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Numerical investigation of separation-induced transition in a low-
pressure turbine cascade in a low-disturbance environment
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In this paper, the separation-induced transition in an LPT (low-pressure turbine) cascade is investigated at low Reynolds number
with DNS (direct numerical simulation). The transition process is accurately predicted giving good agreements between the DNS
and experimental results. To illustrate the secondary instability of separation-induced transition in a low-disturbance environ-
ment, the results are comprehensively analyzed in both Fourier space and physical space. It is illustrated that the effect of
hyperbolic instability dominates around the saddle point of hyperbolic streamlines. This instability mechanism is responsible for
the emergence of the streamwise vortices in the braid region. Elongated and intensified because of the “stretching” effect of the
background flow, these vortices become the most noticeable characteristic of the flow field. Fundamental modes of small
spanwise wavelength are excited in the braid region, so as some low-frequency modes. The elliptical instability plays a minor
role than hyperbolic instability. It is also observed that the fundamental mode with a larger spanwise wavelength is unstable in the
vortex core which is associated with the deformation of the vortex core via elliptical instability. There is no convincing evidence
for the existence of subharmonic instability.
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1 Introduction

Over the last two decades, researchers have devoted in-
tensive efforts to increase the efficiency of blades in LPT to
meet the requirements of modern industry. One can achieve
this goal by imposing a higher aerodynamic load upon
blades, and thus blades are designed with a larger turning
angle. In return, an adverse pressure gradient on a blade
surface is enlarged, bringing about a detachment of boundary
layers from walls. Also, Reynolds number in LPT is so low
especially during the high altitude cruise condition that flow

at the leading edge of blades is laminar, followed by a
transition inside unsteady separation bubbles. The location
where transition starts and the spatial extent within which
transition takes place influences the LPT performance and is
of crucial interest in performance prediction applications [1].
Thus, a good understanding and a reliable prediction of the
separation-induced transition are important for LPT aero-
thermal design.
Unfortunately, since the flow is very three-dimensional

and highly complicated, with the occurrence of vortex
packets and localized breakdown [2], it is difficult to figure
out the instability process in a separation-induced transition.
Until now, researchers are yet to reach agreements on the
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mechanisms that may cause three-dimensionality, let alone
accurately modeling the separation-induced transition flow
field in LPT. The highly unsteady essence makes the in-
vestigations of the flow a big challenge for both experiments
and numerical simulations. The early research approaches of
the separation-induced transition were mainly experimental
study and numerical simulation of two-dimensional flow. It
was until the early twenty-first century that high-resolved
measures began to be used to predict the separation-induced
transition, facilitating investigations of the instability me-
chanisms.
Based on discussions by previous researchers, in a low-

disturbance environment, the instability process starts in the
upstream attached boundary layer, in which initial fluctua-
tions have been amplified [3-12] and enter the separated
shear layer directly. The K-H instability supposedly thought
to be dominant in the flow field with an inflection point in the
velocity profile [10] has long drawn the attention of re-
searchers. The primary instability of the separation-induced
transition is the convective amplification of two-dimensional
waves via the K-H instability mechanism [4,13]. Several
researchers have made efforts to verify the dominant role of
K-H instability in the separated shear layer. The authors
[4,6,14-19] illustrate that the dominant frequency in the
primary instability stage falls in the typical frequency range
in the free shear layer flows. Dynamic mode decomposition
was also used to capture the feature of K-H instability [20].
There is a noticeable difference between the primary in-
stability in the separated shear layer and that in the free shear
layer. The viscous effect of the wall somehow affects the
former. Several studies have recognized the importance of
interaction between T-S (Tollmien-Schlichting) and K-H
modes [7,8,12,15-17]. Boutilier and Yarusevych [21] com-
pared the results of viscous and inviscid linear stability
analyses, concluding that viscosity does not have a strong
effect on the inviscid instability of this flow. An in-depth
investigation by Marxen et al. [11] highlighted the evolution
of Fourier modes. They suggested that the T-S instability was
important only when the bubble was tiny or when the
boundary-layer Reynolds number upstream of the bubble
was already sufficiently large.
When the diminishing growth of K-H waves occurs, the

shear layer rolls up and collapses into individual vortex
packets [22]. These individual large scale vortices are called
K-H rolls [23], which are initially two-dimensional spanwise
ones [24]. The K-H instability drives the formation of these
K-H rolls, as emphasized by many investigations [15,25,26].
The three-dimensionality of the flow field occurs closely
related to the instability for the K-H rolls. This three-di-
mensionality always sets in so rapidly that it is hard to re-
cognize the instability mechanisms in terms of a primary,
secondary, let alone tertiary instability [27]. Notwithstanding
the massive researches on the instability mechanisms in the

mixing layer, attentions paid on the instability that causes a
three-dimensionality in the separation-induced transition are
still limited [28].

Gaster [29] introduced the widely accepted instability
mechanisms and absolute secondary instability. These me-
chanisms were also studied by many following researchers
using linear stability theory (LST) or DNS [5,30-32]. Alam
and Sandham [30] investigated the absolute or convective
nature of the instability of profiles and suggested that the
absolute instability happened when the reverse flow mag-
nitude was 15%-20% of the local freestream velocity. An in-
depth study by Embacher and Fasel [31] involved non-linear
and non-parallel effects based on spatially periodic base
flow. They pointed out the relevant role of absolute in-
stability, with the reverse flow being up to 23%. Inspired by
the early investigations of bluff-body wakes [33,34], Jones et
al. [35] associated a self-sustaining instability with the mode
A discussed in refs. [33,34]. This instability is the elliptical
instability [36], which causes a spanwise-periodic deforma-
tion of the vortex core. Marxen et al. [24] found the ratio of
the spanwise wavelength to the primary streamwise wave-
length of the fundamental frequency to be 0.451 and of
subharmonic instability to be 0.9. Besides, the mode B in the
aforementioned studies corresponds to hyperbolic instability
in the braid region, where the streamlines are hyperbolic,
upstream of each developing vortex. The so-called braids are
the streamwise-aligned vortex tubes between consecutive K-
H rolls, as reflected in Kurelek et al.’s [19] experiment.
Streamwise-oriented smoke filaments connected subsequent
K-H rolls in the braid region. This instability mechanism is
responsible for a quick disintegration of a spanwise vortex
into small-scale turbulence [24]. The spanwise wavelength is
0.2 of the primary streamwise wavelength for the funda-
mental instability in the cylinder wakes [33] and 0.225 in a
separation bubble [24]. Marxen et al. [24] proved the coex-
istence of both instability mechanisms in the separation-in-
duced transition. Later, Yang and Abdalla [28] made an
important discovery by investigating the separation-induced
transition without any particular forcing. In their results, the
only secondary instability at work was the elliptical in-
stability at the fundamental frequency, even if the streamwise
rib vortices were visible in the braid region. They attributed
streamwise ribs to the further stretching and titling effect of
the K-H roll, which was initially deformed because of el-
liptical instability. They also pointed out that the three-di-
mensionality process was sensitive to variations in forcing.
Another potential candidate mechanism for the three-di-

mensionality process is global instability, which requires a
smaller amount of reverse flow magnitude [37]. The self-
sustained global instability exists even for flows that are
locally absolutely stable downstream of the minimum dis-
tance for a feedback mechanism [31]. In contrast to global
instability, potential candidate mechanisms can be highly
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localized. Görtler type instability [38,39] can arise locally in
separating shear flows even in the absence of curved walls,
because a weak concave streamline curvature occurs around
the separation point [40]. Maskayek and Peltier [41] found a
highly localized secondary stagnation-point instability in the
mixing layer, capable of ejecting energy into small-scales.
Despite the progress made by recent investigations, re-

searchers still debate whether the secondary instabilities are
elliptical or hyperbolic simultaneously in action [28] and
whether the braid instability is of hyperbolic nature [3]. The
present work attempts to illustrate the elliptical and/or hy-
perbolic essence of the secondary instabilities in the se-
paration-induced transition in a low-disturbance (<0.1%)
environment. DNS of the flow field in the Pak-B blade
cascade is performed based on the experiments provided by
Huang [42] on one specific condition. We carefully analyze
the results in both physical space and Fourier space.

2 Numerical method

2.1 Problem definition

The current case is based on the experiment of a linear
cascade consisting of LPT blades Pak-B by Huang [42]. The
experiment was under the condition of a broad range of
Reynolds numbers and three FSTIs (freestream turbulent
intensity). At the lowest FSTI, the separation bubble on the
suction side does not reattach under low Reynolds numbers.
For higher Reynolds numbers, the length of the reattached
separation bubbles decreases as the Reynolds numbers in-
creases. It also decreases as the FSTI increases [42]. The

condition with the Reynolds number Re∞=U∞Cax/ν=5×10
4 in

a low-disturbance environment is chosen to conduct the
DNS. The inlet freestream velocity U∞ is 4.472 m/s, and the
axial chord length Cax is 0.1598 m defined in Figure 1. Under
this condition, shedding separation vortices in the aft section
of the blade are observed on the suction side. This is because
the blade spans a 95-deg turn, leading to a large adverse
pressure gradient in the channel. The quasi-laminar boundary
layer detaches at a fixed location of x≈70%-75%Cax (as
stated in the experiment, the accurate location is hard to
define). A series of vortices shed from the suction surface,
and transition happens in the shedding vortices during the
downstream convection process towards the trailing edge, as
reflected in Figure 2. The time-averaged flow field shows
that the boundary layer reattaches at a location of
x≈97.5%Cax, forming an enclosed average separation bub-
ble. The flow field under this condition is a typical laminar
separation/short bubble mode, as classified by Hatman and
Wang [7]. The purpose of this paper is to clarify the in-
stability mechanisms of this separation-induced transition
mode.
The x-coordinate axis is in the axial direction of the cas-

cade, and the origin of the coordinate system is set at the
location which possesses the minimum x-coordinate value
along the blade.

2.2 Numerical methods for DNS

A brief description of the mathematical formulation is given
in this subsection, and the details are described in Jiang and
Fu’s paper [43]. We use an in-house code for DNS based on a

Figure 1 Computation domain and the grid of GDNS. (a) Entire block structure; (b) separation region; (c) trailing edge.
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modified semi-implicit method for pressure linked equation
(SIMPLE) algorithm. An modified momentum interpolation
method (MMIM) [44] is used to instead of Rhie and Chow’s
method [45]. Considering that in DNS, the time scale is on
the dissipative scale, this small time step can lead to un-
physical oscillation if Rhie and Chow’s method is used [46].
An implicit scheme of third-order time accuracy is adopted.
Minimized dispersion and controllable dissipation (MDCD)
reconstruction by Wang et al. [47] is employed for the con-
vective terms in momentum equations to minimize the nu-
merical error and optimize spectral property. This numerical
algorithm is suitable for DNS and can capture rich flow
structures on affordable computational grid points.
Figure 1(a) exhibits the computational domain for DNS.

The inlet boundary is Lxi=Cax upstream of the leading edge,
and the outlet boundary is Lxo=2Cax downstream of the
trailing edge. According to the experiment, the pitchwise
extent is Ly=0.1412 m. The spanwise extent Lz is set to be
0.2Cax, which was proved to be adequate by Rizzetta and
Visbal [48].
According to the experimental data, FSTI is controlled to

be about 0.08% around the leading edge, and white noise is
added to the inlet boundary to generate this very low FSTI
environment following the approach for a similar situation
by Yang and Abdalla [28]. We also tested the case upon the
removal of any inlet fluctuations. Nevertheless, the various
inlet conditions result in little difference in the mean flow
field, as well as power spectral density (PSD) at the vortex
formation and breakup stage. The only visible difference
exists around the separation point and the upstream boundary
layer, where some peaks in spectra possessing smaller energy
in the no-inlet-fluctuation case. This difference generally
disappears in the aft portion of the primary instability stage.
This transition process seems to be self-sustained because
turbulent flow structures remain upon removal of any inlet
fluctuations. In pitchwise and spanwise direction, a periodic

boundary condition is employed. The second-order accurate
interpolation is adopted for the outlet boundary. At x>2.5Cax,
the grid size is enlarged to set up a buffer zone to avoid
unphysical reflections from the outlet boundary. The results
show that the unphysical reflection from the boundary is
constrained within three layers of grids.
The grid used for DNS is labeled with “GDNS”, with its

details shown in Figure 1(b) and (c). Its grid density in the x-y
plane is displayed in Table 1. 180 grid points are distributed
uniformly in the spanwise direction. As seen in Table 1 and
Figure 1(b), refinement of the grid is conducted in the aft
section of the blade on the suction side, where the separation-
induced transition happens. The amount of the grid points is
75 million. The grid is periodic in pitchwise and spanwise
directions.
A check of the grid resolution is done by comparing it with

the other DNS studies of the separation-induced transition, as
is presented in Table 2. The maximum value of the skin
friction coefficient Cf max of 0.01 is used for evaluating the
resolution. The first wall-normal grid space is Δy+max=0.68 in
wall units. Following the manner by Alam and Sandham
[30], the resolution is compared by tabulating the number of
points for y+<9 shown in Table 2. In the streamwise and
spanwise directions, the grid resolutions are Δx+max=4.42 and
Δz+max=3.94. The resolution used in the present study is
comparable to that of the other DNS cases using spectral
method [24,30] and finite difference [35] in spanwise di-
rection.
Moreover, grid-independence is checked with the other

two grids, labeled with “GCoarse” and “GFine”, whose grid

Figure 2 (Color online) Sketch for the separation region.

Table 1 Grid density distribution

block GDNS GCoarse GFine

1 120×80 96×64 120×80

2 120×82 96×64 120×100

3 323×80 256×64 453×80

4 323×160 256×128 453×198

5 82×160 64×128 100×198

6 323×160 256×128 453×198

7 533×160 352×128 652×198

8 280×80 204×64 320×80

9 533×280 352×224 652×320

Table 2 Grid resolution in wall units

Case Δx+ Δy+ at y+=9 Δz+ N (y+<9)

GDNS 4.42 0.90 3.94 12

Marxen et al. a) 3.00 0.83 3.17 12

Alam and Sandham b) 20.73 0.90 6.20 16

Jones et al. c) 3.36 >1.0 6.49 <10

a) See ref. [24], b) see ref. [30], c) see ref. [35]
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densities in the x-y plane are listed in Table 1. The grid
densities in z direction are the same as grid GDNS. The main
difference is in the separation region, where the grid size of
GCoarse is about 0.75 of GDNS and the number of the grids is
nearly half. One-dimensional variables on different grids,
namely wall-pressure coefficient and skin friction coeffi-
cient, are compared in Figure 3, as well as the velocity
profiles normalized by Umid-channel (the local streamwise
freestream velocity in the blade passage) in Figure 4, which
are discussed in sect. 3.1.
The initial condition for the DNS is obtained from the

RANS (Reynolds-averaged Navier-Stokes) result computed
on the DNS grid. With this initial flow field, 2×104 time steps
are calculated to obtain a convergent solution, and 1.2×105

more time steps within more than 300 vortex shedding per-
iods are used for the long-term values of the turbulence
statistics. With these time steps, a statistically steady state is
reached. The time step size is 1×10−5 s, small enough to
capture the turbulent structures.

2.3 Numerical methods for URANS

Two-dimensional unsteady Reynolds averaged Navier-
Stokes (URANS) equations are solved with the Reθ-γ model
[49] for comparison. The convective terms in the URANS
equations are discretized with the second-order upwind
scheme. The diffusive terms are approximated by the central
scheme. The grid is two-dimensional, and the computational
domain is the same as that for DNS in the x-y plane, with
5×104 grid points employed. Attempts were also made with
the transition models developed by Wang et al. [50,51], but
these models did not predict the flow field well under the
current situation.

2.4 Post-processing

In DNS result, 8×104 data collected during more than 200
periods of fundamental instability have been used for Fourier

transform in time to investigate the evolution of the fluc-
tuations. The Fourier transform is based on the streamwise
fluctuation velocity on the monitor points with a step of Δt. f
represents the frequency in time, and power spectral density
(PSD) is used to demonstrate the energy on different fre-
quencies. Welch’s method with a Hanning window function
is applied. The signal is split up into 100 overlapping seg-
ments (the overlapping length is 400) of length 4×104.
Double Fourier transform during 80 periods of the fun-

damental frequency is taken in t and z directions. (h, k) is
used to specify Fourier modes. h and k represent the nor-
malized wavenumber in time and spanwise, respectively.
The fundamental frequency for normalization is fv=265 Hz,
which is discussed in the next section. The spanwise wave-
number k=1 corresponds to the wavelength of 0.2Cax. Mode
amplitude is defined as u . The time step used for Fourier
analysis is 5Δt. An inverse double Fourier transform is used
to restore the physical flow field associated with a specific
mode (h, k).
Phase- and spanwise-average based on fundamental fre-

quency is performed also during 80 fundamental periods. In
the results, a series of vortex sheds from 84%Cax. The
streamlines are hyperbolic between the consecutive vortices
and elliptical in the vortex core. We trace the saddle point of
the hyperbolic streamlines and the vortex core in a phase and
obtain the phase- and spanwise-averaged saddle point tra-
jectory and vortex core trajectory, respectively.
Several derived quantities are computed. These key para-

meters are described in this subsection. The wall-pressure
coefficient is

C p p
U= 0.5 , (1)p

w
2

where pw is the average wall-pressure and p is the inlet
pressure, is the density of the gas, which is set to a constant
in incompressible flows. The skin-friction coefficient is

C U= 0.5 , (2)f
w

2

Figure 3 (Color online) Time-averaged and spanwise-averaged coefficient curves compared with experimental data [42] and LES data by Poondru [52]. (a)
Wall-pressure coefficient by different methods (S, R and T mark the time-averaged separation point, reattachment point and transition onset in the result on
GDNS, respectively). (b) Skin-friction coefficient by DNS.
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where the wall shear stress w is defined as:

µ u
n= . (3)w

In eq. (3), n stands for the wall-normal coordinate, and μ is
the viscous coefficient. u is the average streamwise velocity
paralleling to the wall. This case is a planar cascade. Thus not
only time-average but also spanwise-average is calculated
for DNS. For the two-dimensional URANS, the flow field is
only averaged in time. The fluctuation variables are obtained
by

= , (4)
where φ stands for any instantaneous variable, such as ve-
locity and pressure, is the average value. Reynolds
stresses are calculated with these fluctuation variables re-
spectively. A noteworthy variable is the TKE, which is de-
termined as:

( )u u v v w wTKE = 1
2 + + . (5)

Although in the strict sense, TKE should not be recognized
as fluctuation kinetic energy before the transition, we still use
the term “TKE” for laminar fluctuations without distin-
guishing for simplicity in the following discussions. The
three Reynolds stresses in eq. (5) are in the streamwise, wall-
normal and spanwise directions, respectively, instead of the

directions of coordinate axes of the Cartesian coordinate
system.
The displacement thickness δ1 and momentum thickness δ2

are determined using the average streamwise velocity pro-
files as:

u
U

n

u
U

u
U

n

= 1 d ,

= 1 d ,
(6)

d

d

1 0 mid-channel

2 0 mid-channel mid-channel

mid-channel

mid-channel

where dmid-channel is the wall-normal distance, Umid-channel is
the average streamwise velocity gained from the middle of
the channel, where the variables hardly change in the wall-
normal direction. These integrals are solved numerically.
The shape factor H12 is

H = / . (7)12 1 2

One thing that should be noticed before the discussion is
that we use the streamwise station to describe the location of
a point in the flow field. As illustrated in Figure 2, the point
P′ is the projection of P on the blade surface. The x-co-
ordinate of P′ is used to describe the streamwise station.

3 Mean flow

An accurate prediction of this separation-induced transition
is of great challenge. In Figure 3(a), Large eddy simulation
(LES) by Poondru [52] predicted an early reattachment, as
reflected by Cp of the transition region deviating greatly from
the experimental data, let alone the velocity profiles. As for
URANS, the Reθ-γ model manifests surprisingly good
agreements with the experimental data for Cp, as well as the
velocity profiles in the fore portion of the separation region
in Figure 4. However, the velocity profiles do not match well
with the experiment at station 85%Cax and 90%Cax because
of an early reattachment (see Figure 3(a)). This is the con-
sequence of the overrated growth rate of TKE by the Reθ-γ
model during the transition process. Therefore, only DNS
gives a reliable prediction of this complicated flow field.
Comparisons of the results on different grids are made, as

demonstrated in Figures 3 and 4. In Figure 3(a), a slight
deviation is observed in the result by GCoarse, which seems
ignorable. However, the deviation is severer, as reflected in
Figures 3(b) and 4, indicating an early reattachment. In
Figure 3(b), the skin friction coefficient by GCoarse is incon-
sistent with the other two at x>85%Cax and likewise, corre-
sponding difference is observed in the last two velocity
profiles in Figure 4, which reveals that the coarse grid size is
not small enough for directly predicting the transition pro-
cess and turbulent boundary layer.
The result by GDNS is much more reliable. In Figure 3(a),

the wall-pressure coefficient curves by GDNS and GFine are

Figure 4 (Color online) Time-averaged and spanwise-averaged stream-
wise velocity profiles at different stations compared with experimental data
[42]. d is the wall-normal distance.
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identically in good agreement with the experiment, as well as
the velocity profiles in Figure 4. A good match of the ve-
locity profiles, even for the small negative velocity in the
near-wall region, suggests that the results were grid-in-
dependent at this level of grid size. Nevertheless, a slight
difference is observed at x>85%Cax with the experimental
results, revealing the effect of the numerical error. For-
tunately, this difference is so small that it will not affect the
authenticity of the result by GDNS. The resolution of GDNS is
adequate, and overall the result is physical. Therefore, it is
chosen for further discussions.
The average separation, reattachment, and transition points

are obtained according to the information reflected by Cf
presented in Figure 3(b). A sharp decrease of Cf is found
before separation due to the deceleration of flow in the
channel. The average separation point is at 71%Cax, where Cf
changes from positive to negative. Around x=88%Cax, a
small overshoot of Cf arises, which is closely followed by a
sharp growth of the absolute value of the skin-friction
coefficient. The start point of this sharp growth corresponds
to the transition onset. This location just slightly precedes the
maximum mean displacement thickness location of 90%Cax,
as shown in Figure 5, where the displacement thickness δ1
reaches its maximum. This phenomenon is coincidental with
Hatman and Wang’s [7] observation for laminar separation/
short bubble mode. At x=90.5%Cax, the wall-pressure coef-
ficient Cp reaches its minimum, shown in Figure 3(a). The
maximum negative Cf is at x=93%Cax, where is the max-
imum reverse-flow intensity position. The computed se-
paration bubble reattaches at x=96%Cax.
Figure 5 shows the displacement thickness δ1, momentum

thickness δ2, and shape factorH12. The shape factorH12 starts
with a value of H12=2.6, the typical value of the attached
laminar boundary layer. A slight decrease of the shape factor
is observed, to the minimum value of 2.51. The rapid in-
crease of δ1 begins approximately from the separation point,
leading to an increase of H12. Then a local minimum value of
H12 is observed, as δ2 reaches its local maximum. In the
discussions above, this location is where a small overshot of
the skin friction coefficient is found in Figure 3(b). Then the
momentum thickness δ2 experiences rapid growth as the
transition happens. Towards the average reattachment point,
the growth of δ2 slows down and δ1 keeps decreasing. After
the reattachment point of 96%Cax, the growth rate of δ2 is
extremely low, preventing H12 from rapidly decreasing. Then
H12 slowly goes down to its minimum value of 1.75 at the
trailing edge.

4 Fluctuation statistics

In this section, the fluctuation statistics are discussed to help
explain the secondary mechanisms of the separation-induced

transition. Before focusing on the transition process, we first
have an overall image of the flow field and create a general
frame of this flow field. Figure 6(a) shows the overall TKE
contour as well as the average streamline and the line of
maximum TKE. With the information from this figure and
sketch for the separation region in Figure 2, we can divide
the instability process into three stages: primary instability,
secondary (or even ternary) instability in the vortex forma-
tion region and the vortex breakup region.
Primary instability refers to the dominant growth of TKE

and streamwise fluctuation velocity u in the separated shear
layer upstream of the vortex formation region, as reflected by
Figure 6(a) and (b). TKE is amplified, reaching a maximum
at 93%Cax in the vortex breakup region downstream of the
average vortex core. After reattachment, TKE maintains at a
high level during the relaxation process of the turbulent
boundary layer, and gradually decays in the wake.

4.1 Fluctuation statistics in the shear layer before the
vortex formation

In Figure 6(a), TKE dominantly grows in the shear layer,
suggested by the superposition of the maximum spanwise
vorticity line and maximum TKE line. In Figure 7, the
spanwise and wall-normal fluctuations are more than two
orders of magnitude smaller than those in the streamwise
direction in the upstream boundary layer, which are further
suppressed in the separated shear layer at the primary in-
stability stage. Figure 8 reveals the PSD at the points in the
shear layer. Comparing the spectra at station 70%Cax in the
attached laminar boundary layer and station 75%Cax in the
separated shear layer at the primary instability stage, we can
observe the similar energy distributions. It is logical to
consider primary instability in the separated shear layer to be

Figure 5 (Color online) Displacement boundary layer thickness δ1, mo-
mentum boundary layer thickness δ2 and shape factor H12.
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an extension of the instability process of the attached
boundary layer. The energy of high frequencies does not
increase in the fore portion of the shear layer, while that of
the frequencies lower than 100 Hz experiences a mild in-

crease.
The distinct peaks in the shear layer (see lines labeled as

“70%Cax” and “75%Cax” in Figure 8) are actually in con-
nection with fv=265 Hz which corresponds to the shedding

Figure 6 (Color online) Contours of fluctuation statistics. (a) Overall TKE with average streamlines, (b) u u , (c) w w . Long dashed line: maximum
spanwise vorticity; short dashed line: maximum reverse velocity line; dash-dot line: maximum TKE; solid line: phase- and spanwise-averaged saddle point
trajectory.

Figure 7 (Color online) Evolution of TKE in the near-wall regions and its
maximum value.

Figure 8 (Color online) PSD of streamwise fluctuation velocity in t di-
rection, monitor points along the maximum spanwise vorticity line.
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frequency of two-dimensional K-H rolls. The vortex shed-
ding frequency is calculated from the shedding period Tv
≈0.0037 s estimated as the time interval of consecutive K-H
rolls. We mark the peak of 1/8fv as fl in the figure. The other
peaks, including the peak fv, are the harmonics of fl. The
energy of the 265 Hz waves starts to increase sharply in the
fore portion of the primary instability stage. For separated
shear layer, the typical Strouhal number Srδ2s=fvδ2s/Ues for
the K-H instability, based on the shedding frequency fv,
momentum thickness δ2s and boundary-layer-edge velocity
Ues at the separation point, has been reported in many lit-
eratures, including 0.005-0.01 by Yang and Voke [18] and
0.008-0.013 by McAuliffe and Yaras [17]. In the current
case, Strouhal number Srδ2s is 0.0093, falling in the typical
range for K-H instability. This is the evidence that the
dominant instability mechanism at the primary instability
stage is inviscid K-H instability.

4.2 Fluctuation statistics in the vortex formation and
vortex breakup region

The vortex formation region starts at about 84%Cax, where
the separated shear layer rolls up into a quasi-two-dimen-
sional vortex, namely K-H roll. In Figure 7, although the
streamwise fluctuation is still dominant in the shear layer, the
difference arises when the K-H roll forms. Both wall-normal

Reynolds stress v v and spanwise Reynolds stress w w
experience the dramatic growth in the vortex formation and
breakup region until they reach the same order of magnitude

as u u . As a result, TKE also receives a boost, where the

transition is considered to happen. It is not a surprise that

v v surges in the vortex formation region since the vortex

intensifies the wall-normal flow. Nevertheless, the growth of

w w , which indicates the appearance of three-dimensional

flow structures, is not necessary.

In the vortex formation region (see the line labeled as
“85%Cax” in Figure 8), the energy growth concentrates
mainly on the band of [30 Hz, 300 Hz], which is much wider
than that at primary instability stage. In the vortex breakup
region (see the line labeled as “90%Cax” and “95%Cax”), the
unstable band broadens across an even wider range of fre-
quencies, especially the high frequencies. The shedding
frequency fv=265 Hz becomes the most energetic frequency
at 90%Cax. However, in the aft portion of the vortex breakup
process, the peak of 265 Hz disappears as a result of the
relaxation process of the reattached boundary layer.
The evolutions of oblique modes (h, k) in Figures 9 and 10

are used to clarify the mechanisms responsible for three-
dimensionality. Three typical frequencies of the modes,
namely fundamental frequency fv and its subharmonics fv/2,
fv/4 (corresponding to h=1, 0.5, 0.25), are investigated. We
also check all the spanwise wavenumbers k between 0 and
14. Only the modes possessing particular features are ex-
hibited in the figures, while the others are just briefly de-
scribed in the text.
In Figure 9(a) and (b), the two-dimensional modes (1, 0),

(0.5, 0) and (0.25, 0) possess much larger amplitudes if
compared with their respective oblique modes, especially the
mode (1, 0). The mode (0.25, 0) starts to increase at 78%Cax

after a sluggish growth, while the mode (0.5, 0) increases
quickly from 76%Cax. The mode (1, 0) gains the largest
growth rate in the aft portion of the primary instability pro-
cess from 80%Cax after a short negative growth. It quickly
becomes the most-amplified mode in the vortex formation
region. The situation is different from the forced separation-
induced transition by Marxen et al. [24]. In their case, the
mode (1, 0) was excited upstream of the bubble and pos-
sessed the largest amplitude in the whole flow field, while
modes (0.5, 0) and (0.25, 0) were less energetic (see Figure
12(a) in ref. [24]). The same situation was observed for the
subharmonic oblique modes (see Figure 11 in ref. [24]). In
the current case, in the fore portion of the vortex formation

Figure 9 (Color online) Amplification curves for the maximum streamwise fluctuation u max . (a) Comparison among different modes; (b) fundamental
oblique modes with high wavenumbers.
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region, the dominate modes are still in low-frequency range
(see Figure 8 and Figure 9(a)), with the modes (0.25, k) being
nearly one order of magnitude larger than the modes (1, k) at
84%Cax. These gaps have been narrowed downstream since
the modes (1, k) have a greater growth rate. Apart from the
fundamental modes with high wavenumbers, which stop
increasing at 91%Cax, the other oblique modes saturate at
about 93%Cax.
In Figure 10, before K-H roll forms, all the oblique modes

are active only in the dead-air region along the line of
maximum reverse velocity. The phenomenon may be at-
tributed to the three-dimensional structures travel slowly
upward with near-wall reverse flow. Turning back to the

contour of w w in the vortex formation region in

Figure 6(c), we can also find out that w w keeps its max-

imum along the maximum reverse velocity line in the dead-
air region and the fore portion of the vortex formation region.
It then turns towards the phase-averaged saddle point tra-

jectory. For u u in Figure 6(a), we can also find its pre-

ferential growth near the saddle point trajectory, leading to a
weak local maximum on the trajectory line from station 88%
Cax to 91%Cax. These varieties may suggest that hyperbolic
instability promotes the three-dimensionality of the flow

field strongly. However, the trajectory of the phase-averaged
saddle point is close to the trajectory of the vortex core,
making it not easy to distinguish the hyperbolic instability
mechanism from the elliptical instability mechanism. It is
necessary to give a further analysis based on the double
Fourier transform. The following paragraph concentrates on
the amplitudes of Fourier modes and the instantaneous
streamwise fluctuation velocity for a specific mode via in-
verse double Fourier transform. The former is useful in
picking out the unstable modes near the average trajectories,
and the latter is helpful to distinguish the elliptical instability
from the hyperbolic instability.
The shapes of streamwise amplitude in the vortex forma-

tion region for oblique modes with h=0.25 are exhibited in
Figure 11(a). The period for these modes is 4 times the
fundamental period. For k=3-4, a new local maximum of u
emerges near the phase-averaged saddle point and vortex
core position. The primary streamwise wavelength is esti-
mated to be λx0=0.0998Cax obtained from the instantaneous
streamwise fluctuation velocity contour for mode (1, 0).
Thus the ratio between the spanwise wavelength λz and
fundamental streamwise wavelength λx0 falls in the range of
0.501-0.668. The contour of u for mode (0.25, 3) is shown
in Figure 10(a) as a representative, and the other mode

Figure 10 (Color online) Contours of streamwise fluctuation velocity amplitudes u for different modes (h, k). (a) (0.25, 3); (b) (1, 6); (c) (1, 9). Long
dashed line: maximum spanwise vorticity; short dashed line: maximum reverse velocity; solid line: phase- and spanwise-averaged saddle point trajectory;
dash-dot line: phase- and spanwise-averaged vortex core trajectory.
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evolves similarly. A new peak arises in the aft portion of the
vortex formation region and exists between station 87%Cax

and 90%Cax. Figure 12 reveals the instability mechanism
related to the peak. In Figure 12(a), we can see a thin strip of
positive u between station 87%Cax and station 90%Cax. The
intensity of the strip is enhanced as the saddle point of the
instantaneous streamlines passes, as shown in Figure 12(b).
This is followed by its dissipation as the saddle point leaves
in Figure 12(c) and (d). This mode is not sensitive to ellip-
tical instability, as shown in Figure 12(c) that it continues to
vanish in the vortex core. This strip does not convect with the

K-H rolls and vanishes to zero in the next fundamental
period. During the third fundamental period, it is negatively
enhanced in the braid region similar to the first fundamental
period. Therefore, with the help of instantaneous amplitudes,
evidence is provided for hyperbolic instability for low-fre-
quency waves.
In Figure 11(b), for fundamental modes with h=1, two

kinds of secondary instability mechanisms can be seen in the
vortex formation and breakup region. The modes with k=
9-11 are excited at the location of the average saddle point, as
marked with a box in the figure. Figure 10(c) shows the

Figure 12 (Color online) Contours of u amplitudes for mode (0.25, 3) together with instantaneous streamlines computed from modes (0, 0) and (1, 0). (a)
t=0; (b) t=t0+0.25Tv; (c) t=t0+0.75Tv; (d) t=t0+Tv. The braid region is marked by the box.

Figure 11 (Color online) Streamwise fluctuation velocity amplitudes u for different modes (h, k), normalized by u max
0

=u max
(1, 9)

station x=88%Cax in (a).
(a) h=0.25, k=2, 3, 4, 5, 6, 7, 8 (from left to right); (b) h=1, k=5, 6, 7, 8, 9, 10, 11, 12 (from left to right). Thin line: the location of phase- and spanwise-
averaged vortex core; thick line: the location of phase- and spanwise-averaged saddle point.
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contour of amplitude for mode (1, 9). In this figure, at station
87%Cax, a local maximum in the braid region emerges as
soon as the saddle point appears and maintains its value as a
maximum, suggesting the relevant role of the hyperbolic
instability. In the instantaneous flow field in Figure 13(a), a
local maximum for this mode is in the same position. This
local maximum convects downstream with saddle point as
shown in Figure 13(b)-(d), during which it is intensified. At
t=0.75Tv, the streamwise fluctuation velocity in the braid
region emphasized by a box in the figures is about one order
of magnitude larger than that at t=0. During this process, the
shape of the local maximum is elongated in the ‘‘stretching’’
direction (the direction of principal extensional strain) of the
hyperbolic base flow by the ‘‘stretching’’ effect [53], which
is typical in hyperbolic instability. It gradually merges with
the downstream fluctuations in the vortex breakup region.
The mode (1, 9) possesses a ratio between the spanwise
wavelength λz and λx0 of 0.223, which is consistent with the
ratio of 0.225 in Marxen et al.’s [24] case and 0.2 for Mode B
in ref. [34], associated with the hyperbolic instability by
Jones et al. [35]. The spanwise wavelength λz of fundamental
modes excited in the braid region falls in the range of 0.182-

0.223λx0 in the current case. The modes (1, 9-11) evolve in
almost the same manner and their amplification curves for

u max are almost the same in the vortex formation region, as

shown in Figure 9(b).
The other secondary instability mechanism is associated

with the mode (1, 6), with the maximum of its amplitude u
locating in the same position as mode (1, 9) (see Figure 11
(b)). In fact, this maximum emerges at station 88%Cax and
disappears at station 90%Cax in Figure 10(b). From the in-
stantaneous streamwise fluctuation velocity contour shown
in Figure 14(a) and (b), we can also see the transient ex-
citation of the mode in the vortex core between station
88%Cax and 90%Cax. Comparing with mode (1, 9) in Figure
9(b), we can see the growth rates of these modes are almost
the same in this region. The spanwise wavelength λz is
0.334λx0, falling in the range of 0.200-0.400 by Maucher
et al. [32] for the fundamental elliptical instability (calcu-
lated from Figure 3 in ref. [32]). The good agreement con-
vinces the existence of elliptical instability, although it just
comes into effect in a short distance.
The subharmonic modes are also checked, whose contours

of u , however, are less regular, with various local maxima

Figure 13 (Color online) Contours of u amplitudes for mode (1, 9) together with instantaneous streamlines computed from modes (0, 0) and (1, 0). (a) t=0;
(b) t=0.25Tv; (c) t=0.5Tv; (d) t=0.75Tv. The braid region is marked by the box.
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being visible. The subharmonic modes are always associated
with the pairing of K-H rolls [28]. Thus it is likely that no
vortex pairing exists. More evidence about this secondary
instability mechanism in the physical space is discussed in
the next section.
Besides, we supplement two noteworthy things here.

Firstly, in Figure 10(b) and (c), before hyperbolic instability
or elliptical instability comes into effect, a local maximum is
found at the bottom of the shear layer for modes (1, 6) and
(1, 9). The other fundamental modes with the spanwise
wavenumber k lying within a wide range of 2-12 possess a
similar feature. In the shear layer, all the fundamental ob-
lique modes share almost the same phase velocity and
streamwise wavelength, as well as the mode (1, 0). Although
the unstable wavepackets originate at the very upstream
station in the aft portion of the primary instability stage, their
fluctuation intensities are weaker than that in the braid region
(see Figure 13(a) and (b)) and the vortex core (see Figure 14
(a)) at the transition onset (station 88%Cax). But after the
transition, their energy experiences a sharp increase and
reaches the same level as that in the braid region (see Figure
13(c) and (d)) or vortex core (see Figure 14(b)). In Figure 13
(a)-(c), the unstable wavepackets are also likely to be af-
fected by the ‘‘stretching’’ effect of the hyperbolic base flow,
as they are also elongated in the same direction as the wa-
vepackets in the braid region.
Secondly, Figures 10 and 11 show some other high-energy

regions. The most noteworthy feather is that the modes
possess large amplitudes in the near-wall region. From Fig-
ure 12, we can find that the wavepackets in the near-wall
region travel upstream. This is possible due to the feedback
effect by global instability that wavepackets from down-
stream might entrain turbulent fluid, which possibly affected
transition [2]. Apart from the two types of instability me-
chanisms causing three-dimensionality investigated in the
current manuscript, the global instability may also be active,
since the maximum reverse flow velocity magnitude reaches
19% of the local freestream velocity. The two kinds of me-

chanisms require an in-depth investigation via stability
analysis, which can be the focus of future works.

5 Secondary instability mechanisms and flow
structures

As reported in sect. 1, secondary instability mechanisms of
the separation-induced transition have not been well under-
stood until now. In this section, the instantaneous physical
flow field is studied to find more pieces of evidence for the
possible secondary instability mechanisms.
Contours of the absolute value of instantaneous spanwise

fluctuation velocity w are exhibited in Figure 15, re-
presenting the spanwise fluctuation intensity for four snap-
shots within one shedding cycle. The K-H roll, labeled with
C, forms at station 84%Cax (at t=t0−2Tv/3, not shown in the
figure). It sheds downstream, during which this two-di-
mensional vortex generally becomes three-dimensional and
the spanwise fluctuation intensity is amplified more than two
orders of magnitude.
In Figure 15(a) and (d), the flow fields at t0 and t0+Tv are

almost the same, proving that the flow field is periodic in
time. In the figures, the hyperbolic instability comes into
effect near the saddle point of the hyperbolic streamlines
between consecutive K-H rolls. In Figure 15(a) and (d), a
strip of local maximum is observed along the stretching di-
rection of the hyperbolic background flow. Preferential
growth of u appears at the same location as marked with a
red arrow in Figure 16(a) as well. This peak can be traced
back upstream as the hyperbolic streamlines emerge. It
moves with the saddle point, during which its intensity is
elevated. This local maximum is located exactly on the peak
marked with an arrow in Figure 10(a) and (c), suggesting that
it is related to the excitation of these modes due to the hy-
perbolic instability in the braid region.
An arrow is also used in Figure 16(b) to pick out the vortex

structures at the exact same location. The local maximum of

Figure 14 (Color online) Contours of u amplitudes for mode (1, 6) together with instantaneous streamlines computed from modes (0, 0) and (1, 0). (a)
t=11/16Tv; (b) t=7/8Tv. The vortex core region is marked by the box.
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u is not on the vortex tubes but between a pair of them.
Associated with Figure 17(a), we can conjecture that the
local maxima of streamwise and spanwise fluctuation velo-

cities are generated by the streamwise vortex tubes. As a pair
of streamwise vortices rotate about each other, they sweep
the energetic freestream fluid into the near-wall region and

Figure 15 (Color online) Contours of w above 0.01 with streamlines in the x-y cross plane at z=0. (a) t=t0, (b) t=t0+Tv/3, (c) t=t0+2Tv/3, (d) t=t0+Tv.

Figure 16 (Color online) The flow field near at t=t0. (a) Contour of streamwise fluctuation velocity u in the x-y cross plane at z=0, together with
instantaneous streamlines; (b) iso-surfaces of λ2=−1000 and −70000 s

−2, coloured by the streamwise fluctuation velocity u . λ2 is a vortex identification [54].
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eject the low-speed fluid upward, resulting in local maxima
of u between the pair of vortices and w up the vortices. At
t=t0, in Figure 17(a), the streamwise vortices can be found in
the braid region between K-H rolls A and C, while they are
absent in the K-H rolls. In Figure 16(b), the K-H roll C is still
quasi-two-dimension and the K-H roll A just presents weak
three-dimensional features on its top and in the vortex core at
this moment.
If only depends on the streamlines in the x-y cross plane,

one may speculate that the vortex structures just experience a
pure translation from t=t0 to t=t0+Tv/3. However, when
comparing the streamwise vorticity field in Figure 17(a) and
(b), we can find the top of the K-H roll A is occupied by the
streamwise vortex tubes at t=t0+Tv/3. These streamwise
vortex tubes stretch intensely towards not only downstream
but also upstream, resulting in the elongated and enhanced
strip of w maximum along the “stretching” direction of the
hyperbolic background flow in Figure 15(b).
This phenomenon is very similar to the evolution of mode

(1, 9) in Figure 13, which is affected strongly by hyperbolic
instability. To associate the physical phenomena with oblique
modes, Fourier transform in the spanwise direction is con-

ducted in Figure 18 to exhibit the instantaneous spanwise
wavenumber of the saddle point and the vortex core. In
Figure 18(a), by tracing the saddle point between vortex C
and D, we prove that k=3 (or 4) and k=9 are the dominant
wavenumbers in the braid region. They likely correspond to
the aforementioned modes (0.25, 3) and (1, 9), respectively.
The fluctuation energy in the braid region increases in both
low and high spanwise wavenumber range, which is different
from the situation in the vortex core region in Figure 18(b).
At t=t0+Tv, the high wavenumber waves are still at a low
level in the core of vortex D. The peak in the vortex core
region is k=6, which is likely to refer to the unstable mode (1,
6) discussed in sect. 4.2.
In Marxen et al.’s [24] result, the shear layer possesses a

peak-valley character, and the K-H roll is spanwise modu-
lated, corresponding to the elliptical instability of the vortex
core. However, a similar phenomenon does not emerge in the
current case. In Figure 16(b), the iso-surface of λ2=−1000 s

−1

shows that the K-H roll A seems spanwise-aligned, with the
shear layer above it presenting a spanwise-periodic feature.
However, when decreasing the value of λ2 to −70000 s

−1 of
which the iso-surface can show the vortex core, we can seek
out some evidences for elliptical instability. The vortex core

Figure 17 (Color online) Instantaneous iso-surface of streamwise vorticity x= 300 s
−1 in red and x=−300 s

−1 in blue with streamlines in the x-y cross plane
at z=0 at (a) t=t0; (b) t=t0+Tv/3.

Figure 18 (Color online) PSD of streamwise fluctuation velocity in z direction. (a) At the saddle point of the streamline between vortex C and D in
Figure 15(b)-(d); (b) at the vortex core of vortex D in Figure 15(b)-(d).
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is also spanwise-periodic with a higher wavenumber than the
shear layer. The elliptical instability comes into play later
than hyperbolic instability. Moreover, It exerts much less
influence on the flow field than hyperbolic instability be-
cause the spanwise-periodic feature is not so obvious in
physical space as the spanwise modulated K-H roll via el-
liptical instability shown in Figure 7 in ref. [28].
Some local maxima of w are found near-wall, traveling

upstream with the reverse flow. These spanwise fluctuations
near-wall accelerate the transition process by affecting the
bottom of the spanwise vortex C as it sheds downstream.
Consequently, in Figure 15, the three-dimensionality of
vortex C starts from the bottom, and the upper part is of
negligible w value in the vortex formation region. This
process is enhanced when vortex C reaches 88%Cax, where it
encounters the vortex packet B directly (see Figure 15(b)). A
local maximum of fluctuation intensity is near the interface
of vortex C and B. Surprisingly, this vortex packet B does not
convect downstream and hovers around 88%Cax, keeping
interacting with the K-H rolls shedding from upstream. The
energy from the downstream flow field can affect the braid
region to some extent. As can be seen in Figure 15(b), the
vortex packet B pumps near-wall spanwise fluctuation en-
ergy towards the braid region. Besides, in Figure 15(a), the
vortex A itself transports small-scale structures to the braid
region upstream, similar with Marxen et al.’s [24] result (see
Figure 14 in ref. [24])
As shown in Figure 15, despite the existence of mutual

interaction between vortex C and B, no vortex pairing is
observed in this flow field. As declared by McAuliffe and
Yaras [16], the presence of pairing was only observed at low
Reynolds numbers of about 100, and they also failed to
capture pairing instability. The Reynolds number Reδ2s based
on Ues and δ2 of the current case is 165, still not low enough
to see the vortex pairing phenomenon.

6 Summary and concluding remarks

The present work focuses on the origin of three-dimension-
ality of K-H rolls in the separation-induced transition in a
very-low-disturbance environment at a Reynolds number of
5×104. The vortex formation and vortex breakup region are
investigated in detail, both in Fourier space and physical
space, to illustrate the secondary instability mechanisms.
After the shear layer rolls up into a K-H roll, the hyperbolic

secondary instability, which is dominant in the current case,
is active via elevating the energy for fundamental modes
with specific spanwise wavelengths in the braid region. By
relating the streamwise vortices to the hyperbolic stream-
lines, we provide strong evidence for the existence of hy-
perbolic instability. The streamwise vortices, originating in

the braid region, stretch intensely towards both upstream and
downstream. They possess spanwise wavelengths in the
range centered on 0.2 of the primary streamwise wavelength,
which is in accordance with the precedent literatures about
the hyperbolic instability. The elliptical instability comes
into effect later, responsible for the three-dimensional within
the vortex core region. The unstable modes sensitive to el-
liptical instability possess spanwise wavelengths of about 0.4
of the primary streamwise wavelength.
Nonetheless, some different features are in the current case

in comparison with the precedent literatures. Due to the
unforced feature of the incoming flow, the modes with a
much lower frequency than the fundamental ones are
dominant in the vortex formation region. The results also
show that some low-frequency modes are also excited in the
braid region, which turns out to be the consequences of hy-
perbolic instability. These works are attempted to improve
the current understanding of the secondary instability me-
chanisms in the separation-induced transition.
Besides the two important secondary instability mechan-

isms associated with the K-H rolls, there are still two pos-
sible instability mechanisms active in the flow field, as
discussed in sect. 5. They are the instability in the shear layer
and the feedback effect by global instability. More in-
vestigations utilizing the stability analysis are needed to
provide more evidence for the two mechanisms.
This work is based on a condition with a specific Reynolds

number and very low inlet FSTI, under which a short se-
paration bubble forms. It focuses on the instability me-
chanisms for the laminar separation/ short bubble mode.
More numerical and experimental investigations are needed
for instability mechanisms of other types of separation-in-
duced transition. They are the laminar separation/long bub-
ble mode under low Reynolds and transitional separation
mode in a high-disturbance environment [7].
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