx plane.
• From Figure 20 we can see that between each two ad-

jacent poles bands I and II always and only intersect once in
the upper frequency plane. Between each two adjacent band
crossing points there is always one pole and one zero of the
Green’s function.
• In the strongly coupled nodal line semimetal phase from

holography there are multiple and discrete Fermi surfaces in

the kx-ky plane at ki
F =

√
k2

x + k2
y and kz = 0, ω→ 0. The dual

system has more complicated topological structure. At each
nodal line momentum, there is a sharp peak (a pole at ω = 0)
in the imaginary part of two eigenvalues of the Green’s func-
tion whereas the imaginary part of the other two is very small,
which means that they are gapped.
• When kx increases, the distance between adjacent poles

becomes larger. At small kx the poles are very close to each
other. We have not plotted this regime in Figure 20 because
the nodal loops are too dense to reveal all the poles and a
much heavier numerics is required.
• When M/b increases, each nodal line momentum de-

creases and goes to zero at the transition point. Figure 21(a)
shows the behavior of one ki

F depending on M/b and
Figure 21(b) shows the dispersion in the kx direction at M/b ≃
0.0013. Note that the dispersions in both the kz and kx direc-
tions are almost linear for each branch of nodal lines.

5.5 Topological invariants

In nodal line semimetals there are two kinds of topological
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Figure 20 (Color online) Eigenvalues of −G−1(0, kx) for M/b ≃ 0.0013.
Red color is for bands I and blue color is for bands II. Figure from ref. [48].

invariants [83]. The first one is the Berry phase around a one
dimensional closed line which links with the nodal loop in
the momentum space. This one is related to the stability of
the nodal loop under small perturbations in the system. The
second one is the Berry flux around a sphere enclosing the
whole nodal loop. This topological invariant is to describe
whether the critical point is topological or not, which will not
be discussed here.

From holography the strongly interacting NLSM phase has
multiple while discrete nodal lines in the kx-ky plane and
kz = 0. Since the circle that links with two or more nodal
lines at the same time can be continuously deformed to two
or more separate circles each enclosing only one nodal line
inside, we can focus on the Berry phase associated with each
nodal line. From the Green’s function at ω = 0 we found
that these poles are from two different sets of bands (bands I
and II) which indicates that along the kx axis the two gapped
bands and two gapless bands exchange their roles alterna-
tively. We could calculate the Berry phase numerically by
choosing discrete points along the circle and found that there
is a nontrivial Berry phase π associated with poles from band
I and for poles from band II the Berry phase is undetermined.
For the zeros of the Green’s functions we have a trivial Berry
phase of zero [48].

6 Alternative approaches

An approach to strongly coupled model of Weyl fermions
based on holography that differs somewhat from the one re-
viewed in this article was presented in ref. [87]. There the
idea is to study fermions which are strongly coupled in a
holographic theory. This is similar to the study of probe
fermions in holographic backgrounds [46, 47]. The fermions
are treated as probes which might or might not reflects the
underlying physics of the dual field theory. It has been used
for example to study the electric conductivity in ref. [88].
It would be interesting to explore the other characteristic fea-
tures of Weyl semimetals including surface states, anomalous
Hall effect etc., in this approach and to go beyond the probe
limit to include the backreaction of the probe fermions to the
gravitational background.

It is known that Weyl semimetals can also be gener-
ated from Dirac systems by applying a rotating electric field
[89, 90]. More precisely the Dirac fermions split into left-
and right-handed Weyl fermions under the application of a
fast rotating electric field. The question if this also happens
in holography has been investigated in ref. [91]. The con-
struction is based on probe D7-branes in an AdS5 × S5 back-
ground. The background serves also as energy reservoir and
allows the formation of a non-equilibrium steady state. This
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Figure 21 (Color online) (a) The nodal line momentum kF =

√
k2

x + k2
y and kz = 0. In both the critical and trivial phases, no Fermi surface exists at finite

k whereas the pole is at k = ω = 0 which is consistent with the fact that only partial degrees of freedom are gapped. (b) The dispersion relation associated to
the nodal momenta in the left plot at M/b ≃ 0.0013. The best fit is for kx < kF , ω ≃ 0.005(1.0477 − kx)0.998; while for kx > kF , ω ≃ 0.005(kx − 1.0477)0.994.
Figures from ref. [48].

allows to compute the Hall conductivity as function of the
applied frequency of the driving electric field but also be-
yond the regime of linear response. In this top-down model
the field content of the dual theory is clear, which in princi-
ple provides more constraints and insights into the physics of
the boundary field theory. However, this model works in the
probe brane limit while possible backreaction is not clear. It
would be also interesting to explore more physics of the dual
system from this approach.

7 Summary and outlook on further research

We have reviewed the holographic construction of models
capable of reproducing key features of the physics of topo-
logical semimetals such as Weyl and nodal line semimetals.
Amongst them the quantum phase transition to a topologi-
cally trivial state, the anomalous Hall conductivity, surface
states, topological invariants, a new understanding of the ax-
ial Hall conductivity. Some of the new results derived from
that model is the appearance of anomalous Hall viscosity in
the quantum critical region at finite temperature of the phase
transition. A short summary is given in Table 2 for Weyl
semimetals and in Table 3 in the case of nodal line semimet-
als.

In these tables, we list different features of the weakly
coupled semimetal and strongly coupled semimetal from
holography for comparison, including the symmetries, trans-
ports/features, edge states, topological invariants and mate-
rial realisation. In the nodal line semimetals, there is no
sharp transport signature like anomalous Hall conductivity
to distinguish the topological phase and trivial phase. The
Fermi surfaces of the system show interesting features with
nodal loop in the weakly coupled case and multiple loops in
the strongly coupled case. The question marks are the items
which are not clear yet.

So far only a small subset of the parameter space of these

models has been explored. There are many open questions.
An incomplete list is as follows.
• It would be interesting to include chemical potentials for

vector and axial symmetries and study the chiral magnetic ef-
fect in these models. This would tell us about the CME in a
strongly interacting Weyl semimetal. Meanwhile, it would be
interesting to study negative magnetoresistivity in this model.
• In the quantum critical region a new anomaly related

transport coefficient, anomaluos Hall viscosity appears. It
would be interesting to develop the full hydrodynamics of
the quantum critical region.
• The Weyl cones in Weyl semimetals can be tilted and so-

called type II Weyl semimatals can appear if the tilt exceeds
the “lightcone” defined by the Fermi velocity. Can one also
construct holographic models of type II Weyl semimetals?
• The holographic Weyl semimetal in sect. 3 describes a

holographic dual for Weyl semimetal with two Weyl nodes.
It would be interesting to consider the holographic dual for
multiple Weyl nodes.
• The quantum phase transition in the holographic

WSM/Chern insulator model is of first order. It would be
interesting to study if it is still first order for more general
holographic phase transitions between Weyl semimetal and
insulating phases.
• It would be interesting to explore the disorder ef-

fects or other momentum dissipation effects, finite tem-
perature physics, transport physics etc., in the holographic
WSM/Chern insulator model.
• The holographic insulating phase is a Chern insulator. It

would be interesting to explore the topological invariants, to
explore effects of surface states, to realise the phase transition
to a normal insulator and so on.
• It would be interesting to construct the smoking gun

transport in the holographic nodal line semimetals.
• In the holographic nodal line semimetal, it would be in-

teresting to consider the holographic model with a self-dual
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Table 2 The summary of holographic Weyl semimetal

Properties Weakly coupled WSM Holographic WSM

Symmetries time reversal or inversion symmetry breaking time reversal symmetry breaking

Transports anomalous Hall conductivity AHE , odd viscosity

Edge states Fermi arc surface current

Topological invariants ± 1 ± 1

Material TaAs, TaP, etc. WP2?

Table 3 The summary of holographic nodal line semimetal

Properties Weakly coupled NLSM Holographic NLSM

Symmetry symmetry protected by mirror refection symmetry, inversion symmetry symmetry protected by inversion symmetry

Features nodal loop multiple nodal loops

Edge states no ?

Topological invariants π one set is π, another undetermined

Material PbTaSe2, ZrTe, etc. ?

two form field.
• It would be interesting to study the behavior of nonlocal

quantities, e.g. entanglement entropy, Renyi entropy, com-
plexity etc., across the topological phase transition, to char-
acterize the changes of dynamical degrees of freedom during
the transition.

These studies should be helpful in building holographic
models for more complicated topological states of mater to-
wards a classification of strongly interacting topological mat-
ter. We hope to explore some of these questions further in the
future.
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66 M. Ammon, M. Baggioli, A. Jiménez-Alba, and S. Moeckel, J. High

Energ. Phys. 2018, 68 (2018).
67 G. Grignani, A. Marini, F. Peña-Benitez, and S. Speziali, J. High Energ.

Phys. 2017, 125 (2017).
68 B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu,

H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar,
and X. G. Qiu, Phys. Rev. B 93, 121110 (2016).

69 J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energ. Phys.
2016, 106 (2016).

70 V. Jahnke, Adv. High Energy Phys. 2019, 9632708 (2019).
71 M. Baggioli, B. Padhi, P. W. Phillips, and C. Setty, J. High Energ. Phys.

2018, 49 (2018).
72 B. Roy, P. Goswami, and V. Juričić, Phys. Rev. B 95, 201102 (2017).
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