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Fluid-structure interaction (FSI) is a class of mechanics-related problems with mutual dependence between the fluid and
structure parts and it is observable nearly everywhere, in natural phenomena to many engineering systems. The primary
challenges in developing numerical models with conventional grid-based methods are the inherent nonlinearity and time-
dependent nature of FSI, together with possible large deformations and moving interfaces. Smoothed particle hydrodynamics
(SPH) method is a truly Lagrangian and meshfree particle method that conveniently treats large deformations and naturally
captures rapidly moving interfaces and free surfaces. Since its invention, the SPH method has been widely applied to study
different problems in engineering and sciences, including FSI problems. This article presents a review of the recent develop-
ments in SPH based modeling techniques for solving FSI-related problems. The basic concepts of SPH along with conventional
and higher order particle approximation schemes are first introduced. Then, the implementation of FSI in a pure SPH framework
and the hybrid approaches of SPH with other grid-based or particle-based methods are discussed. The SPH models of FSI
problems with rigid, elastic and flexible structures, with granular materials, and with extremely intensive loadings are de-
monstrated. Some discussions on several key techniques in SPH including the balance of accuracy, stability and efficiency, the
treatment of material interface, the coupling of SPH with other methods, and the particle regularization and adaptive particle
resolution are provided as concluding marks.
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1 Introduction

1.1 Fluid-structure interaction and the role of compu-
tational FSI

Fluid-structure interaction (FSI) is a class of mechanics re-
lated problems with mutual dependence between the fluid

and structure parts. The structure moves and deforms due to
the force applied by the neighboring fluid, whereas the
movement and deformation of the structure in turn influence
the flow dynamics of the fluid. The interactions lead to the
mutual dependence of fluids and structures and this two-way
interaction loop continues through multiple cycles, possibly
resulting in structural damage and less-than-optimal flow.
The solid object interacting with ambient fluids can either be
a rigid body, an elastic or plastic or even flexible structure, or
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a granular material. As such, diversified FSI problems are
observable nearly everywhere in engineering and sciences,
and also in nature. Typical FSI examples include water entry
(e.g., diving of sportsmen) and water exit (e.g., underwater
launch of missiles) [1], marine structures interacting with
waves and current [2], high-speed vehicles (e.g., train, air-
craft and etc.) with aerodynamic loadings [3], hydraulic
fracturing in enhanced oil recovery [4], the migration and
variations of cells in blood vessels [5] and many others [6-9].
Investigations of fluid-structure interactions are very im-

portant in the design of many engineering systems, e.g.,
marine structures, aircraft, spacecraft, engines and bridges
etc. Failing to consider the FSI effects sometimes may be
catastrophic, especially for structures comprising materials
susceptible to fatigue and for complex fluid flows with
moving boundaries. An infamous example is the collapse of
the Tacoma Narrows Bridge in 1940 due to the failure of its
aeroelastic design, which is a class of FSI-based systems
involving the interactions between the inertial, elastic, and
aerodynamic forces that occur when an elastic body is ex-
posed to air [10]. Similarly, the other class of FSI, hydro-
elasticity, occurs when a solid object is exposed to a liquid.
One typical example is the liquid sloshing [11,12], in which
liquid oscillations due to the motion of a container impose
substantial magnitudes of forces and moments to the con-
tainer structure and further affect the stability of the con-
tainer transport system in a highly adverse manner. As such,
violent liquid sloshing in an oil or liquefied natural gas
(LNG) ship can result in local breakages and global in-
stability to the ship, and may further lead to leakage of oil
and capsizing of the ship. Similarly, the sloshing of liquefied
fuel inside the fuel tank in an aeronautic or astronautic craft
can also disturb or even make normal navigation of the craft
breakdown.
FSI problems in general are too complex to solve analy-

tically and theoretical investigations are usually valid for
simple cases (linear or weakly nonlinear). Experimental
techniques are generally expensive, and sometimes certain
physical phenomena related to FSI may not be scaled in a
real experimental setup. Owing to the recent advancements
in the computational techniques and the availability of effi-
cient computing platforms, more studies on FSI are focused
on developing numerical models and carrying out simula-
tions. Researches in the fields of computational fluid dy-
namics (CFD) and computational structural dynamics (CSD)
are still on-going, but the maturity of researches in these
fields enables the numerical simulation of fluid-structure
interaction. There exist some books and reviews addressing
the numerical works on FSI problems. Morand and Ohayon
[13] presented some numerical methods for modeling fluid-
elastic structure interactions in the fields of hydroelasticity
and structural acoustics. Dowell and Hall [14] discussed in
detail the nonlinear dynamical modeling of FSI problems

with its applications in aerospace engineering. Shyy et al.
[15] introduced several numerical methods for moving
boundary problems including the finite-volume modeling of
FSI. Hou et al. [16] presented a review on the representative
numerical methods available for computing FSI problems,
and they categorized the selected methods and assessed their
accuracy and efficiency.
However, FSI usually involves either weak or strong

nonlinearity and the mutual dependence of fluids and
structures is a two-way interaction loop, which is generally
time-dependent [14,16]. For strong FSI problems, the
structure may undergo large deformations in elastic or plastic
regimes, or even be damaged. On the other side, the fluid
may demonstrate complex flow patterns with rapidly chan-
ging free surface or even free surface breakup [9,17]. The
inherent nonlinearity and time-dependence together with
possible large deformations, moving solid-fluid interfaces
and free surfaces present great challenges for numerical
modeling of FSI problems. Truly predictive FSI methods are
in high demand in industry, research laboratories, medical
fields, space exploration, and many other fields.

1.2 Grid-based methods

There are basically two approaches in modeling FSI pro-
blems. The first one is usually referred to as the monolithic
approach, in which the equations governing the fluid flow
and the movement of the structure are solved simultaneously
with a single solver. As the coupling technique for a fluid and
a structure is implemented at each time step in a single sol-
ver, the monolithic approach should be more accurate while
it requires an effective algorithm and a corresponding com-
puter program developed for this particular combination in
the physical systems. The second one is usually referred to as
partitioned approach, in which the equations governing the
fluid flow and the movement of the structure are solved se-
parately with two distinct solvers. The partitioned approach
facilitates solution of the flow equations and the structural
equations with different algorithms which have been devel-
oped to handle either flow dynamics or structural mechanics.
It is therefore flexible and preserves code modularity because
an existing CFD solver and an existing CSD solver can be
coupled in this approach. However, as the interaction be-
tween fluid and structure is not implemented at each time
step in a single solver, the partitioned approach is generally
not as accurate as the monolithic approach. Moreover, the
coupling algorithms in the partitioned approach usually face
problems in achieving robustness and stability.
Currently, most of the existing CFD and CSD solvers are

based on grid-based methods such as the finite difference
method (FDM) [18-20], the finite volume method (FVM)
[21-23] and the finite element method (FEM) [24-26]. When
modeling FSI problems, a grid-based CFD solver is usually
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coupled with a grid-based CSD solver as a partitioned ap-
proach. These grid-based methods have been widely applied
to solve the governing ordinary or partial differential equa-
tions (PDEs). For a long time, the most widely used tech-
nique for solving PDEs defined in problem domains with
simple geometries is FDM, while in recent decades the FVM
dominates in solving fluid flow problems. FEM plays an
essential role for computations in solid mechanics, and it is
also often applied to FSI problems, for instance, particulate
flows [27-29]. In grid-based methods, a continuum domain is
divided into discrete small subdomains by the so-called
discretization or meshing process. The individual grid points
or nodes are connected together in a pre-defined manner by a
topological map, which is termed as elements in FEM, cells
in FVM, and grids in FDM. The meshing techniques are
developed to set up the relationship between the spatial
nodes before solving PDEs. By this way, the governing
equations can be converted to a set of algebraic equations
with nodal unknowns for the field variables.
Due to the pre-defined mesh, conventional grid-based

methods suffer from special difficulties which limit their
applications in modeling FSI problems. For Lagrangian grid-
based methods in a CSD solver such as FEM, a grid is at-
tached on, moves and deforms with the moving objects. It is
very difficult to treat large deformations due to possible
mesh entanglement. Special techniques like mesh rezoning
are usually required, and these techniques are often tedious
and time-consuming, and may even introduce additional
inaccuracy into the solution [17,30]. For a CFD solver, it is
not easy for the Eulerian grid-based methods such as FDM
and FVM to treat free surfaces, deformable boundaries,
moving interfaces. Special techniques such as the volume of
fluid (VOF) [31-33] and level set (LS) [34,35] are usually
employed to track changing interfaces or free surfaces. For
both CFD and CSD solvers, the treatment of pre-defined
meshes introduces another classification of FSI analysis. It is
generally a challenging task to generate mesh for situations
with complex geometries or moving boundaries. Some ad-
ditional complicated mathematical transformations are
usually required, and this can be even more computationally
expensive than solving the problem itself. Moreover, for
implementing the interaction of fluid and structure in FSI, the
precise location of the fluid-structure interface and in-
formation exchanges between the two parts also need to be
taken into consideration.
The arbitrary Lagrangian-Eulerian (ALE) description of

the finite element method is also widely used as a monolithic
approach for dealing with FSI problems [36,37]. In ALE, the
fluid sub-domain is discretized with a moving mesh that may
fit the solid boundary. The equations for the fluid flow are
solved at the arbitrarily moving nodes rather than at fixed
points (as in the Eulerian grid-based methods like FDM and
FVM), so that the fluid meshes actually follow the structural

deformations. However, the large deformations of the fluid
domain require the regeneration of fluid mesh that may in-
crease the algorithmic complexity together with the com-
putational cost. It is sometimes very difficult to re-mesh
when a large structural deformation or displacement occurs
in the simulation, especially in the presence of complicated
interface geometry [38].
Some other grid-based or mesh reduced techniques have

also been developed to deal with FSI problems. For example,
some researchers applied the boundary element method
(BEM) [39,40] to model liquid sloshing problems. However,
the simulations of FSI problems using BEM are usually
limited to relatively simple geometries and physics [41].
Vreman [42,43] applied the so-called overset grid method to
treat FSI problems, i.e., particle-laden pipe flows. This
method is based on two sets of background meshes including
a fixed mesh for the fluid and a body-fitted mesh for each
particle, and therefore the overset grid method for FSI is
actually a partitioned approach. In Vreman’s work, the ve-
locity and pressure on different background grids are coupled
by third-order Lagrange interpolations. As such, the frequent
generation and deformation of computational grids due to
moving boundaries can be avoided. However, the overset
grid method is still under development, further improve-
ments and validations are necessary.

1.3 SPH as a meshfree particle method

Recently, meshfree and particle methods have been demon-
strated to have special advantages over the grid-based
methods for modeling FSI problems with free surfaces, de-
formable boundaries and moving interfaces [5,44,45]. The
key idea of the meshfree methods is to provide accurate and
stable numerical solutions for integral equations or PDEs
with all kinds of possible boundary conditions using a set of
arbitrarily distributed nodes or particles. The history, devel-
opment, theory and applications of the major existing
meshfree methods have been addressed in some monographs
and review articles [5,17,44-46]. Among these meshfree
methods, the smoothed particle hydrodynamics (SPH) and
moving particle semi-implicit (MPS) are two widely used
particle methods for treating FSI problems. The SPH method
was originally invented by Gingold and Monaghan [47] and
Lucy [48] for modeling astrophysical problems in three-di-
mensional open space, and nowadays it has been widely used
in engineering and sciences [5,49]. The MPS method was
initially proposed by Koshizuka et al. [50,51] to simulate
incompressible flows involving fluid-structure interactions.
These two methods are truly Lagrangian, meshfree and
particle methods and they can be categorized into two classes
of weakly compressible and incompressible ones. The
weakly compressible approach such as weakly compressible
SPH (WCSPH) [5,49] solves an appropriate equation of state
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by treating the fluid as weakly compressible. This approach
is simple in concept, easy in computer implementation and
capable of obtaining reasonable flow patterns, hence it is
widely used for modeling FSI problems. The incompressible
approach, such as MPS or incompressible SPH (ISPH)
[52,53] solves a Poisson pressure equation (PPE) through
application of the Chorin’s projection method [54]. There-
fore, these are also regarded as the projection-based particle
methods. For more information about the MPS and SPH
methods, one may refer to some excellent reviews [5,49,55-
60].
As a truly meshfree and Lagrangian method, SPH has

natural advantages for modeling FSI problems with large
deformations and rapidly moving interfaces or free surfaces
[61-68]. It is often regarded as the earliest modern meshfree
particle method since no grid or mesh is used in SPH si-
mulations and the collective movement of SPH particles is
similar to the movement of a liquid or gas flow. SPH allows a
straightforward handling of very large deformations and free
surfaces since the connectivity between particles are gener-
ated as a part of the computation and can change with time.
Due to these attractive features, SPH is very suitable for
dealing with problems involving complicated nonlinear and
often multiphase phenomena [11,64,69]. Without involving
highly complicated algorithms in grid-based schemes, SPH
can achieve results very close to the reference data (experi-
mental or analytical solution) in validation cases. Therefore,
for modeling violent FSI problems, SPH has been attracting
more and more attentions compared to other grid-based
methods. As mentioned in ref. [57], the recent developments
in the numerical features of SPH has made it more credible
and attractive to mathematicians whose previous interests are
mainly focused on traditional and well-established ap-
proaches like FEM and FVM.
After the developments of several decades, the SPH has

been proven to be a very effective alternate approach for
modeling FSI problems. Here we briefly review some recent
progresses of SPH regarding to the accuracy, efficiency,
stability and coupling issues.

1.3.1 Accuracy of SPH
During the past decades, different techniques have been
proposed to restore the particle consistency and hence to
improve the SPH approximation accuracy. Some of them
involve reconstruction of a new smoothing function so as to
satisfy the discretized consistency conditions. One typical
example is the reproduced kernel particle method (RKPM)
proposed by Liu and his co-workers [44,45]. Recently, one
popular way is to construct improved SPH approximation
schemes based on Taylor series expansion on the SPH ap-
proximation of a function and/or its derivatives. Typical
examples include the corrective smoothed particle method
(CSPM) by Chen and Beraun [70] and the finite particle

method (FPM) by Liu et al. [71,72]. Batra and Zhang [73,74]
concurrently developed a similar idea to FPM, which is
called the modified SPH (MSPH), to deal with the problems
in solid mechanics. Fang et al. [75,76] further improved this
idea and developed a regularized Lagrangian finite point
method for simulating incompressible viscous flows. As-
prone et al. [77,78] also started from the original formulation
of the finite particle method and developed a so-called
modified finite particle method (MFPM) for modeling
elastostatics and elastodynamic problems. It is noted that
both the CSPM and FPM need to solve matrix equations,
which may further lead to numerical instability or un-
expected termination of the simulation. To deal with this
problem, Zhang et al. [79,80] developed a decoupled finite
particle method (DFPM) that does not need to solve matrix
equations but possessing better accuracy than the conven-
tional SPH. Recently, Huang et al. [81,82] developed a
kernel interpolation formulation that is called the kernel
gradient free SPH (KGF-SPH), in which the kernel deriva-
tives are never used and the kernel interpolations are flexible
when choosing kernel functions.

1.3.2 Efficiency of SPH
For applications of SPH in some practical problems, the
expensive computational costs have been hindering the fur-
ther development of SPH. To save computational costs,
different high-performance computing techniques have been
applied in SPH simulations including MPI [83-85], OpenMP
[86,87], OpenCL [88], CUDA [89-91], and so on. One other
way to improve the efficiency of SPH simulations is to use
the multiple spatial resolutions. The large number of parti-
cles and the distribution of particles with single spatial re-
solution result in prohibitive CPU times and memory
requirements, and hence some researchers turn to the use of a
variable spatial particle distribution [92,93]. Recently, a
more general and challenging treatment is the dynamical
refinement through the mechanism of particle splitting/coa-
lescing [94-96], or named adaptive particle resolution [97-
99]. Feldman and Bonet [100] first proposed a particle re-
finement technique in which coarse or parent particles are
split into several smaller or children particles to locally in-
crease the spatial resolution. In other regions, the coarse
particles are used for simulation and hence a huge compu-
tational cost can be saved. This technique is further devel-
oped by López et al. [101] through enforcing conservation of
the change rate of density and thus higher accuracy can be
obtained. This dynamic refinement algorithm can be further
improved by incorporating a coarsening technique. For ex-
ample, Vacondio et al. [94-96] developed a coalescing
technique, in which children particles are coalesced pairwise
into parent particles by conserving linear momentum and
mass. Barcarolo et al. [97] developed another coalescing
technique by retaining parent particles in splitting regions
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instead of removing them.

1.3.3 Modeling incompressible flows
One of the well-known drawbacks of WCSPH is the spurious
pressure oscillations (sometimes also regarded as a kind of
numerical instability), which may arise from many reasons
including the one where a stiff equation of state is used, the
SPH approximation itself are not very accurate [5], and so
on. Recently, many improvements on SPH have been pro-
posed to deal with this problem. The first one is to calculate
the pressure implicitly from solving the pressure Poisson’s
equation (PPE, see more about PPE in refs. [50,102]), rather
than from an artificial equation of state as in WCSPH. This
leads to the so-called incompressible smoothed particle hy-
drodynamics (ISPH) method [52,53]. Unlike WCSPH, the
particle density in ISPH remains unchanged, ensuring the
rigorous incompressibility of the fluid. Different studies
[53,103] have been reported on the comparison of ISPH with
WCSPH, in which ISPH has shown a good performance in
predicting the pressure and obtaining smooth velocity fields.
Due to these advantages of ISPH, many researchers have
also focused on developing the methodology of ISPH to-
gether with applications on modeling violent fluid-structure
interactions [64,104-106]. Since the pressure is calculated as
a function of density in WCSPH, another approach for
dealing with the noisy pressure in SPH is to renormalize the
density of particles after many time steps [17]. Antuono et al.
[107,108] added a smoothing density term to the continuity
equation (δ-SPH), which can help remit the density fluc-
tuations in SPH. Next, a popular way to deal with the noisy
pressure is to include the Riemann problem within SPH, i.e.,
including the shock-capturing techniques within SPH [109-
111]. For example, Vila [109] proposed an SPH approx-
imation technique in the ALE context and solved the PDEs
based on a transport operator and flux vectors. Due to the
advantages in capturing the shock waves and smoothing the
pressure fields, the approximate Riemann solvers in SPH
have been successfully applied to a variety of FSI problems
including wave impact on structures, liquid sloshing, and
objects impacting the fluid surface [93,112,113].

1.3.4 Modeling structural deformations
When applying SPH to model FSI problems, the deformation
of structure should be properly treated. To describe the
structural deformations in FSI, different approaches based on
the SPH method have been proposed. One common way is to
adopt a coupling strategy where the fluid is modeled using
SPH while the solid is modeled using other meshfree or grid-
based methods, and this will be discussed in the next sub-
section. Another popular way is to introduce the constitutive
equation for the solid in the SPH contexts [114-116]. Some
researchers have also developed various SPH models for
describing the responses of different structures, such as the

shell SPH for shell structures [117,118]. The treatment of
structural deformations in FSI with SPH will be discussed
detailedly in the following sections. As the explosion and
impact problems are also important applications of SPH, we
further introduced the SPH modeling of structural de-
formations in explosion and impact problems. Numerical
simulation of this kind of problems is one of the formidable
but attractive tasks in computational solid mechanics and
computational fluid mechanics. The typical numerical ex-
amples range from Taylor bar impacting on a solid wall and
spherical projectile/bumper collision/penetration [63,119] to
contact explosion [120] and explosive forming [121], etc.
Libersky and his co-workers [63,122] carried out the pio-
neering work of applying the SPH method to such high strain
hydrodynamic problems. Later, Liu et al. [123-125] have
extended the SPH method for simulating impact and explosion
phenomena and developed the adaptive smoothed particle
hydrodynamics method (ASPH) [126]. Recently, Zhang and
Liu’s group [68,121,127-129] proposed the modified SPH
for high velocity impact problem and the density adaptive
SPH for explosive forming problem. The explosion phe-
nomenon in ocean engineering is a very important branch of
FSI problems. It is worth noting that Zhang et al. [120,130-
132] have developed different numerical models addressing
the applications of SPH on the underwater explosion problems.

1.3.5 Coupling of SPH with other methods
Recently, the coupling approaches of SPH with other meth-
ods have been developed rapidly to save the computational
cost and to achieve better accuracy and/or flexibility. There
are many implementation methodologies for the coupling of
SPH with other methods. The first one is to model the fluid
flow in a local small area with SPH while in other larger
areas with grid-based method or other particle-based meth-
ods. Marrone et al. [133,134] coupled SPH with FVM for
modeling free surface flows, in which the FVM solver is
applied to resolve the bulk flow and the wall regions,
whereas the SPH solver is implemented in the free surface
region to capture the details of the front evolution. The other
more popular coupling methods are dedicated to the mod-
eling of FSI problems. In these treatments, the fluid flow is
usually modeled by SPH, and the structure is modeled by
other methods such as FEM and DEM. Many researchers
[135-138] have coupled SPH with FEM for modeling dif-
ferent FSI problems including the flow past a fixed cylinder
with a flexible bar, the collapse of water column onto an
elastic obstacle, a structure impacting the water reservoir, the
flow in a sloshing tank interacting with an elastic body and so
on. Some other researchers [139-141] have successfully
coupled SPH with DEM for FSI problems where SPH is
applied to model the fluid and the structural deformation or
failure is simulated with DEM. Furthermore, SPH can also
be coupled with some other methods to treat FSI problems.
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For example, Yang et al. [142-144] proposed the coupling of
SPH with element bending group (EBG) for modeling the
interaction between viscous flows and flexible structures.
This article is organized as follows. In sect. 2, the basic

concepts of SPH with conventional particle approximation
and some higher order approximation schemes are in-
troduced. The implementations of FSI in SPH are addressed
in sect. 3. In sect. 4, the SPH coupled with FEM, FVM, EBG
and with other methods for dealing with FSI are discussed in
detail. In sect. 5, some important applications of SPH in FSI
problems are demonstrated. These applications include FSI
problems with rigid, elastic and flexible structures, FSI
problems with granular materials and FSI problems with
extremely intensive loadings. This paper concludes in sect. 6
together with remarks on SPH modeling of FSI problems.

2 SPH methodology

2.1 Basic concepts of SPH with conventional approx-
imations

In SPH method, the governing partial differential equations
are approximated in two steps, the kernel approximation and
the particle approximation. In kernel approximation, the
kernel (or smoothing) function W is introduced to describe
the interaction between SPH particles. A field function f (x)
and its spatial derivative ∙f (x) at position x can then be
written as:

f f W hx x x x(x) = ( ) ( , )d , (1)

f f W hx x x x x( ) = ( ) ( , )d , (2)

where < > denotes the SPH approximation, and h is the
smoothing length defining the support domain of the kernel
function W. Ω represents the problem space whose radius is
taken as several times of h according to different smoothing
functions. The kernel function W should be chosen as an
even function and should also satisfy many conditions in-
cluding the normalization condition, Delta function property
and compact condition that are shown by eqs. (3)-(5) re-
spectively,

W hx x x( , )d = 1, (3)

W hx x x x
x xlim ( , ) = , = ,

0, , (4)
h 0

W h hx x x x( , ) = 0, when > , (5)
where κ is a constant and κh is used to define the effective
area of the smoothing function (the radius of the problem
space). The selection of the kernel function has a significant
influence on the computational accuracy. In SPH kernel
approximation, there are two widely used smoothing func-

tions including the cubic spline function [145] and the
Gaussian function [47]. The cubic spline function is given by

W R h
R R R

R R
R

( , ) = ×

2
3 + 1

2 , 0 < 1,
1
6(2 ) , 1 < 2,

0, 2,

(6)d

2 3

3

where d is a dimension-dependent constant, and it is 1/h or
15/7πh2 in one or two-dimensional space for cubic spline
function. R is the distance between two particles normalized
by the smoothing length. The Gaussian function is given by

W S h( , ) = e , (7)S
d

2

where S hx x= / and d is 1/π
1/2h or 1/πh2 in one or two-

dimensional space for Gaussian function. Recently, different
kernel functions in SPH have been proposed to achieve better
accuracy and stability, and one may see more kernel func-
tions in refs. [5, 56].
According to the kernel properties of

f W hx x x x( ) ( , )d = 0,

the symmetric and anti-symmetric forms of the kernel ap-
proximation can be obtained as:

f f f W hx x x x x x( ) = [ ( ) ( )] ( , )d , (8)

f f f W hx x x x x x( ( )) = [ ( ) + ( )] ( , )d . (9)

In practical applications, eq. (8) is more often used for the
discretization of the continuum equation. It is well known
that the kernel function can be truncated by the boundary of
the computational domain, and this kernel truncation by the
boundary has significant influence on the accuracy of the
kernel approximation. Eq. (8) can somewhat reduce the er-
rors of boundary truncations, as shown in ref. [146].
The particle approximation step of SPH involves re-

presenting the problem domain with a set of particles and
then estimating field variables on this set of particles. The
illustration of a two-dimensional problem domain Ω re-
presented by a set of particles can be seen in Figure 1. These
particles are associated with the field properties, and can be
used not only for integration, interpolation or differencing,
but also for representing the material. Each particle is given a
fixed lumped volume Vi while it does not have a fixed shape.
These particles can be either fixed in an Eulerian frame or
move in a Lagrangian frame.
By summing up the over-all neighboring particles around

particle i within its support domain, the kernel approxima-
tions of a field function and its spatial derivative can be given
in a discretized form as:

f
m

f Wx x x x( = ( ) ( ), (10)i
j

N j

j
j j i

=1
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f
m

f Wx x( ) = ( ) , (11)i
j

N j

j
j i ij

=1

where mj and ρj are the mass and density of a particle j, N is
the total number of the neighboring particles for a certain
particle i. In the following sections, the SPH approximation
sign < > is ignored for the sake of conciseness.
The particle approximation of the integral is a very im-

portant technique in SPH that gives SPH natural advantages
in capturing the large motion of the materials since no
background mesh is used for the integration. The introduc-
tion of particle mass and density into the governing equations
can be conveniently applied to hydrodynamic problems
where the density (ρi=mi /Vi) is a key field variable. This
makes the SPH method rather attractive for dynamic fluid
flow problems. However, the particle approximation tech-
nique may also introduce the accuracy loss and instability
problems. If the particles distribute non-uniformly in the
support domain of the interested particle i, there may not be
enough particles for approximating the field variables of the
particle i and this brings the particle inconsistency problem.
As for the instability introduced by the particle approxima-
tion, an important reason is that the discrete summation is
only taken over the particles themselves. In meshfree
methods, the number of sampling points for the integration
should be more than the field nodes (particles), especially for
meshfree methods based on weak forms for solid mechanics
problems [5]. Otherwise, some kinds of instability problems
may occur in this situation.

2.2 High order approximation schemes

It is noted that the conventional SPH method is associated
with low accuracy, and the particle approximation scheme
expressed in eqs. (10) and (11) are not able to reproduce a
linear function or even a constant [71]. Thus, the reduced
accuracy of conventional SPH has been hindering its further
developments in applications requiring high accuracy. Dif-

ferent approaches have been proposed to improve the SPH
approximation accuracy. Here we discussed several typical
methods including the finite particle method (FPM) by Liu et
al. [71,72], the corrective smoothed particle method (CSPM)
by Chen and Beraun [70], the kernel gradient free SPH
(KGF-SPH) by Huang et al. [81,82] and the decoupled finite
particle method (DFPM) by Zhang et al. [79,80].

2.2.1 Finite particle method
The finite particle method (FPM) developed by Liu and his
co-workers is an improved and general form of the con-
ventional SPH. The derivation of FPM can be summarized as
follows. Performing Taylor series expansion at a nearby
point xi and retaining the first order derivatives, a sufficiently
smooth function f(x) at point x can be expressed as:

f f f rx x x x x( ) = + ( ) + (( ) ), (12)i i i i,
2

where f i and f i, are defined as f f x= ( ),i i and

f f x= ( / )i i, . Multiplying both sides of eq. (12) with a
kernel W x x( )i and W x x( )i , and integrating over the
problem space, the following equations can be obtained,

f x W

f W f W

x x x

x x x x x x x x

( ) ( )d

= ( )d + ( ) ( )d , (13)

i

i i i i i

f W

f W f W

x x x x

x x x x x x x x

( ) ( )d

= ( )d + ( ) ( )d , (14)

i

i i i i i

where Ω denotes the problem space and will be ignored for
the sake of conciseness in the following equations. Accord-
ing to eqs. (13) and (14), the following matrix equation ap-
plies

f
f

f W

f W
L

x x x x

x x x x
=

( ) ( ) d

( ) ( ) d
, (15)i

i

i

i

1

W W

W W
L

x x x x x x x x

x x x x x x x x
=

( ) d ( ) ( ) d

( ) d ( ) ( ) d
. (16)

i i i

i i i

It is important to highlight that if L is replaced with a unit
matrix, eq. (15) exactly represents the conventional SPH
approximations for f and its derivatives. With the corrective
matrix L, the conventional SPH method can be improved to
have second order accuracy as the first derivatives are re-
tained in eq. (12).

2.2.2 Corrective SPH and kernel gradient correction
Based on the Taylor series expansion on the SPH approx-
imations, Chen and Beraun [70] developed the corrective

Figure 1 (Color online) Illustration of particle distribution around parti-
cle i in two-dimensional space. κhi represents the radius of the support
domain S of the interested particle i.
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smoothed particle method (CSPM) to construct improved
SPH approximation schemes and further applied it for non-
linearly dynamic problems. By only correcting the derivative
of the kernel functions, the kernel gradient correction tech-
nique (KGC) [11,121,147] is widely applied in SPH simu-
lations. Although CSPM and KGC technique is proposed
earlier than FPM or other modified versions of SPH, such
approximation schemes can be regarded as the reduced forms
of FPM. For example, in eq. (14), moving the first term on
the right-hand-side (RHS) to the left-hand-side (LHS), the
CSPM approximations for the derivatives of f in three-di-
mensional space are given by

f
f
f

f f W

f f W

f f W

M

x x

x x

x x

=

( ( ) ) d

( ( ) ) d

( ( ) ) d

, (17)
i x

i y

i z

i x

i y

i z

,

,

,

1

x x W V y y W V z z W V

x x W V y y W V z z W V

x x W V y y W V z z W V

M =

( ) d ( ) d ( ) d

( ) d ( ) d ( ) d

( ) d ( ) d ( ) d

. (18)

i x i x i x

i y i y i y

i z i z i z

If neglecting the first term on the RHS of eq. (14) (this is
true for interior area of the computational domain, see ref.
[71] for more details), the KGC approximations for the de-
rivatives of f in three-dimensional space are given by

f
f
f

f W

f W

f W

M

x x

x x

x x

=

( ) d

( ) d

( ) d

. (19)
i x

i y

i z

x

y

z

,

,

,

1

Here we only give the CSPM and KGC approximations

derived from the FPM formulations, and one may see more
details about these two techniques in refs. [70,127]. From the
derivation of CSPM and the relevant mathematical tests in
ref. [71], it is seen that in a one-dimensional space, CSPM
has the same accuracy with SPH for approximating the in-
terior particles of a computational domain. For the boundary
regions, CSPM restores the C0 kernel consistency (1st order
accuracy) by retaining the non-unity denominator. That is to
say for dealing with the boundary regions or non-uniform
particle distributions, CSPM can obtain higher accuracy than
SPH while it could not restore C1 kernel consistency or say
achieve second order accuracy as FPM.

2.2.3 Kernel gradient free SPH
Huang et al. [81,82] developed a kernel gradient free (KGF)
SPH method in which the kernel gradient is not necessary in
the whole simulation. The following gives the typical ap-
proximation formulae in KGF-SPH. Multiplying both sides
of eq. (12) with the Wx x x x( ) ( )i i and integrating over
the problem space, we can have

f W

f W

f W

x x x x x x

x x x x x

x x x x x

( )( ) ( )d

= ( ) ( )d

+ ( ) ( )d . (20)

i i

i i i

i i i
2

For the sake of conciseness, the kernel functionW x x( )i
is denoted as W in the following equations. By solving eqs.
(13) and (20) simultaneously, the matrix equation in three-
dimensional space can be given by

f
f

K
f W

f W

x x

x x x x
=

( ) d

( )( ) d
, (21)i

i i

1

K

W V x x W V y y W V z z W V

x x W V x x x x W V x x y y W V x x z z W V

y y W V y y x x W V y y y y W V y y z z W V

z z W V z z x x W V z z y y W V z z z z W V

=

d ( ) d ( ) d ( ) d

( ) d ( )( ) d ( )( ) d ( )( ) d

( ) d ( )( ) d ( )( ) d ( )( ) d

( ) d ( )( ) d ( )( ) d ( )( ) d

. (22)

i i i

i i i i i i i

i i i i i i i

i i i i i i i

Based on eqs. (21) and (22), the field function and it de-
rivatives can be attained without calculating the gradient of
the kernel function. This greatly widens the selection of the
kernel function. The corrective matrix in KGF-SPH ap-
proximation is invertible and hence KGF-SPH can effec-
tively avoid the ill-conditioned matrices likely to occur in
FPM and CSPM simulations. Hence, the KGF-SPH simu-
lations can be more stable than other modified SPH with
matrix inversion. Besides, the corrective matrix in KGF-SPH

has a good symmetry, which can simplify the solution pro-
cess of the matrix equation.

2.2.4 Decoupled finite particle method
The decoupled finite particle method proposed by Zhang et
al. [79,80] can be regarded as simplified form of FPM. It is
noted that the approximations of f and its derivatives are
coupled together in CSPM, KGC and FPM. These couplings
are implemented through the corrective matrix L orM. If the
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computational domain is represented with a finite number of
particles, the resultant FPM, CSPM and KGC particle ap-
proximations are not sensitive to irregular particle distribu-
tion. This is a huge improvement to the conventional SPH
method that suffers from problems like boundary deficiency
and particle-distribution sensitivity. However, the corrective
matrices in FPM, CSPM and KGC can be ill-conditioned
when modeling some practical problems with singularly
distributed particles (extremely disordered particles). This
leads to a numerical instability, and may even cause the
breakdown of the simulation.
In FPM, CSPM and KGC, when estimating a derivative in

a certain direction, it is reasonable to assume that the con-
tribution from the self-direction is dominant and the con-
tributions from the other directions are negligible. This is
similar to an estimation of the partial derivatives in the finite
difference method, in which the partial derivatives in a cer-
tain direction is frequently replaced with the finite differ-
encing along the same direction [148]. Based on these
considerations, after neglecting the contributions from the
other directions, the corrective matrix L in FPM in three-
dimensional space can be

W V

x x W V

y y W V

z z W V

L =

d 0 0 0

0 ( ) d 0 0

0 0 ( ) d 0

0 0 0 ( ) d

.
i x

i y

i z

(23)

This new corrective matrix L′ is diagonally dominant and
decouples the approximations of the field function f and its
derivatives. For some specific applications, if only the de-
rivatives of a field function need to be approximated, the first
element of the matrix L′ is not necessary in the numerical
simulations. We put all these elements here to show that the
approximations of a field function and its derivatives in the
presented method are completely independent. Therefore, a
correction with L′ leads a decoupled finite particle method
(DFPM), in which the particle approximations of the field
function f and its derivatives can be written as:
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The asymmetric form of eq. (24) is often used in practical
problems, which applies
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It is clear that the DFPM involves normalization on the
approximation of the field function f and its derivatives with
the smoothing function and its derivatives respectively. As
only simple normalizations are used, DFPM inherits ad-
vantages from the conventional SPH and is flexible, cost-
effective and easy in coding. Also as DFPM possesses major
features of FPM, it is more accurate than the conventional
SPH and is not sensitive to particle distribution or selection
of the smoothing function and smoothing length. More im-
portantly, no matrix inversion is required in DFPM, which is
different from FPM, CSPM and KGC. Therefore, the ill-
conditioned corrective matrices can be effectively avoided
and this is very attractive for modeling practical problems,
such as particulate flows.

3 Implementation of FSI in SPH

The key challenge in modeling FSI problems is the algorithm
to implement the fluid-structure interaction, i.e., to exchange
information between fluids and structures in a consistent and
physical manner. As mentioned previously, most existing
FSI algorithms are based on the partitioned approach, and the
equations governing the fluid flow and the movement of the
structure are solved separately with a CFD solver for fluids
and a CSD solver for structures. The material interface is
thus the boundary of the fluid area and the structure region.
Moreover, the displacement, velocity, and stress need to be
consistent across the material interface. One typical example
is the coupled Eulerian-Lagrangian (CEL) [149], which in-
volves both the Eulerian methods (e.g., FVM) and La-
grangian methods (e.g., FEM) in separate (or with some
overlap) regions of the problem domain. One of the most
common practices is to discretize solids in a Lagrangian
frame, and fluids (or materials behaving like fluids) in an
Eulerian frame. The Lagrangian region and Eulerian regions
continuously interact with each other through a coupling
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module in which the computational information is ex-
changed either by mapping or by special interface treatments
between these two sets of grid. This partitioned approach
leverages the advantages of CFD solver in modeling fluid
flow and CSD solver in modeling structure deformation, and
thus it is a straightforward and popular strategy in modeling
FSI. As the interaction of fluid and structure is usually not
implemented at each time step in a single solver, the parti-
tioned approach is actually a weak coupling with delayed
interaction. Moreover, in order to precisely locate the fluid-
structure interface, an accurate and robust interface detection
algorithm is necessary.
In SPH modeling of FSI problems, the SPH method can be

used both in the fluid area and the structure area. This ac-
tually is a monolithic approach and the equations governing
the fluid flow and the movement of the structure are solved
simultaneously with a single SPH solver. The SPH method
can also be coupled with other grid-based or particle-based
methods. The fluid-structure interaction in this situation is
thus a partitioned approach in which SPH is applied in the
fluid area while the other method is used in the structure
region or the other fluid region. The coupling of SPH with
other methods as a partitioned FSI approach will be further
addressed in the next section.
In this section, we focus on the pure SPH modeling of FSI

problems as a monolithic approach. The material interface in
FSI problems is actually a moving or deformable solid
boundary. Hence, similar to the treatment of fixed solid walls
in SPH, when treating material interface in FSI, ghost or
virtual particles are commonly utilized to represent the ma-
terial interface or interface region. Being different from the
fixed solid boundary treatment in which non-slip or slippery
boundary conditions need to be satisfied, the material inter-
face treatment in FSI need to take the interface condition
(consistency of displacement, velocity and stress) into con-
sideration.

3.1 Treatment of fixed wall as a solid boundary

The fluid-rigid structure interaction is one of the most
common FSI problems, in which the interface between a
fixed wall and a fluid can be treated as a solid boundary. In
this condition, the interaction between solid and fluid can be
implemented directly according to different solid boundary
treatment algorithms. Since the invention of SPH, the treat-
ment of the fixed wall boundary has been a numerical focus,
which keeps influencing the accuracy of SPH and hindering
its further development in engineering and sciences.
The treatment of solid wall boundary in particle methods,

such as molecular dynamics (MD) [150,151], dissipative
particle dynamics (DPD) [152,153] and SPH, is very dif-
ferent from that of the grid-based methods. In some grid-
based methods like FEM and FDM, the implementations of

the solid boundary condition (e.g., Neumann boundary, Di-
richlet boundary and mixed boundary) are usually straight-
forward [5]. It is common for MD and DPD to represent the
solid boundary areas with fixed particles that can prevent the
penetration of mobile particles into the solid boundaries and
can also interact with the mobile particles with appropriate
interaction models. In this way, some complex solid matrix
and fluid-solid interface physics can be precisely modeled.
Actually, the boundary techniques in MD and DPD can also
be used in SPH to exert the slip or non-slip boundary con-
ditions. However, the solid boundary treatment in SPH is
more difficult as SPH is a continuum scale particle method
where the field variables on boundaries, such as the pressure
need to be directly calculated. There have been many pro-
posals for solid boundary treatments in SPH and these ap-
proaches can be generally classified into three approaches:
fictitious particle method, repulsive particle method and
boundary integral method.

3.1.1 Representation of solid boundary area with fictitious
particles
Fictitious (or virtual) particles are usually generated in the
solid boundary areas to complete the missing support of the
kernel. By this way, the boundary deficiency can be some-
what alleviated and higher simulation accuracy near the
boundaries can be achieved. The mirror particle and dummy
particle are two widely used fictitious particles. In mirror
particle approach, a mirror image of the fluid particle is
generated inside the boundary areas, as shown in Figure 2.
The fluid particle near the boundary may interact with the
mirror particle of itself and therefore the penetration of fluid
particles into boundaries can be avoided since a particle
cannot penetrate its mirror image. This approach is suitable
for the boundaries with relatively simpler geometries,
whereas it may meet some difficulties for applications on
complex boundaries with sharp corners [57].
In general, the dummy particle approach is the most ac-

cepted one in handling a solid boundary. The dummy parti-
cles are generated at the beginning of the simulation and kept
fixed in the boundary area or move with the boundary during
the simulation process. The number of dummy particles
should be properly chosen according to the support of the
kernel function (usually three or more layers). The dummy
particles inside the boundary can be associated with the
boundary particles whose variables are calculated according
to the governing equations, or associated with the projecting
(intercalated) points that are intercalated from the interior
fluid particles, as shown in Figure 3. For example, the
pressure of the dummy particle can be obtained by

p p t
v n g n= + d
d , (26)dummy as

b
b b

where the subscript as represents the associated particle
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(boundary or projecting points), and b denotes the boundary
particle. n denotes the unit normal vector of the boundary
particle. εΔ represents the distance between the inside
dummy particle and the associated particle.
Despite the wide use of dummy particle method, it still

carries some drawbacks. One important issue is that it is
difficult for the dummy particles to prevent the penetration of
real fluid particles into boundaries, and it may also create
non-physical separation and boundary layers. Besides, to
maintain the consistency of particle spacing, the spacing of
dummy particles should be arranged close to that of the real
particles. Hence, it may suffer from some difficulties when
arranging the dummy particles inside slender bodies
[136,154,155]. Fortunately, the multiple resolutions can be
an efficient approach to deal with this problem by keeping
consistent particle distribution around the boundary regions
[156]. Recently, some efficient approaches on interpolating
the field variables of fluids to the boundary based on the
dummy particle method have been developed. Macia et al.
[157] theoretically analyzed the enforcement of no-slip
boundary condition in SPH methods and derived a consistent
formulation. This new approach allows the implementation
of no-slip boundary conditions consistently in many practical
applications such as the viscous flows and diffusion pro-
blems. Based on a local force balance between wall and fluid
particles, Adami et al. [158] developed a pressure boundary
condition on the solid dummy particles to prevent the pe-
netration of fluid particles.

3.1.2 Prevention of unphysical particle penetration with
repulsive force models
The use of a repulsive force is an efficient approach to pre-
vent the penetration of fluid particles into the boundary areas.
In this model, the repulsive particles are located on the
boundary exerting repulsive forces on the approaching par-
ticles. Monaghan [61] first used such particles with the re-
pulsive force based on the Lennard-Jones (L-J) molecular
potential, which is given by

r
r

r
r r

r
r

r
r

F

r

=
, 1,

0, > 1,

(27)ij
ij ij

ij

ij ij

ij

0 0
2

0

0

1 2

where Fij is the repulsive force, and rij denotes the position
vector between a solid particle and an approaching fluid
particle. α is set with the scale of the square of the largest
fluid velocity, and r0 is taken as the initial particle spacing.
Parameters β1 and β2 are usually set as 12 and 4, respectively.
The original L-J force experiences some drawbacks such as it
is a highly repulsive force exerting infinite value on the
particles approaching very close to each other. Also, it cannot
apply a steady force on the particles moving parallel to the
boundary. To consider the repulsive force acting on the
particle moving parallel to the boundary, Monaghan and
Kajtar [159] proposed a Laplace summation to calculate the
repulsive force, and it can be given by

f
x q r

r
q

f y r
r

q

= 1 ( ) ( )
d ,

=
( )

d ,

(28)
x

a

y
a

where r x q y= ( ) + ,a a
2 2 q x q= a . fx and fy represent the

x and y components of the repulsive force acting on a fluid
particle a. xa and ya denote the horizontal and perpendicular
distances of the fluid particle to the boundary line. The re-
pulsive force along the radial direction is given a magnitude
of the function r( ). The boundary particles are assumed to
be equispaced with spacing ∆. This formula is used when the

Figure 2 (Color online) Diagram of the mirror particle approach.

Figure 3 (Color online) Diagram of the dummy particle approach. The dummy particles can be associated with boundary particles (a) or projecting
points (b).
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boundary line is straight, and the integral is over the
boundary line.
The aforementioned repulsive forces proposed by Mon-

aghan et al. are based on the distance between the fluid
particles to the boundary. Recently, Rogers and Dalrymple
[160] proposed another alternate form of the repulsive
boundary force considering the effects of the particle velo-
city. This repulsive force is given by

R P z uf n= ( ) ( ) ( , ), (29)

where n is the unit vector normal to the solid boundary, R(Ψ)
is a repulsive function defined by the distance between a
particle and the solid wall. The function P(ξ ) is used to exert
a constant repulsive force on the particle traveling parallel to
the wall. z u( , ) is applied to adjust the magnitude of the
force according to the local water depth z and the velocity of
the water particle normal to the boundary u .

3.1.3 Boundary integral method for complex boundary
conditions
For treating complex solid boundary conditions, the bound-
ary integral method can be an effective approach. In this
approach, the virtual particles are not used to represent the
solid boundaries or to treat the kernel truncation problem.
Instead, a wall renormalization factor in the SPH discrete
interpolation is used to deal with the solid boundaries. Ku-
lasegaram et al. [161] first proposed an approximate method
to calculate the renormalization factor in order to implement
such boundary integral method. Feldman and Bonet [100]
further proposed an analytical method for treating simple
wall shapes. Actually, in the boundary integral methods de-
scribed earlier, the renormalization factor in the discrete SPH
interpolation formula acts to exert a boundary force in the
Navier-Stokes equations. Ferrand et al. [162] proposed a
formulation of the differential operators to calculate the re-
normalization factor in a different way. In this method, the
boundary condition can be implemented in a natural way
through the boundary term of the new Laplacian operator.
Amicarelli et al. [163] further developed this boundary in-
tegral model and successfully applied it for modeling violent
3D FSI problems. Recently, Leroy et al. [164] presented a

semi-analytical wall boundary integral model based on the
ISPH method, in which a non-homogeneous Neumann
boundary condition on the pressure field is exactly im-
plemented to solve the pressure Poisson equation such that
an impermeability condition is applied on solid walls. The
boundary integral approach or named the unified semi-ana-
lytical wall boundary condition has been developed rapidly
these years for FSI problems. Owning to the short period of
this method, more validation tests and more accurate and
efficient approaches based on this method should be devel-
oped.

3.2 Treatment of FSI interface as a moving boundary

For modeling FSI problems with moving or deformable
boundaries, an effective algorithm is required for efficiently
describing the fluid-structure interface dynamics. It is
somewhat different from the grid-based numerical methods
in correctly detecting contact and effectively treating it in
particle methods like SPH. The SPH particles can move
freely and interact with different particles at each time step,
and the particle aggregation and separation often occur in the
moving interface regions. This further increases the diffi-
culty in treating FSI interface by SPH.

3.2.1 Treatment of moving interface
When the structure moves or deforms under the interaction
between fluid and structure, the FSI interface can be treated
as a moving boundary. As such, the structure is discretized
with virtual or real particles where particles from one ma-
terial (fluid or solid) can influence, and also be influenced by
the particles from the other material (solid or fluid), ac-
cording to the SPH approximations. The aforementioned
fictitious and repulsive particles can also be used to exert the
interfacial conditions, i.e., boundary condition for one ma-
terial. Figure 4 shows an example of the FSI interface at the
initial stage, and at a later stage in the evolution. Initially the
SPH particles are distributed regularly, and there is no in-
tersection and deformation of particles. With the SPH evo-
lution, fluid particles influence the structure particles in
calculating the strain and strain rate, and vice versa the field

Figure 4 (Color online) Illustration of moving FSI interface in SPH particle model. (a) Initial SPH particle distribution, and (b) SPH particle distribution
after evolution. Interaction between particles from different materials can introduce shear and tensile stress and can prohibit sliding and separation of different
materials.
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variables of fluid particles can be influenced by the moving
structure. This interaction between the particles from dif-
ferent materials maintains the consistency of displacement,
velocity and stress of interfacial particles, and can introduce
shear and tensile stress that prevent sliding and separation of
different materials. Special algorithms are required if an SPH
model is used for the simulation of problems with sliding and
separation.
A contact model is usually important in treating FSI in-

terface as a moving boundary, which involves steps: 1)
identifying the boundary, 2) detecting the contact and 3)
applying repulsive contact forces. A convenient way to de-
tect the particle-particle contact in FSI interface is to check
the proximity of two approaching fluid and solid particles,
and make a comparison with the summation of the smooth-
ing lengths of the particles. As shown in Figure 5, the contact
and penetration between two particles can be identified by

pe
kh kh

r=
+

1, (30)i j

ij

where rij is the distance between the particle i and the particle
j. After detection of the contact and penetration, a restoring
contact force needs to be applied along the centerline of the
two particles (the position vector of particle i and particle j).
There are different choices for restoring contact force, which
is usually a function of penetration. One possible choice is
the penalty force in Lennard-Jones form, as mentioned in
sect. 3.1.

3.2.2 Restoring interface consistency
In treating the FSI interface as a moving boundary, the dis-
continuity at the interface or called large density ratio is an
important issue. The pressure instability is very common in
the moving interface regions, which is caused by the free
movement of the particles. Different from the grid-based
methods, the particles in SPH are no longer restricted by
grids, and thus the volume of the neighboring particles in
support domain of a certain particle cannot be kept constant,
especially at moving FSI interfaces. This has great influences
on the normalization rule of the kernel function and results in
the density oscillation and pressure instability. In multiphase
SPH, to adapt to the similar mass discontinuity and density

discontinuity issues on a multiphase interface to the FSI in-
terface, a corrected density re-initialization formula was
developed by Chen et al. [165] as:
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j
j ij
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p p
c=

( )
+ , (32)j

j
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2 0

where j is the density obtained by the pressure of the
particle j and the equation of state for the particle i, cs is the
speed of sound, and ρi0 is the reference density of the particle
i. The corrections can be regarded as converting particles of
different phases into the same phase with the interested
particle. To avoid the artificial diffusions and to reduce the
computational cost, this equation is often applied after every
20 to 30 time steps. The discontinuities on the multiphase
interfaces present great challenges on accurately and stably
solving the continuity and momentum equations. To deal
with this problem, Hu and Adams [64,166] developed an
effective scheme to calculate the pressure gradient,

( )p m V V p W

p
p p

1 = 1 + ,

=
+
+ .

(33)i i j
i j ij i ij

ij
i j j i

i j

2 2

This approximation is reasonable for multiphase flows
with small density differences. However, for those with large
density ratios, the influence of the pressure from neighboring
particles may be improperly ignored [165]. To treat the large
density ratio, Chen et al. [165] presented an alternative for-
mula based on the assumption of the pressure continuity
across the interface. In this approach, all the neighboring
particles of other phase in support domain of the interested
particle are regarded as the interpolation points with the same
phase. Only the position, velocity, volume and pressure of
these particles are taken into account when solving the ac-
celeration and density of the central particle. Accordingly,
the pressure term in momentum equation is approximated
as:

p V p W1 = 1 . (34)
i i j

j j i ij

Besides, Grenier et al. [167] proposed a multiphase flow
SPH model to treat the density discontinuity, and this may be
regarded as an extension of the work by Colagrossi and
Landrini [65]. The authors denoted their method as a so-
called Hamiltonian interface SPH formulation. This dis-
cretized formula (35) is based on the Shepard kernel [168]
for the density evaluation by eq. (36),Figure 5 (Color online) An illustration of particle-particle contact.
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This SPH scheme allows a relatively accurate treatment of
the discontinuity of the quantities at the interface (such as the
pressure) for the modeling of multiphase flow.
The afore-mentioned algorithms for treating multiphase

interface can be extended to the treatment of FSI interfaces.
Besides, in FSI problems, the moving FSI interface with a
large density discontinuity remains a big problem for ap-
plications of SPH in impact and explosion problems. For
such cases, the interface between the fluid (an explosive gas)
and the structure is also treated as a moving boundary with
the particles from two sides of the boundary interacting with
each other. Recently, Liu et al. [121,128] proposed a density
adaptive algorithm to treat the large density ratio of solid
(metal structure) to fluid (explosive gas) around the FSI in-
terface in explosion problems, which is shown as follows. In
the SPH method, the density summation approach and the
continuity approach [17] are usually used to update the
density, and these two formulae can be written as:

m W
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j ij
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Eq. (37) cannot be exactly satisfied while it is effective and
flexible for the simulation of problems with a large density
ratio. In contrast, eq. (38) is believed to be more accurate
because it is obtained through rigorous mathematical trans-
formations [17]. When using eq. (38), however, the large
density discontinuity for the interface particles may lead to
numerical oscillations (instability) and further terminate the
simulation. By combining these two equations, the time rate
of change of density can be approximated by

m
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=
+

(1 + )
. (39)i
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j i
j ij

ij
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The contributions of eqs. (37) and (38) to the density ap-
proximation are controlled through an adaptive function re-

lationship ( )k k= = 1
lni i

i
, as shown in Figure 6. The

dimensionless variable ki is defined as k = /i i i,max ,min ,
where i,max and i,min represent the maximal and minimal

density values of the neighboring particles around the par-
ticle i, respectively. Therefore, for a multi-materials system,
the density of materials can be calculated in an adaptive way
when the density ratio of different materials is high.

3.2.3 Coupled dynamic solid boundary treatment for FSI
interface
For treating the FSI interface as a fixed solid boundary or a
moving boundary, there are some drawbacks when using
only one type of virtual particles such as repulsive particle or
dummy particle, just as mentioned in sect. 3.1. With con-
siderations on both the accuracy and stability of boundary
treatments, Liu’s group [80,169] developed a coupled dynamic
solid boundary treatment algorithm (CD-SBT) for dealing
with both the fixed and moving rigid boundaries. In CD-
SBT, two types of virtual particles named as the repulsive
particles and ghost (or dummy) particles are applied to treat
the solid boundary, as shown in Figure 7(a). A soft repulsive
particle model was presented in CD-SBT that includes a
distance-dependent repulsive force with finite magnitude on
the particles approaching solid boundaries, which is given by

c f rF
x

= 0 . 01 ( ) , (40)ij
ij

ij

2
2

r h= / (0 . 75 ), (41)ij ij

r
d r d= 1 ,  0 < < , (42)ij

ij

f ( ) =

2 / 3, 0 < 2 / 3,
(2 1 . 5 ), 2 / 3 < 1,
0 . 5(2 ) , 1 < 2,
0, otherwise,

(43)
2

2

where r is the distance between two SPH particles, and Δd is
the initial distance of two adjacent SPH particles. It is known
that the Lennard-Jones molecular force is a highly repulsive
force which may produce pressure disturbances. Using such
soft repulsive force, the CD-SBT can effectively prevent
non-physical particle penetration while alleviating the pres-

Figure 6 Schematic diagram of the function ψi=ψ(ki).
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sure disturbances.
The support domains of the fluid particles usually intersect

the solid boundary with insufficient neighboring particles
that leads to a low accuracy of the simulation at the boundary
areas. Therefore, to restore consistency, SPH particle ap-
proximation schemes with higher order accuracy (e.g.,
Shepard filter method, CSPM or FPM) are involved in CD-
SBT for approximating virtual particles. That is to say that
the variables of the virtual particles can be obtained as:

W
m

m W= = , (44)i
j

N

j ij
j

j j

N

j ij
=1

new

=1

new

W
m

v v= . (45)i
j

N

j ij
j

j=1

new

In this approach, the corrective kernel function Wij
new by

the improved approximation scheme (e.g., FPM or DFPM) is
utilized to obtain the virtual particles variables. This CD-
SBT algorithm can be further extended to the treatment of
solid-solid interfaces, as shown in Figure 7(b). The virtual
SPH particles in this extended CD-SBT can move with the
solid objects. Therefore, the implementation of fluid-solid
interaction in this article is straightforward and the repulsive
force model can effectively prevent the penetration of
surfaces of two solid objects in the simulation of FSI pro-
blems.

4 SPH coupled with other methods

4.1 SPH coupled with FEM

For modeling FSI problems, some complex algorithms and
considerable computational cost are required for Eulerian-
based methods to treat the moving boundaries and interfaces.
The Lagrangian methods have its natural advantages for
capturing moving boundaries in FSI problems. However,
when using the Lagrangian grid-based methods such as
FEM, the large element distortion may occur and the extreme
fluid motion such as the breakup of free surfaces may even
limit the use of this kind of methods. Nevertheless, the FEM
has been widely employed in modeling problems without
extreme element distortions due to its high accuracy, good
stability and great efficiency. As a meshfree particle method,
SPH has its advantages in dealing with violent FSI problems
as the problem of mesh distortion at the interfaces can be
naturally avoided and no interface or free surface tracking
algorithms are required. Considering both the advantages
and drawbacks of these two kinds of Lagrangian methods,
FEM and SPH, some researchers have coupled SPH with
FEM for modeling FSI problems [136,137,170-172]. In
these simulations, the successful application of FEM in
solving structural dynamics and the effectiveness of SPH in
modeling fluid dynamics are integrated with each other.
Since both SPH and FEM have been well developed, the key
point of this coupling approach lies in the contact algorithms
between these two methods. Here we review the develop-
ment of different coupling or contact algorithms in detail. As
for the nonlinear finite elements formulations, one may refer
to ref. [173] for more information.
In the early 1990s, Attaway et al. [174] proposed the

coupling of SPH with FEM for modeling structure-structure
impact problems and they used an iterative master-slave
scheme of contact force to treat coupling. Later different
algorithms have been developed based on this kind of mas-
ter-slave coupling [172,175] that requires the calculation of
contact force for preventing the SPH particles from pene-
trating into the FEM meshes. For example, De Vuyst et al.
[176] implement the contact algorithm by considering the
FEM nodes as SPH particles. Groenenboom and Cartwright
[172] used a non-iterative master-slave scheme to treat the
contact force. Zhang et al. [175] also developed a master-
slave SPH-FEM coupling algorithm, and we will take this as
an example to show how to couple the SPH with FEM using
the contact force model. In this article, the SPH particles are
attached to the standard finite elements in the interface, as
shown in Figure 8. The background particles possess the
property of SPH particles while they carry the variables
consistent with those of the corresponding FE nodes, e.g.,
mass, velocity and stress. In this way, the FEM nodes are
added to the SPH neighbor list by using the background
particles. For example, the particle approximation for the

Figure 7 (Color online) Illustration of the CD-SBT algorithm for (a)
fixed and (b) moving solid boundaries.
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particle i is performed with the contributions from particles
n1 to n5 and FEM nodes n6, n7, n8 (see Figure 8(a)). There-
fore, the boundary truncations for the SPH particles can be
effectively avoided. When the SPH particles are very close to
the FE nodes, the contact force need to be performed on these
particles and nodes. The vector of the contact force can be
calculated in the same way as the contact of SPH particle to
particle. Then the contact force is given by

( )
Q x

m m Kn
W r

W p
W r( ) =

( )
( ), (46)i

j

NCONT j

j

i
i

ij
n

n i ij

1
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where NCONT denotes the number of neighboring SPH
particles for an FEM node i. rij is the distance between the
particles i and j, pavg is the average value of the smoothing
length, and K and n are the user-defined parameters.
Recently, the coupling of SPH with FEM without using the

master-slave coupling algorithm has been developed by
different researchers [136,138,171]. To couple SPH with
FEM, Fourey et al. [171] applied the ghost particles scheme
to obtain the pressure from the fluid side. In this article, the
minoring ghost particles are used to complete the support
domain of the kernel of particles approaching the boundary.
Then the pressure on the solid boundary acting by the SPH
particles can be obtained by

p N p= 1 , (47)
i

N

iboundary
=1

where N denotes the number of sampling particles close to
the boundary and Pi is the pressure of a sampling particle i.
Considering that no shear stress can be exerted on the

structure by the fluid particles, Long et al. [136] developed a
novel coupling algorithm based on the ghost particle scheme
to treat complex geometry boundaries. In their work, the
kernel support domain of a fluid particle approaching the
boundary can be divided into subareas that are used to
generate the corresponding ghost particles, as shown in
Figure 9. The forces from the FEM structure to the SPH fluid

particles can be calculated directly through the ghost parti-
cles. To maintain the conservation of momentum equation,
the opposite forces of ghost particles to fluid particles are
also applied on the structure. Taking one subarea of the
boundary for example (see Figure 9), the AB belongs to a
segment of the boundary in support domain of a fluid particle
i, and a subarea ABCD along with the corresponding ghost
particles are generated for calculating fluid-structure inter-
actions. The force exerted from the ghost particle j to the
fluid particle i is denoted as FG tFj i

and then the force from the
segment AB to the fluid particle i can be obtained as:
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This equation is just one way to calculate the viscous force
that can also be computed with other forms. Similarly, the
force from the fluid particle to the segment AB is given by
F F=F tS S tFi AB AB i

and the force on nodes A and B should be

Figure 8 (Color online) (a) The attachment of SPH particles to finite elements and (b) contact force produced between SPH particles and finite elements.

Figure 9 (Color online) The subarea ABCD and corresponding ghost
particles in support domain of fluid particle i.
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F / 2F tSi AB
.

Furthermore, some other coupling techniques have also
been developed. For example, Yang et al. [138] used the
Monaghan boundary condition to treat the coupling of SPH
with FEM. Li et al. [137,170] developed the so-called in-
terface-energy-conserving coupling strategy for transient
fluid-structure interaction, and with this strategy neither
numerical energy injection nor dissipation occurs at the in-
terface during the simulation process. It is clear that these
coupling algorithms have some advantages for treating the
coupling interface and a comprehensive coupling algorithm
with good performance in accuracy, stability and efficiency
is desirable.

4.2 SPH coupled with FVM

Grid-based methods like FVM have many advantages in
modeling fluid flow with large fluid domain due to their good
robustness and high efficiency. However, they may meet
some difficulties for dealing with geometrically complex
domains requiring high-quality meshing, moving fluid-solid
interfaces and free surface flows. The use of unstructured
grids and techniques like the immersed boundary method
(IBM) [177,178] can be an effective way to solve these
problems. However, in order to deal with extremely complex
free surface flows, it is still very difficult for such grid-based
methods to achieve accurate and stable solutions. In contrast,
due to its Lagrangian and meshfree characteristics, SPH is
very suitable for dealing with these serious challenges that
the grid-based methods like FVM faced. However, the
computational effort of SPH is comparatively high and it is
not straightforward to treat solid boundaries. Therefore, the
combination of SPH with other grid-based methods is very
attractive and the advantages of two methods can be ex-
plored. For such purpose, the grid-based methods such as
FVM or FDM may be applied in a larger fluid domain,
whereas the SPH method can be used in local regions with
geometrically complex domains, moving interfaces or free
surfaces. As the efficient CFD methods like FVM are usually
based on the Eulerian grid while the SPH is a Lagrangian
particle method, there exists many difficulties in coupling
these two kinds of methods together.
Recently, Neuhauser and Marongiu [179] proposed the

coupling of SPH with FVM for treating boundary layers near
hydrofoils. Napoli et al. [180] further developed a coupled
FV-SPH method for incompressible flows. In this method, a
layer of grid cells is located in the SPH domain, and a band of
virtual particles is placed in the FVM domain (both near the
interface). The hydrodynamics variables can thus be calcu-
lated using the suitable interpolation procedures from the
local solutions. In this manner, a smooth transition between
the solutions in the FVM and SPH is obtained. Then this
method has successfully been applied to model viscous flows

and wave processes. However, no violent FSI with breaking
free surfaces is involved in their simulations, and this method
shows a promising performance in modeling violent FSI that
could demonstrate larger advantages of such a coupling ap-
proach.
Marrone et al. [133] also developed a SPH-FVM coupling

algorithm, and further applied it to model free surface flows.
Similarly, the local region with free surfaces is modeled by
SPH, whereas the FVM is applied to solve the bulk flow in a
larger region and the wall regions. The overlapping zones are
utilized to guarantee the continuity between these two so-
lutions. This method is practically applied to model fluid
flows with breaking free surfaces, which shows the super-
iority of these two methods both in accuracy of local regions
and efficiency. However, as mentioned in ref. [134], this
method does not allow the relevant mass transfer and/or free
surface crossing between the two subdomains, which limits
its practical applications to engineering problems. Because,
in practical applications, the position and extension of free
surface deformation and transferred vorticity are not easily
determined. To deal with this problem, Chiron et al. [134]
further extended this coupling method to make it possible for
mass transfer between the SPH and FVM sub-domains and
for the free surface crossing the overlapping region. The
extended coupling method involves a technique for creating
and deleting particles in SPH and an improved technique for
free surface prediction in FVM using the information re-
covered from the SPH solver. This coupling method has been
successfully applied to violent FSI problems (liquid slosh-
ing) where vorticity and free surface significantly pass from
one domain to the other.
Different from above coupling works where both SPH and

FVM are used for modeling fluid flows, Chen et al. [181]
also coupled SPH with FVM for the simulation of fluid-
particle interaction problems. In this article, SPH is applied
for the discrete phase to capture the movement of each in-
dividual particle due to its Lagrangian and particle feature.
FVM is used for the continue phase to compute the turbulent
fluid due to its grid-based feature. By using the pseudo-fluid
model, the fluid and solid phases are coupled through the
effects of drag force, gas pressure and volume fraction of
each phase. Based on this approach, Chen et al. [182] further
developed a SDPH-FVM coupling method for modeling
fluid (gas)-particles multiphase flows. The so-called SDPH
(smoothed discrete particle hydrodynamics) is a developed
SPH that is more suitable for describing the particle char-
acteristics. Taking advantages of SPH for discrete particles
and FVM for fluid flows, this kind of coupled method ex-
hibits good efficiency and accuracy in modeling fluid-par-
ticle interactions. However, just as mentioned in ref. [181],
the constitutive model of a pseudo fluid is still under de-
velopment, and the boundary treatment should also be deeply
studied.
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4.3 SPH coupled with EBG

The EBG technique can also be regarded as a particle
method. It was first proposed for the simulation of membrane
structures (or named elastic shells [183]), and was later de-
veloped to model the red blood cell (RBC) membranes
[184,185]. The flexible structure can also be considered as a
membrane structure, and hence the EBG is very attractive for
modeling the movement and deformation of flexible struc-
tures. With the coupling of SPH and EBG, it is possible to
model the fluid-flexible structure interaction, in which the
viscous fluid flow governed by Navier-Stokes equations is
modeled by SPH, and the dynamic movement and de-
formation of flexible fibers are modeled through EBG. The
SPH-EBG coupling method was originally proposed by
Hosseini and Feng [185] to model the deformations of RBC
in shear flows, and later Yang et al. [142-144] extended the
SPH-EBG coupling method to the simulation of fluid-flex-
ible fiber interactions with good results achieved. In this
section, the EBG method will be briefly introduced and the
coupling of SPH with EBG will be addressed in detail.

4.3.1 EBG model for flexible structure
In EBG model, the flexible structure is discretized into
particles that can interact with each other and with fluid
(SPH) particles as well. As shown in Figure 10, an EBG is
composed of two adjacent line segments connecting three
neighboring particles, and the bending moment in flexible
structure can be transformed to the pairs of forces acting on
the particles. Based on the Newton’s second law of motion,
the governing equation for a flexible body particle is given
by

m v
t T F F gd

d = + + + , (49)B D

where T represents the tension acting on a EBG particle
(flexible body) from adjacent EBG particles, FB denotes the
force due to EBG bending moment, and FD stands for the
fluid force acting on a EBG particle from the neighboring
fluid SPH particles. The tension can be calculated as:

EA r
r rT r= 1 , (50)ba

ba

ab

ba
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where E and A denote the Young’s modulus and the cross-
sectional area of the fiber, respectively. rab

0 represents the

reference distance between particles a and b. The force Fab
B

acting on particle b from particle a can be calculated by

rF M r= × , (51)ba
B b ba

ab
2

where Mb denotes the moment acting on particle b (see
Figure 10), and it is defined as:

M
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r r=
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+ , (52)b
b b

ba bc
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where EI is the bending rigidity, θ denotes the deflection of
the flexible fiber, and b

0 is the reference deflection at particle

b. The direction ofMb is determined by the value of b b
0,

i.e., it is clockwise if b b
0 and counterclockwise if b b

0.

4.3.2 SPH-EBG coupling algorithm
For modeling the fluid-flexible structure interaction, it is
natural to couple SPH with EGB through allowing the in-
teraction of neighboring fluid and flexible structure particles.
That is to say the particles of flexible structure can be re-
garded as moving boundaries of the fluid SPH particles, and
the fluid SPH particles and structure EBG particles are
treated as neighboring particles. In this way, it is convenient
to include the structure particles in discretized governing
equations when calculating forces acting on fluid particles.
The force on the flexible structure particles from the neigh-
boring fluid particles can be calculated similarly except that
the direction of the force is the opposite, which is given by

m p p W

m µ µ W
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( + 0.01 ) , (53)
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where a and b denote the fluid SPH and structure EBG
particles, respectively. The dynamic viscosity of the EBG
particle b is the same as that of the SPH particle a. The
pressure of the EBG particle b can be obtained as:

p p W m W
m

= / , (54)b
a

b ba
a
a a

ba
a

a

where the summation is over all neighboring fluid particles
of the EBG particle b. The total fluid force on the EBG
particle b is

F F= . (55)b
D

a
ba
D

It is noticed that there are different ways to calculate the
viscosity force, and here we just give only one typical
(equation 53). Through this, the EBG particles can interact
with each other by taking account of the tension and bending
forces, and they can also interact with fluid particles by
considering the interaction forces between fluids and flexible
structure.
For the coupling of SPH with EBG, the match of time

integration in these two methods is a challenging work, as the
time step for EBG may be less than the time step for SPH

Figure 10 Illustration of the EBG model. An EBG is composed of two
adjacent line segments connecting three neighboring particles.
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time integration. One way to deal with this problem is to
keep the time integration of EBG nested in SPH time in-
tegration. To explain it further, during the inner loop of EBG
integration, the SPH particles keep static and the force on
EBG particles due to SPH particles remains the same. Also,
the EBG particles cannot penetrate their neighboring SPH
particles during this inner loop of the integration process.
Actually, the time of one entire inner loop for EBG in-
tegration should be the same as that of one time-step in SPH.

4.4 SPH coupled with other methods

As a Lagrangian particle method, SPH has many advantages
over conventional grid-based methods, especially for mod-
eling violent FSI problems. Nevertheless, it also has some
drawbacks due to its Lagrangian and meshfree features.
Fortunately, many of these drawbacks can be removed by the
coupling of SPH with other methods. For example, in
modeling of the solid mechanics problems the stress in-
stability and inaccurate stress or strain are usually produced
by SPH. The coupling of SPH with FEM can be an efficient
way to deal with this problem, in which the large deforma-
tion areas or fluid areas are modeled by SPH while the other
structure areas are modeled by FEM. The SPH is also often
restricted to model relatively small problem domain due to
its expensive computational cost. To treat this problem, the
coupling of SPH with FVM has been developed rapidly
during these years, and in this coupling the larger fluid region
can be simulated by FVM, and the SPH is only applied in the
local region showing strong nonlinear dynamics behavior.
Besides, to model the interactions of fluids with a flexible
structure or thin-walled structure, the coupling of SPH with
EBG can be more attractive as the thin walled structure is
difficult to simulate accurately by SPH due to its boundary
deficiency problem.
Besides the coupling of SPH with FEM, FVM and EBG,

there are some popular methods that can be efficiently
combined with SPH for different applications, such as cou-
pling SPH with DEM [139-141]. DEM is initially proposed
to investigate the discontinuous mechanical effects where the
solid is composed of particles at meso-scale, and then it has
been widely applied to study large deformations, fracture and
failure of materials [141]. In DEM, the contact model be-
tween particles is used to treat the mechanical behavior of
materials. The contact model is usually composed of many
mechanical elements, e.g., a spring and a dashpot in both the
normal and shear directions. Then, the contact forces can be
obtained by the force-displacement law according to the
relative displacements between particles. The velocity and
position of a particle is determined by the obtained contact
force before. To model the fracture and failure of materials,
the normal tensile strength and frictional strength are de-
termined, and the contact between particles can be broken

when the contact force exceeds the strength. Therefore,
considering the advantages of DEM, the coupling of SPH
with DEM has many superiorities for solving FSI with many
rigid bodies or with structural deformation and failure.
Utilizing the aforementioned two superiorities of SPH-

DEM coupling method, many researchers developed differ-
ent coupling models for various FSI problems. Cleary [186]
coupled DEM and SPH to predict the motion of the solid
particles in a slurry flow. In this work, DEM is used to model
the motion of the coarser particulates while SPH is applied to
treat the slurry consisting of water and finer particulates. Ren
et al. [187] developed a SPH-DEM model to study the wave-
structure interaction on a slope. In this work, the SPH
combined with a Riemann solver is used to calculate the
hydrodynamic loads on the discrete blocks, whereas a multi-
sphere DEM is applied to model the movement of the solids
under wave attacking. Robinson et al. [188] developed a
SPH-DEM coupled method for simulating the sedimentation
of granular assemblies with various porosities. In above
SPH-DEM models, the solid particles are regarded as a co-
hesionless granular material. Recently, some SPH-DEM
models considering the bond strength between particles have
been addressed, and these models have been successfully
applied to FSI problems with large solid deformation and
solid fracture [6]. For example, Wu et al. [139] developed a
coupled SPH-DEM model for FSI problems with free-sur-
face and structural failure. In this work, the fluid flow is
modeled by SPH and a parallel bond model is integrated in
DEM to represent the real solid structure. Tang et al. [141]
developed a coupling method of ISPH and DEM, which can
reasonably describe the features of solid movement, de-
formation, and failure in FSI problems.
Recently, SPH coupling with some other methods has also

been addressed. For example, Zhang et al. [189] coupled the
boundary element method (BEM) with SPH for the transient
fluid-structure interaction and applications in underwater
impacts. Being different from the common coupling ap-
proaches (SPH for fluid and other method for structure), the
structure in this SPH-BEM model is simulated by SPH while
the fluid field is solved by BEM. Because the shell structure
can be discretized with only a small number of particles
while the meshfree and Lagrangian feature of SPH makes it
suitable for dealing with the nonlinear problems of structural
responses. Meanwhile, the employment of the boundary
element also reduces the cost for solving the flow field.

5 SPH modeling of FSI problems

5.1 SPH modeling of FSI problems with rigid struc-
tures

Fluid-rigid structure interactions widely exist in natural
phenomena and engineering applications, e.g., wave impact
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or interaction with structures, water filling and water dis-
charge (to and from a water tank or reservoir), and liquid
sloshing etc. Due to its Lagrangian and particle features, SPH
can naturally capture the changing and breakup of free sur-
faces, and violent fluid-structure interactions. Therefore, a
large number of studies have been reported in SPH modeling
of FSI problems with rigid structures [132,190-193].
Liquid sloshing, if ignoring the deformation of the con-

tainer, is a typical fluid-rigid structure interaction problem.
Shao et al. [11,194] presented an improved SPH method for
modeling liquid sloshing in which the kernel gradient cor-
rection technique, a coupled dynamic solid boundary treat-
ment and the RANS turbulence model are incorporated.
Zhang and Liu [79] developed the DFPM approach and
further applied it to simulate liquid sloshing with satisfactory
results obtained. In this section, the liquid sloshing due to the
pitching motion of a rectangular tank and the water exit si-
mulated using the improved SPH by Shao et al. [11,194], and
the liquid sloshing due to the horizontal motion of a rec-
tangular tank simulated using the DFPM by Zhang and Liu
[79], are provided as demonstrative examples in SPH mod-

eling of FSI problems with rigid structures.
In the first case, the tank is allowed to rotate around the

transverse axis, and hence the pitching motion of a rectan-
gular tank is studied. The external excitation can be de-
scribed as t= sin( + )r0 0 , where θ0 represents the
angular displacement, ωr is the circular frequency of the
pitch motion, and ξ0 denotes the initial phase. Figure 11
shows the particle distribution due to the pitching motion of a
rectangular tank [11]. It is clearly seen that the typical flow
dynamics associated with the changing and breaking free
surfaces can be well reproduced by the SPH method. Be-
sides, the pressure values on the right wall of the tank are also
recorded. Figure 12 shows the pressure values at two probes
on the right wall during the sloshing process. It is seen that
with the movement of the water tank, the measured pressure
values rise and fall periodically. The obtained SPH results
agree in general with the results provided by Akyildiz and
Erdem [195], who used a VOF model to track the free sur-
faces. This reveals that the improved SPH method with
kernel gradient and CD-SBT algorithm are effective in re-
solving pressure field, and in treating solid boundaries.

Figure 11 (Color online) Particle distributions at different time instants of the liquid sloshing.

Figure 12 (Color online) Pressure values at probe P1 (a) and P2 (b) during the sloshing process.
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The liquid sloshing for the second case [79] undergoes a
horizontal external excitation, and the water tank moves
according to S A t T= cos(2 / ), where S is the horizontal
location of the tank, and T is the period of the external ex-
citation. The wave height near the left wall of the tank is
tracked for comparison. Figure 13 shows the flow pattern of
the sloshing at eight typical time instants within one period.
It is shown that during the sloshing process, the maximum
pressure region moves as the fluid moves and the uniform
pressure distribution can be obtained. For comparison with

experimental observations, larger and smaller sloshing fre-
quencies are adopted with hw=0.6 m, T=1.3 s, and hw=0.5 m,
T=1.875 s. Figure 14(a) shows the wave heights at the probe
point obtained by the DFPM simulation and experiment
[196] over 20 s course (T=1.3 s). The results from the DFPM
simulation agree well with the experimental observations,
not only in the pattern, but also for the period and amplitude.
The same conclusion can be drawn at a smaller sloshing
frequency (T=1.875 s), as shown in Figure 14(b). It is de-
monstrated that DFPM is an effective method with high

Figure 13 (Color online) Pressure distribution for the liquid sloshing at simulation time t=2.2, 2.4, 2.5, 2.7, 2.9, 3.1, 3.3 and 3.6 s from (a) to (h),
respectively.
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accuracy and stability for modeling fluid-rigid structure in-
teractions.
In the studies carried out by Liu et al. [1] (denoted by the

SPH results), the water exit of a horizontal cylinder has been
simulated. As shown in Figure 15, the snapshots of the SPH
results for this problem along with the existing numerical and
theoretical results are plotted for making a comparison. It can
be seen that the SPH results are in good agreement with the
existing numerical results [197,198] and have a very little
deviation with the theoretical results [199]. This deviation is
acceptable as the thin fluid layer at the top of the cylinder
begins to breakup, and the nonlinear fluid dynamics makes
the theoretical results not very reliable. Due to this reason,
the theoretical results are not given after T=0.6. From the
whole process of this water exit problem, it is clearly seen
that not only the free surface morphology and position of the
horizontal cylinder before its exit from water are well re-
produced, but also the water detachment, breakup, splash and
wave generation during the exit of the cylinder from water

can be well predicted. It is therefore concluded that the SPH
method is very efficient for modeling violent fluid-rigid
structure interactions with moving interfaces and free sur-
faces.

5.2 SPH modeling of FSI problems with elastic struc-
tures

Violent free surface flows with strong fluid-solid interactions

Figure 14 (Color online) Wave height at the probe point for liquid
sloshing, (a) hw=0.6 m and T=1.3 s and (b) hw=0.5 m and T=1.875 s.

Figure 15 (Color online) The water exit of a horizontal cylinder at dif-
ferent time instants (from (a) to (e): T=0.0, 0.6, 0.8, 1.0, 2.0 s) obtained
from left: numerical results by Lin (solid line) [198], numerical results by
Greenhow and Moyo (dashed line) [197], theoretical results by Tyvand and
Miloh (dotted line) [199] and right: SPH results by Liu et al. [1].
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can produce a tremendous pressure load on structures, re-
sulting in elastic and even plastic deformations. The fluid-
elastic structure interaction is an important issue of FSI
problems, and effectively modeling hydro-elastic problems
is very important for the applications of SPH in different
fields such as ocean engineering. A lot of researches have
been reported on SPH modeling of fluid-elastic structure
interactions. For example, Oger et al. [200] developed a
parallel SPH model for modeling hydro-elastic problems,
where the stress instability can be effectively alleviated. Liu
et al. [116] developed an improved SPH with KGC technique
and the so-called CD-SBT algorithm to deal with the elastic
structure in hydro-elastic problems. Antoci et al. [201] pre-
sented a SPH-based FSI solver where the assumption of in-
viscid flow was adopted for fluid dynamics, and the solid
dynamics was handled through an incremental hypoelastic
relation. In the context of projection-based methods, Hwang
et al. [202] developed a projection-based MPS model for
fluid-elastic structure interactions. Rafiee and Thiagarajan
[115] proposed an improved ISPH method for this problem,
in which the PPE was explicitly solved using a simple
scheme and an artificial stress term was integrated to alle-
viate the possible numerical instability. Recently, some
coupled methods have also been proposed for fluid-elastic
structure interactions. For example, Hu et al. [135,136] de-
veloped a FEM-SPH coupled method where the FEM is used
to model elastic structure and the SPH is applied to model
fluid flow. Khayyer et al. [203] also proposed a coupled
method, ISPH-SPH, for the simulation of incompressible
fluid-elastic structure interactions.

Here we provide two demonstrative examples of the fluid-
elastic structure interactions. The first one involves the dam
break with an elastic gate. In this case, an elastic plate is
placed at the exit and the water pressure from the dam break
results in the deformation of the elastic plate. Liu et al. [116]
developed an improved SPH for modeling this problem. The
simulation results and the corresponding experimental ob-
servations are shown in Figure 16. It is seen that the SPH
simulations could accurately reproduce this dam break pro-
cess including the deformation of the elastic gate and the
collapse of the water column. Figure 17(a) and (c) show the
horizontal and vertical displacements of the free end of the
elastic gate, respectively. Figure 17(c) shows the comparison
of the water level between the SPH simulation results and the
experimental observations. It is obviously seen that for both
the displacements of elastic gate and water height, the SPH
results are in great agreement with the experimental ob-
servations [201].
For modeling the fluid-elastic structure interactions, the

coupling of SPH with FEM can be an attractive approach.
Many research studies have been addressed on SPH-FEM
modeling of such FSI problems [41,135,137]. Here, we de-
veloped a coupling strategy of FEM and SPH and success-
fully applied it for modeling the water entry with an elastic
beam. Figure 18 shows the pressure field in fluid and the
stress distribution in elastic beam during the water entry
process obtained by the present SPH-FEM. Figure 19 shows
the comparison of the vertical force on the beam between
results from different sources. The reference solution is ob-
tained by Scolan [204] based on aWagner model for the fluid

Figure 16 (Color online) SPH simulation snapshots [116] and experimental observations [201] for the dam break with an elastic gate. (a) T=0.0 s; (b) T
=0.04 s; (c) T=0.08 s; (d) T=0.12 s; (e) T=0.24 s; (f) T=0.32 s.
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coupled to a linear elastic model for the beam. The results by
Fourey et al. [171] are also obtained with a SPH-FEM cou-
pling method. It is seen that as the beam experiences a larger
deformation with its impacting on the fluid, the smoothed
pressure distribution as well as the jet formation can be ob-
tained by the SPH-FEM solutions. The present SPH-FEM
can obtain the vertical force on the beam that is very close to
the reference semi-analytical solution [204] and other nu-
merical results [171]. This test shows the good performance
of the coupling method for modeling violent FSI problem

with breaking of fluid surface and deformation of structure
well captured.

5.3 SPH modeling of FSI problems with flexible
structures

The fluid-flexible structure interactions are very common in
natural phenomena and industries. The botany and some
animals can adjust the fluid forces imposed on them by
changing their shapes or postures. For example, a fish can
reduce the fluid drag by its wavy motion while extracting
energy from the surrounding vortices [205,206], and a plant
can reduce fluid drag by its reconfiguration [207,208]. Since
the shape of the flexible structures changes with the fluid
field around the corresponding object, the dynamics and flow
patterns of the interactions of flexible structures and fluids
are much more complex than interactions of rigid structures
and fluids. A number of experimental, theoretical and nu-
merical studies have been reported on the dynamics of
flexible structures interacting with fluid flows. In Vogel’s
work [207], the fluid drag and reconfiguration of broad
leaves in high winds were investigated by an experimental
approach. Gosselin et al. [208] experimentally investigated
the reduction of drag on two flexible plates of different
shapes in air. Through experimental and numerical ap-
proaches, Alben et al. [209,210] studied the drag reduction of
a flexible fiber immersed in a soap film. Recently, due to the
advantages of SPH in treating moving boundaries and in-
terfaces, some researchers successfully coupled SPH with
other methods for modeling fluid-flexible structure interac-
tions. Hu et al. [211,212] simulated the dynamics of a rigid-
flexible multibody system in compressible fluid by the
coupling of SPH with the absolute nodal coordinate for-
mulation (ANCF) approach, in which the SPH method is
used to model the compressible fluid and the ANCF is ap-
plied to model the flexible structures. Yang et al. [142-144]
developed a SPH-EBG coupling method for the simulation
of fluid-flexible structure interaction problems. In this
method, the viscous fluid flow governed by the Navier-
Stokes equations is modeled by SPH, and the dynamics and
deformations of flexible structures are simulated by EBG.
We first review the works by Yang et al. [143] in which a

SPH-EBG coupling method was developed for modeling
fluid-flexible fiber interactions. In this case, the flow past a
fiber with its middle part fixed in the domain is simulated to
make a comparison with the experimental results given by
Alben et al. [209]. This case involves frequent generation
and shedding of vortices at different scales that result in the
fluctuations of flow together with oscillations of the flexible
fiber. The SPH-EBG simulation results also experience some
oscillations, and therefore the numerical data of the fluid
drag are smoothed in order to remove the noise for com-
parison with the experimental observations. Figure 20 shows

Figure 17 (Color online) Horizontal (a) and vertical (b) displacements of
the free end of the elastic gate, and (c) time history of water level during the
dam break process, obtained from SPH simulations [116] and experimental
observations [201].
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the variation of the fluid drag per unit profile length versus
the flow velocity. It is seen that the SPH-EBG simulation
results are in good agreement with the experimental results
for both the rigid and flexible fibers. It is therefore demon-
strated that the SPH-EBG coupling method is very effective
in modeling fluid-flexible interaction problems.

According to the SPH-EBG simulation results, three ty-
pical bending modes of flexible fibers during the fluid-
flexible fiber interaction process are identified, i.e., the U-
shaped mode, the flapping mode, and the closed mode (see
Figure 21). With the flow velocity increasing from zero, the
fiber undergoes more bending and is folded with a stable U
shape (Figure 21(a)). With a further increase in the flow
velocity before it reaches a critical value, the two ends of the
flexible fiber begin to swing due to the occurrence of vortex
shedding, which may produce a number of fiber configura-
tions. In this mode, the two ends of the fiber flap with large
amplitude (Figure 21(b)) like a flapping flag. As the flow
velocity increases, the two ends of the fiber combine together
and a closed structure can be formed (Figure 21(c)).
During the fluid-flexible fiber interaction process with a

relatively shorter fiber length of 3.3 cm [143], two sym-
metric vortices are generated at two sides of the fiber, and the
size of these two vortices increases with the increase of flow
velocity. When the flow velocity reaches a certain value, two
rows of asymmetric vortices (the so-called Kármán vortex
street) are formed, which finally reach a stable state as the
flow field is well developed. As for the fluid-flexible struc-
ture interactions with a longer flexible fiber, stronger vortices
are shed that lead to the flapping of the flexible fiber, and its
U shape can no longer be remained, just as shown in Figure
22. In this situation, the bending angle of the violently
flapping fiber becomes larger than 90° and sometimes ap-
proaches even 180°. It is evident that the SPH-EBG method
can well capture different flapping modes of the flexible
structure.
The study of vortex shedding influence on the drag of a

flexible fiber has drawn attention of many researchers
[213,214]. For example, Zhu [214] studied the vortex-in-
troduced vibration of flexible fibers in detail. The large and
frequent deformation of fibers result in frequently moving
interfaces and a violent interaction between the fluid and the
flexible structure that produce great challenges to model the
phenomenon numerically. For this, it is an effective idea to
implement the coupling of SPH with EGB by allowing the
interaction of neighboring fluid and flexible body particles as
the SPH and EBG are all particle-based methods. In this way,

Figure 18 (Color online) The stress distribution in elastic beam and the pressure field in fluid during the water entry process obtained using present SPH-
FEM. From left to right, the simulation time is 1, 2 and 3 ms, respectively.

Figure 19 (Color online) Time history of the vertical force on the beam
obtained from present SPH-FEM, the semi-analytical solution [204] and the
SPH-FEM results by Fourey et al. [171].

Figure 20 (Color online) Comparison of SPH-EBG results [143] with the
experimental results from Alben et al. [209]. The length of the rigid fiber is
2.0 cm and the length of the flexible fiber is 3.3 cm.
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the SPH-EBG can be regarded as a novel and efficient ap-
proach to deal with the fluid-flexible structure interactions.
For modeling the fluid flexible structure interactions, Hu et

al. [211,212] coupled the SPH method with the absolute
nodal coordinate formulation (ANCF) finite element meth-
od, in which the SPH is used to model the fluid flow and
ANCF is applied to capture the dynamic response of the
flexible bodies. The ANCF, originally proposed by Yakoub
and Shabana [215], is an accurate and non-incremental finite
element method to deal with the dynamics of a flexible
multibody system under both large overall motion and large
deformation. Hu et al. [212] applied this coupling method to
model the fluid multibody system interactions that involve
both the fluid rigid structure and fluid flexible structure in-
teractions. In their works, a rigid double-pendulum is hanged

by a flexible cable in air where the double pendulum and
flexible cable are modeled by FEM (ANCF for cable) and the
air is simulated by using SPH. They studied the trajectories
of two points on the rigid double-pendulum with the aero-
dynamic force considered or not. It can be seen in ref. [212]
that the interactions between the fluid and flexible multibody
system have much influence on the simulation results, and
this problem can only be accurately solved with the fluid-
structure interactions considered.

5.4 SPH modeling of FSI problems with granular ma-
terials

Fluid-particle interactions or fluid-particle two-phase flows
have a wide range of industrial applications including flui-
dized suspensions, lubrication with transport medium, sedi-
mentation, slurry flow, and food products, etc. In this
problem, the granular materials are usually several or large
number of particles that have relatively small length scale
and low density. Also, due to the small density ratio of
granular materials to fluid, the motion of particle is heavily
influenced by the surrounding fluid that presents great
challenges to the numerical modeling. Thus, the interaction
between the fluid and granular materials can be regarded as a
special class of FSI problem where the granular materials
may be either rigid or deformable. Besides, this problem
usually involves a large number of particles, and the inter-
actions between different particles increase the difficulty
level in carrying out the simulations.
A lot of numerical techniques have been developed over

the past decades for the simulation of this kind of FSI pro-
blems [216-219]. As pointed out by Tofighi et al. [220], most
of the established fluid-solid simulation methods rely on an

Figure 21 Three typical bending modes of flexible fibers. (a) U-shaped
mode (L=3.3 cm), (b) flapping mode (L=5.0 cm), and (c) closed mode (L=
8.0 cm).

Figure 22 (Color online) The streamlines and vortices of the flexible fiber with length L=8.0 cm at different times (and velocities). The time or flow
velocity increases from (a) to (f), with the lines denoting streamlines and the color showing the angular velocity of SPH particles.
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underlying fluid mesh that may be moved or refined to adapt
the moving boundaries of the solid, which may produce
complex algorithms. As a meshfree and particle method,
SPH has an inherent advantage over the conventional mesh-
based methods as the fluid-solid interaction is realized
naturally and the moving boundaries can be traced without
additional treatments. However, there are very few articles
addressing the application of SPH method to this important
class of fluid-structure interaction problem: particulate two-
phase flows. Tofighi et al. [220] developed an in-
compressible SPH (ISPH) method for simulating the motion
of rigid bodies in fluids. Hashemi et al. [221] simulated
particle sedimentation using a weakly compressible SPH
(WCSPH) with modified pressure boundary condition. Bian
and Ellero [222] have applied WCSPH to concentrate par-
ticle suspensions. Recently, Zhang et al. [80] developed a
modified SPH method to effectively simulate fluid-particle
interaction problems. The modified SPH includes an en-
hanced particle approximation scheme, an effective solid
boundary treatment algorithm, the artificial stress model and
a turbulence model. Here we firstly simulate two sedi-
mentation cases using the modified SPH method and the
finite element fictitious boundary method (FE-FBM)
[27,29,223] for the sake of making a comparison, i.e., single
particle sedimentation (SPS) and dual particle sedimentation
(DPS). Figures 23 and 24 show the vertical and horizontal
velocity distributions at one time instant in SPS and DPS,
respectively. It is noted that the legend magnitude of FE-
FBM figures (with unit cm) should be 100 times that of SPH
figures (with unit m) due to the unit difference. It is seen that
the results obtained using the modified SPH are in good
agreements with those from the FE-FBM simulation in-
cluding the smoothed horizontal and vertical velocity fields,
the position and velocity of the settling particle during the
sedimentation process. In contrast, the velocity field pro-
duced by conventional SPH is very rough, and the positions
of two particles also show much deviation from the FE-FBM

results.
Figure 25 shows the comparisons of the vertical positions

and vertical velocities of two particles, from which we can
see that the modified SPH results agree quantitatively with
the reference ones [220,224]. The settling velocities obtained
from different approaches are expected to have some dif-
ferences due to the complex physics after the tumbling stage
of two particles [225]. For the particle sedimentation pro-
blems, the artificial stress is also useful in the modified SPH.
It can be seen in Figure 26 that SPH points close to the upper
solid boundary obtained without using artificial stress model
aggregate together every two or three points, which is a ty-
pical stress instability phenomenon. In contrast, with the
employment of the artificial stress model, the SPH points
distribute more uniformly without evident stress instability,
and the simulations in this situation are more accurate and
stable.
Furthermore, Zhang et al. [226] developed a finite particle

method with particle shifting technique (FPM-PST) to in-
vestigate the fluid-particle interaction induced by thermal
convection. It is highlighted that this may be the first attempt
on the numerical simulation of thermal particulate flows
using SPH. The FPM-PST achieves higher accuracy and
stability simultaneously, and it can implement the simulation
at a higher Rayleigh number by avoiding the possible nu-
merical voids. One may refer to ref. [226] for more details
about this method.
In the thermal particulate flow case, a hot particle begins to

move in the fluid driven by the gravity and buoyancy force
induced by the thermal convection (see the model set-up in
ref. [226]). Figure 27 shows the temperature field of the fluid
during the particle sedimentation process obtained using
FPM-PST and FE-FBM respectively. As shown in Figure 28,
the uniform distribution of FPM points and smooth tem-
perature field in the fluid are achieved due to an effective
utilization of PST. Figure 29 shows the position and velocity
of the settling particle obtained using the FPM-PST and FE-

Figure 23 (Color online) Vertical (the first and second columns) and horizontal (the third and fourth columns) velocity distributions at one time instant of
single particle sedimentation. The first and third columns are obtained using the modified SPH, and the second and fourth columns are obtained using the FE-
FBM.
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FBM.When the point spacing decreases from L/150 to L/250
or L/350, the results from the FPM-PST simulation get much
closer to those from the FE-FBM solutions. It is therefore
concluded that FPM-PST can reproduce the settling process
of the particle while accurately capturing the heat transfer
between the moving particle and the fluid.

5.5 SPH modeling of FSI problems with extremely in-
tensive loadings

In this section, we demonstrate the application of SPH
method in modeling impact and explosion problems, which

can be regarded as a special type of FSI problems with ex-
tremely intensive loadings. The impact and explosion are
very important in military and industrial applications. These
relevant phenomena tend to complete in a very short dura-
tion, when complex chemical reactions and physical pro-
cesses (e.g., explosive explosion and its driving or damage
effects on structures) take place. It is very difficult to study
these highly complex processes through an analytical ap-
proach since the strong nonlinear fluid and solid dynamics
are involved in this problem. Besides, experimental in-
vestigations are capable of capturing the explosion and im-
pact phenomenon, but it is difficult for experimental

Figure 24 (Color online) Vertical velocity distribution at the dimensionless sedimentation time up: T=10 and down: T=16, obtained using the conventional
SPH (left), modified SPH (middle) and FE-FBM (right).

Figure 25 (Color online) Comparison of vertical positions (a) and vertical velocities (b) of two falling particles in a closed channel.
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approach to describe detail information during the explosion
process. Recently, more researchers tend to numerically
study such problem because the numerical simulation can
effectively produce instant observation with considerable

reductions in the cost. However, modeling the explosion
problem is numerically challenging due to the existence of
violent explosion process, strong FSI between the explosive
gas and the structures, and extremely large deformations of

Figure 26 (Color online) Distribution of the SPH points close to the upper solid boundary obtained using present SPH with (a) and without (b) artificial
stress model.

Figure 27 (Color online) Temperature field of the fluid at sedimentation time t=0.2, 0.6, 1.0 and 1.8 s obtained using FE-FBM (a) and FPM-PST (b)
respectively, Grashof number Gr=1000.
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structures with even phase changes. The SPH method allows
a straightforward handling of FSI with large density ratio
(explosive gas to structure) as the connectivity between
particles are generated as part of the computation and can
change with time. Since its invention, SPH has been suc-
cessfully applied to model FSI in explosion problems, such
as underwater explosion, explosive forming and shaped
charge problems [121,123,124,227].
Explosive welding (EXW) is a typical FSI problem with

large density ratio between explosive gas and metal plates. In
EXW, the flyer plate is driven by the explosion of explosive
to impact onto the base plate at a high velocity. In this pro-
cess, the two plates can be effectively welded together. In
most of the existing numerical models, however, the process
of EXW is simplified as the impact of two plates while ig-
noring the explosion process due to the difficulty in effec-
tively modeling the interactions between explosive gas and
metal plates. The simplified model is usually referred to as
high velocity impact welding (HVIW). At present, there are
very few reports considering the driven effects of explosion
in EXW [228,229], while some important characteristics of

EXW such as the wavy interface and the jetting were not well
captured by these approaches.
Recently, Liu et al. [121,128] developed a density-adaptive

SPH and successfully applied it to model explosive welding
(EXW). In this work, the strong interactions between the
explosive gas and the mental plates were effectively mod-
eled, and the typical characteristics of EXW have also been
accurately captured, i.e., the explosion wave, wavy interface
and jetting formation shown in Figure 30. The wave for-
mation at the material interface is usually an important sign
of a successful explosive welding. The SPH simulation re-
sults correspond well with the widely accepted wave for-
mation mechanism, i.e., the vortex shedding mechanism
[230,231], in which the formation of wavy interface is
somewhat similar to the formation of von Kármán vortex
street produced by a viscos flow over an obstacle at high
Reynolds numbers. It can be seen in the experiments [231]
that the interfacial morphology in EXW varies from straight
to wavy and then to wavy with vortex shedding as the col-
lision velocity increases (shown in Figure 31(a)-(c)). As
shown in Figures 31 and 32, the simulations by adaptive SPH

Figure 28 (Color online) Zoom in view of the temperature distribution at sedimentation time 0.6 s obtained using FPM-PST.

Figure 29 (Color online) Position (a) and velocity (b) of the settling particle obtained using FE-FBM and FPM-PST with different special resolutions,
Gr=1000.
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can well reproduce this evolution of the interfacial mor-
phology, and the produced vortices are very similar to the
form of von Kármán vortex street.
According to the Vortex Shedding Mechanism, the critical

Reynolds number (Rtransition) is defined to determine the
transition of straight to wavy interfacial morphology in
EXW,

R
V

H H=
( + )
2( + ) , (56)transition

flyer base c
2

flyer base

where R denotes the Reynolds number, ρ and H represent the
density (kg/m3) and Vicker’s hardness (N/m2), respectively.
Vc (m/s) represents the flow velocity of the flyer material into
the collision point. For the steel-steel welding, when the
transition of the interfacial morphology occurs, the Vc given
by eq. (56) is 1960 m/s. The Vc obtained from SPH simula-
tion is around 2100 m/s at transition situation of the inter-
facial morphology (see ref. [128]), which corresponds well
with the reference result.
Besides the structure motion driven by an explosion, the

penetration of a metal jet on a target due to explosion is also a
typical FSI phenomenon. The shaped charges are commonly
used in military for penetrating hardened targets and in in-
dustry for cutting metals or rocks. This problem involves
strong interactions between the high-speed metal jet flow
and structure that leads to a large deformation or even broken
of structures. Recently, Feng et al. [124] successfully applied
SPH to model the linear shaped charge with jet formation
(see numerical model in ref. [124]). Figure 33 shows the
shape of the formed aluminum jet obtained by the SPH si-
mulation (without showing the explosive gas), which is close
to that obtained by Katayama et al. [232] based on experi-
mental and computational observations.
With the SPH simulations, Feng et al. [124] further ex-

amined the influence of a surrounding aluminum case on the

Figure 30 (Color online) A typical snapshot in EXW process obtained by
the density-adaptive SPH. The red, black and blue particles represent the
base plate, flyer plate and explosive, respectively. The nephogram in ex-
plosive represents the explosion wave.

Figure 32 (Color online) Temperature distribution of the flyer and base plates in EXW with increasing amount of explosive from left to right.

Figure 31 (Color online) Welding interfaces obtained from (a)-(c) experimental observations [231] and (d)-(f) SPH simulations [128].
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shape of the formed metal jet. As shown in Figure 34, the tip
of metal jet obtained with surrounding aluminum case is
sharper than that obtained without the case. This phenom-
enon might occur due to the confining effect of the sur-
rounding aluminum case on expansion of the explosive gas.
It is thus concluded that the shaped charge with surrounding
cases can lead to stronger converging effects with a sharper
jet tip. Besides, the penetration effects of the metal jet on a
target was also studied based on the SPH simulations. Figure
35 shows the distribution of the metal jet and debris cloud
when the aluminum jet penetrates onto a steel plate. It can be
clearly seen that the shapes of the hole and debris cloud
obtained from the SPH simulation are in qualitatively good
accordance with the experimental observations by Raften-
berg [233].

6 Concluding remarks

The smoothed particle hydrodynamics (SPH) method is a
truly meshfree and Lagrangian particle method which has
special advantages over the grid-based methods in treating
large deformations and rapidly moving interfaces or free
surfaces. Hence, the SPH method and its different variations
have been applied to many fluid-structure interaction pro-
blems in engineering and sciences. In this, we review the
latest developments of SPH in modeling FSI problems. In
particular, we introduced in detail the implementation of FSI
in the SPH framework and the coupling approaches of SPH
with other grid-based or particle-based methods for FSI. The

modeling of FSI within a pure SPH framework for both
fluids and solids is a monolithic FSI simulation in which the
equations governing the fluid flow and the movement of the
structure are solved simultaneously with a single SPH solver.
In contrast, the modeling of FSI using the coupled ap-
proaches is a partitioned FSI simulation in which SPH is
applied in the fluid area while the other method is used se-
parately in the structure region. In principle, FSI modeling
within a pure SPH framework is more rigorous and
straightforward while the representation of moving material
interface with virtual particles together with the im-
plementation of interface conditions sometimes can be
challenging. FSI modeling with coupled approaches can
leverage the advantages of the SPH method and the other
coupled method while this weak coupling may lead to de-
layed interaction and an accurate and robust interface cou-
pling algorithm is necessary.
We also showed SPH modeling of diversified FSI pro-

blems including FSI problems with rigid, elastic and flexible
structures, FSI problems with granular material and FSI
problems with extremely intensive loadings. From the de-
monstrated FSI examples, we conclude that the SPH method
is attractive and has great potential in modeling FSI.
Despite its successful application in modeling FSI pro-

blems, SPH is still under development and there are many
important numerical aspects that need further investigation.

6.1 Remarks on accuracy, stability and efficiency

The conventional SPH method is infamous for its lower

Figure 33 Shape of aluminum jet given by the SPH simulation [124] (a) and reference results [232] (b).

Figure 34 (Color online) Shapes of the formed aluminum jets without (a) and with (b) surrounding aluminum case obtained by SPH simulations.
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accuracy and this motivates the development of improved
SPH approximation schemes including FPM, CSPM, KGC,
KGF-SPH and DFPM, as introduced in sect. 2.2. These
modified SPH approximation schemes in general originate
from the Taylor series analysis of the SPH approximation of
a field function and its derivatives, and a pointwise correc-
tive matrix is used to restore particle consistency and so as to
improve the approximation accuracy. However, these ap-
proaches put more emphases on the consistency (hence
hopefully accuracy), but the stability sometimes can be in
question. For example, for FSI problems with singular par-
ticle distributions, these methods may suffer from ill-con-
ditioned corrective matrices, which may further lead to
numerical instability or unexpected termination of the si-
mulation. Moreover, a pointwise corrective matrix means
more computational effort than the conventional SPH that is
already computationally expensive compared to grid-based
methods. Hence, though the modified SPH approximation
schemes are more accurate, they are also less efficient and
more unstable.
The question is that can we have the accuracy, stability and

efficiency at the same time? The answer is yes, and the
DFPM is such a solution. As an improved SPH method,
DFPM has much better accuracy while keeping the ad-
vantages of flexibility, cost-effectiveness and easiness in
computer programming. As a decoupled FPM, DFPM avoids
the trouble-some matrix inversion and is more stable and
efficient while possessing similar accuracy. Hence, DFPM
leverages the high accuracy of FPM and the stability and
efficiency of the conventional SPH, and it should be ap-
pealing in modeling FSI problems.

6.2 Remarks on FSI interface treatment

As mentioned early, the key challenge in modeling FSI
problems is the algorithm to implement the fluid-structure
interaction, and the FSI interface algorithms are closely re-

lated to the accuracy and applicability of the whole program.
When modeling FSI problems with SPH, either in a pure
SPH framework as monolithic approach or coupled with
other grid- or particle-based methods as partitioned ap-
proach, the FSI interface algorithm needs further develop-
ment. As SPH employs particles to represent the state of the
system while the particles move according to internal and
external forces, the detection of the interface and the im-
plementation of the interface condition are not as straight-
forward as that in the grid-based methods. It is natural to treat
neighboring particles from different materials as virtual
particles which can be used for particle approximation of a
concerned interface particle, and this treatment avoids the
particle insufficiency problem due to the truncation of the
support domain of the particle by the FSI interface. It is also
preferable to use the modified SPH approximation schemes
on virtual particles for improving the simulation accuracy at
the FSI interface.
One important issue is to use a penalty repulsive force to

prevent fluid particles from unphysically penetrating solid
particles. Though there are some reported repulsive force
models, a decent repulsive force should be sufficiently large
so as to prevent unphysical particle penetration and should be
small enough so that the force will not seriously disturb the
bulky flow dynamics. Hence, a robust and versatile repulsive
force model can be attractive and is still under development.
The other issue is the restoration of the FSI interface con-
sistency, e.g., the consistency of displacement, velocity and
stress. So far, the implementation of the FSI interface con-
dition in SPHmodeling is not well studied, especially for FSI
problems with large density discontinuity, just the same as in
SPH modeling of multiphase flows with large density ratios.
Hence, some existing algorithms in SPH modeling of mul-
tiphase flows including the treatment of large density ratio
and the consistency restoring approaches for stress (pressure)
can be extendable to SPH modeling of FSI problems. Con-
sidering the aforementioned factors, a good choice to im-
plement FSI interface can be the coupled dynamics solid
boundary treatment integrated with DFPM approximation
and consistency treatment arising from multiphase flows.

6.3 Remarks on coupling of SPH with other methods

As a meshfree Lagrangian particle method, SPH can natu-
rally track moving features and easily treat large deforma-
tions, and therefore it is attractive in modeling fluid flows
with free surfaces and moving interfaces, in modeling solid
dynamics with large deformations, and in modeling FSI
problems. Though SPH has developed rapidly in recent
years, the balance of accuracy, stability and efficiency is still
not fully resolved. Boundary (fixed or movable solid
boundary, free surface, moving interface or open boundary)
treatment is not as straightforward and accurate as grid-based

Figure 35 (Color online) Comparison of the experimental radiophoto
[233] (a) with the SPH simulation results (b) for the penetration process of
a shaped charge.
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methods. Modeling FSI problems in a pure SPH framework
as a monolithic approach also need further developments.
In view of the advantages and drawbacks of the SPH

method, it is natural to consider combining SPH with other
methods to leverage the advantages of each method in sui-
table region. That is why SPH coupling models are hot in the
latest decade, and SPH has been combined with other grid-
based (FEM and FVM) and particle-based (DEM and EBG)
methods for different FSI problems as partitioned coupling
approaches. These coupling approaches are successful to
some extent and for some problems, but not omnipotent for
diversified applications. So far, as the earliest coupling ap-
proach, SPH coupling with FEM (SPH-FEM) is the most
studied and most successful. However, even for SPH-FEM,
the interaction between SPH particles and FEM elements
together with the information exchange still need further
study in terms of accuracy, flexibility and robustness.
Moreover, the conservations of mass, momentum and even
energy should also be seriously considered. It is noted that
for SPH modeling of FSI problems, both the monolithic
approach in a pure SPH framework and the partitioned ap-
proach coupling with other methods undergo development.
The competition of these two approaches can surely pro-
duces new algorithms for specific or general applications,
just as the competition of the particle-based methods with the
grid-based methods for modeling FSI problems.

6.4 Particle regularization and adaptive particle re-
solution

When modeling FSI problems with a grid-based CFD solver
for fluids and a grid-based CSD solver for structures, the
mesh around the FSI interface needs to be carefully treated
and a body-fitted mesh with adaptive mesh refinement is
usually preferred. For SPH modeling of FSI problems, the
situation is more complicated. Particle regularization and
multiresolution can be very attractive, especially around the
FSI interface area.
Firstly, the accuracy of the SPH particle approximation is

closely related to the deployment of particles. Apart from
using higher order SPH approximation schemes as discussed
in sect. 2, one other approach is the particle regularization
technique, i.e., re-distributing the irregular particles to make
them more uniform for better accuracy. During the history of
SPH development, different particle regularization techni-
ques including XSPH [55], tensile correction [234], dy-
namics stabilization [235] and particle shifting techniques
[236,237] have been proposed and they can be helpful in
modeling complex FSI problems especially for irregular
particle distributions. It is important to note that these par-
ticle regularization techniques may not be valid for every
circumstance. For example, the XSPH may generate un-
physical solutions of the viscosity, especially at high velocity

gradients or with coarse particle resolution. The tensile
correction can somewhat alleviate the tensile instability, but
it does not work well in regularizing disordered particles
compared to the particle shifting technique. The particle
shifting technique may not be very effective for alleviating
the tensile instability at high Reynolds numbers, and too
much shifting can influence the simulation accuracy. The
particle regularization technique may also produce un-
physical results at the interface areas for modeling complex
FSI problems. Therefore, new particle regularization tech-
niques that could balance the accuracy and stability seem
very attractive. Further developments on particle regular-
ization techniques may need to consider the applicability for
some complex FSI problems, i.e., FSI at high Reynolds
numbers, FSI with breaking free surfaces, and FSI with
strong discontinuities at the materials interface.
Secondly, as the particle distribution with equal spacing

may not capture important physics around the interface area
and the distribution of very refined particles in the whole
domain requires prohibitive computational cost, particle
distributions with multi-resolutions at different areas or the
so-called adaptive particle resolution (APR) are usually ne-
cessary. For example, Chiron et al. [99] simulated the water
entry of a flat panel with the adaptive particle resolution, in
which the interaction region of flat panel and fluid is mod-
eled with very refined particles to accurately capture the
local phenomenon. Omidvar et al. [238] model the wave-
structure interaction using a simplified multiresolution ap-
proach. In their work, a square refined region is used around
the cylinder to obtain accurate flow configuration and wave
loading on structure.
The very early investigation on adaptivity of SPH was

presented in solving astrophysical problems in which a
density criterion is used to determine the variation of particle
resolution [239]. Feldman and Bonet [100] first proposed a
particle refinement technique in which the particles are split
into children particles to locally increase the particle re-
solutions. For particle coarsening, one approach is to merge
the children particles passing through the splitting domain
into mother particles again. Another coarsening technique is
that the mother particle split in a certain region is not re-
moved but switch off and they are turned on after passing
through the interested region. Though the APR techniques
show some advantages in modeling FSI, there is still a long
way to go before APR techniques become as mature as AMR
techniques in grid-based methods. One challenge is to
maintain the mass, momentum and energy conservation of
the particle system during the particle splitting and coar-
sening process that may affect the simulation accuracy and
stability. Also the coarsening stage usually requires ex-
pensive computational cost, and more efficient coarsening
techniques can be attractive. Besides, using multiresolution
in multi-thread systems like GPU remains a big challenge to
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be solved. In multi-thread systems such as GPU, the complex
load balancing schemes may be required to deal with the
memory management problems. At present, there are still
limited studies on this technique while the multiresolution in
multi-thread systems is very important for application of
SPH in industries.
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