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The term “quantum carpet” can be observed in many closed quantum systems, where the evolution of a wave function exhibits a
carpet-like pattern. Quantum carpet mechanisms are also akin to the classical interference patterns of light. Although the origins
of quantum carpets have previously been studied by various researchers, many interesting details are still worth exploring. In
this study, we present a unified framework for simultaneously analyzing three different features of quantum carpets: full revival,
fractional revival, and diagonal canal. For the fractional revival feature, a complete formula is presented to explain its formation
through Gaussian sum theory, in which all essential features, including phases and amplitudes, are captured analytically. We also
reveal important relationships between the interference terms of diagonal canals and their geometric interpretations such that a
better understanding of the development of diagonal canals can be supported.
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1 Introduction

In quantum mechanics, the infinite square well, also known
as the “particle-in-a-box” model, remains one of the best
physical models used for illustrating the various fundamen-
tal concepts of quantum theory [1-4]. It captures the essen-
tial features of bound state problems through a deep confin-
ing potential, providing the first algebraic approximations to
semiconductor quantum wells [5-7]. In terms of energies, all
eigenvalues and eigenvectors of the infinite square well can
be obtained analytically with the dynamics solved through
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the eigenstate expansion method [8-12] as well as machine
learning [13,14]. Moreover, the quantum adiabatic dynamics
of an infinite potential well with moving walls can be acceler-
ated through various shortcuts to adiabaticity [15-18]. Even
though the dynamics of the particles inside an infinite square
well are well understood, studies continue to aspire new in-
sights into the field of quantum physics [19-24].

The evolution of a wave function for a particle that is
free to move inside an infinite square well potential exists
in an art-like pattern. Such a pattern has been classified
as a “quantum carpet”, which was originally introduced by
Kaplan et al. [25] to describe intermodal traces of individ-
ual eigenmodes that are multi-degenerate. Quantum carpets
illustrate the evolution of wave functions in the space-time
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continuum, revealing key features that emerge from an initial
wave function after the “revival time” [26]. Essentially, the
occurrence of such revival patterns in quantum carpets are
owing to phase alignments in neighboring eigenstates dur-
ing the evolution [27-36]. Experimentally, the properties of
quantum carpets have been illustrated through a wide vari-
ety of systems, including the Rydberg atom [37], the optical
lattice [38], the cavity quantum electrodynamic systems [39]
and the optical waveguides [40].

Apart from a full revival of the initial wave function, the
time evolution of a quantum carpet also comprises solutions
that clone initial wave functions throughout the well, a phe-
nomenon called “fractional revival” [41-44], which originates
from a phase alignment with non-adjacent eigenstates. A
fractional revival appears when the evolution time is frac-
tional multiples of the revival time [45-48]. Various ap-
proaches have been developed to analyze fractional revivals.
For example, previous analysis [41] has based the frac-
tional revival on the dynamics of classical-like wave packets,
in which the amplitudes and relative phase were obtained.
Fourier analysis could also be applied directly to examine
fractional revival [42], in which absolute phases could be ob-
tained. However, the authors did not provide a complete ac-
count of the fractional revival in this instance with the results
unable to explain the identical nature of the copied ampli-
tudes.

Thus, the goal of our work is to present a unified frame-
work that is capable of recovering both the revival ampli-
tudes and absolute phases in a fractional revival, without re-
lying on classical physics. To this end, we use a continu-
ous quantum carpet formula to explain fractional revival us-
ing “Gaussian sum theory”, where both the revival ampli-
tudes and absolute phases can be analyzed through the same
framework. Alternatively, other patterns of continuous quan-
tum carpets exist (e.g., diagonal canals), whose formation
can be explained by deconstructing a carpet into background
and interference terms through the Wigner function [49, 50].
We also provide a detailed analysis on the relations between
background/interference terms and their geometrical repre-
sentations in the diagonal canals. Finally, we theoretically
describe a discrete carpet, and then discuss its experimental
application by optical waveguide.

This paper is organized as follows. In sect. 2, we ana-
lyze the general framework of continuous carpets, including
the full revival, fractional revival, and diagonal canal. We
then present a new formula for fractional revival with the ex-
plicit analysis of background/interference terms for the diag-
onal canal. In sect. 3, we attempt a theoretical investigation
into discrete carpets, followed by a discussion towards its ex-
perimental implementation in optical waveguides; this is fol-
lowed by a summary in sect. 4.

2 Continuous quantum carpets

2.1 Full revival of the wave function

We consider a particle with mass m trapped inside an infinite
square well having a potential defined by

V (x) =

 0, x ∈ (0, L) ,

∞, x < (0, L) .
(1)

Here, the time evolution of the wave function is given by
Ψ (x, t) =

∑∞
n=1 cnψn (x) e−iEnt/~, where the eigenstates are

ψn (x) = ηx

√
2
L

sin (πnx/L) , (2)

ηx = 1 exists if x ∈ (0, L), otherwise ηx = 0. At the initial
time, we focus on the Gaussian wave packet:

Ψ (x, 0) =
1√√
2πsx

exp
[
− (x − x̄)2

4s2
x

]
exp (i p̄x/~) (3)

being the initial state, where x̄ and p̄ are the expectation (or
average) values of the position and its momentum operators,
respectively. sx is the standard deviation of the particle posi-
tion. Recall that if the energy eigenvalues are represented as
En = n2π2~2/2mL2, we therefore have

Ψ (x, t) =
∞∑

n=1

cnψn (x) exp
(
−i2πn2 t

4mL2/π~

)
. (4)

This implies that after the period t = T with

T = 4mL2/π~, (5)

the wave function repeats itself as a full revival (i.e.,
Ψ (x,T ) = Ψ (x, 0)), as shown in Figure 1(a). Details of this
evolution for quantum carpets at t < 0.1T and t > 0.9T are
shown in Figure 1(b) and (c).

Apart from a full revival, a mirror revival exists for the
wave function at t = T/2 (i.e., Ψ (x,T/2) = −Ψ (L − x, 0)).
As can be seen in Figure 1(d), the wave packet reconstructs
itself as a mirror image of the initial packet at t = T/2. This
enables the reverse flow of time to occur such that the original
impulsive event after a time evolution can be recreated [51].

2.2 Fractional revival

Apart from the full revival at t = T and the mirror revival
at t = T/2, a fractional revival is also present [41, 42, 44],
which occurs at time points t = (α/β) (T/2), where α and β
are coprime integers. Here, the wave function:

Ψ

(
x,
α

β

T
2

)
= ηx

√
2
L

∞∑
n=1

cn sin (πnx/L) e−iπn2α/β (6)
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can be regarded as a superposition of the initial states Ψ (x, 0)
for α/β = 1/2, 1/3, 5/6, as shown in Figure 2. Interestingly,
while the number of wave packets is determined by the value
of β, α can then be seen to affect the position of the wave
packets.

In fact, a phenomenon that is similar to fractional revival,
in the context of classical optics, is the Talbot effect (deemed
the “Talbot carpet”), where an arbitrary wavefront of light

t/T

x
/L

(a)

(b)

(c)

(d)

Figure 1 (Color online) A full revival and a mirror revival of the quan-
tum carpet. x is the position of the particle, L is the width of the well,
t is the evolution time, and T is the revival time. The parameters were
x̄/L = 1/4, sx/L = 1/ (5π), p̄/ (~/L) = 25π. The value of the probabil-
ity density |Ψ (x, t)|2 is color coded, where red represents a high value, and
gray represents 0. (a) A plot of the quantum carpet from t = 0 to t = T .
Note the reconstructed wave function Ψ (x, t) at t = T . (b), (c) Details of the
quantum carpet at t < 0.1T and t > 0.9T . (d) A mirror image of the initial
state formed at t = T/2.

x/L

L

(a)

(b)

(c)

Figure 2 (Color online) The fractional revival at α/β = 1/2, 1/3, 5/6
(α = 1, 1, 5 and β = 2, 3, 6) for (a), (b), and (c). x is the position of the
particle, L is the width of the well, and ρ = |Ψ (x, t)|2 is the probability dis-
tribution, where t = (α/β) (T/2) and T is the revival time, respectively. The
other parameters are x̄/L = 1/4, sx/L = 1/ (20π) and p̄/ (~/L) = 25π. We
find that the number of wave packets are identical to the value of β.

reconstructs itself to produce different gratings of different
sizes much like a superposition of several initial wavefronts.
This traversed well with the “Gaussian sum theory” [26].
Owing to this comparison, a new fractional carpet formula,
simultaneously containing revival amplitudes and absolute
phases, is given here through a Gaussian sum. In particu-
lar, the wave function, in this case, is a superposition of the
oddly extended initial state Φ(x, 0), where the odd extension
means that

Φ(x, t) =
∞∑

n=−∞
Ψ̃ (x − 2Ln, t), (7)

and

Ψ̃(x, t) = Ψ(x, t) − Ψ(−x, t). (8)

There are β copies of Φ(x, 0) in the fractional revival. And
each of the copies contributes only one initial packet Ψ (x, 0)
to the revival.

To create a fractional revival, we write the expansion coef-
ficient as:

cn =
√

2/L
∫ L

0
sin (πnx/L) Ψ̃ (x, 0) dx . (9)

Using the identity sin θ =
(
eiθ − e−iθ

)
/2i, this can be rear-

ranged as:

cn =
1
2i

√
2
L

∫ ∞

−∞
eiπnx/LΨ̃ (x, 0) dx. (10)

Let us now extend the definition of cn for n = 0,±1,±2,±3,
such that c−n = −cn. Hence

Ψ

(
x,
α

β

T
2

)
=
ηx

2i

√
2
L

∞∑
n=−∞

cneiπnx/Le−iπn2α/β. (11)

If we substitute eq. (10) into eq. (11) whilst switching the
order between summation and integration, we obtain

Ψ (x, t) =
ηx

2L

∫ ∞

−∞
Ψ̃

(
x′, 0

) ×  ∞∑
n=−∞

f (n)

dx′, (12)

where f (n) ≡ exp
(
iπn x−x′

L

)
exp

(
−iπn2 α

β

)
. By introducing

the symbol qα, where qα = 1 if α is odd and qα = 0 if α is
even, this expression can be simplified to

Ψ

(
x,
α

β

T
2

)
=
ηx

β

∞∑
n=−∞

Ψ̃ (x − Lqα − 2Ln/β, 0) S (n, α, β) ,

(13)

(see the details in Appendix A), where S (n, α, β)=∑β
j=1 exp

[
iπ j (qα + 2n/β − jα/β)

]
is the Gaussian sum [26].

In number theory [52], for any integer n and any coprime in-
teger α and β, we use

|S (n, α, β)| =
√
β, (14)
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which implies that

S (n, α, β) =
√
β exp

[
iΘ (n, α, β)

]
, (15)

where, Θ (n, α, β) = arg S (n, α, β). By substituting eq. (15)
into eq. (13), and using Θ (βn + j, α, β) = Θ ( j, α, β), which
can be derived easily from its definition, we then get

Ψ

(
x,
α

β

T
2

)
=
ηx√
β

∞∑
n=−∞

β∑
j=1

Ψ̃ (x − Lqα − 2L j/β − 2Ln, 0)

× exp
[
iΘ ( j, α, β)

]
. (16)

If we switch the order between summations, we finally get

Ψ

(
x,
α

β

T
2

)
=
ηx√
β

β∑
n=1

Φ (x − Lqα − 2Ln/β, 0)

× exp
[
iΘ (n, α, β)

]
, (17)

where Θ (n, α, β) is the absolute phase and 1/
√
β is the equiv-

alent amplitude; both are analytically given at the same time.
The relative phase can be obtained through a difference be-
tween absolute phases. For any initial state Ψ(x, 0), the
wave function Ψ (x, t) depicts the fractional revival at time
t = (α/β) (T/2). Is a superposition of β copies of the oddly
extended initial wave packet Φ (x, 0), which are separated by
2L/β in the x coordinate.

If copies of the extended initial wave packet Φ (x, 0) does
not overlap, the fractional revival then resembles separate
wave packets, as shown in Figure 2. If they do overlap, inter-
ference patterns will start to form, as shown in Figure 3. The
maximum number of initial wave packets from a fractional
revival is therefore limited by the width of the packet.

2.3 Diagonal canals

Here, the diagonal canal produced refers to the group of gray
lines that traverse the carpet from each side, similar to the
green lines shown in Figure 4(a). This phenomenon can be
explained by deconstructing the quantum carpet back into ba-
sic background and interference terms using the Wigner func-
tion W f (x, p, t) [49], which is defined as:

W f =
1
π~

∫ ∞

−∞
f ∗ (x + y, t) f (x − y, t) e2ipy/~dy, (18)

where f (x, t) is an arbitrary function of the variables x and t.
From eqs. (18) and (7), we obtain

WΦ (x, p, t) =
1
π~

∞∑
j,k=−∞

∫ ∞

−∞
Ψ̃∗ (x + y − 2L j, t)

× Ψ̃ (x − y − 2Lk, t) e2ipy/~dy. (19)

x/L

L

(a)

(b)

Figure 3 (Color online) A fractional revival at α/β = 3/4, 3/8 for (a)
and (b). Here x is the position of the particle, L is the width of the well,
ρ = |Ψ (x, t)|2 is the probability distribution where t = (α/β) (T/2), and T
is the revival time. The other parameters x̄, sx, p̄ are the same as Figure 2.
Note that there are interference patterns observed as the superposed wave
functions overlap.

(a)

(b)

(c)

t/(T/2)

x
/L

Figure 4 (Color online) The diagonal canals crisscrossing the quantum car-
pet. The color code and associated parameters x̄, sx, p̄ are the same as those
in Figure 1. (a) Three diagonal canals of the quantum carpet are emphasized
using green lines. (b) Straight lines that satisfy x̃ = 0. Integer j obtained
between −4 and 4 and integer k between − | j| and | j| + 1. (c) A combination
of (a) and (b) showing the center of grouped parallel canals (in green).

To simplify the notations, we define variables x̃ and p̃ as be-
ing

x̃ =
(

x
L
− j

t
T/2
− k

)
L, p̃ =

π~

2L
j, (20)

where j and k are integers. In fact, we shall see later that ev-
ery straight line in the x-t plane satisfying x̃ = 0 is the center
of a group of parallel canals, as shown in Figure 4(b) and (c).
After several mathematical transformations (see Appendix B
for details), eq. (19) can then be modified as:

WΦ (x, p, t) =
π~

2L

∞∑
j,k=−∞

(−1) jkWΨ̃ (x − Lk, p, t) δ (p − p̃) .

(21)

There are two useful properties the of Wigner function
that can be derived from its definition. First, | f |2 can be ob-
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tained using | f |2 =
∫ ∞
−∞W f dp. Second, if the given func-

tion f satisfies the time-dependent Schrödinger equation of
a free particle i~ ∂

∂t f = − ~2

2m
∂2

∂x2 f with boundary conditions
f (x→ ±∞, t) = 0, then the time evolution of the Wigner
function can be written as W f (x, p, t) = W f

(
x − p

m t, p, 0
)
.

We observe that |Ψ (x, t)|2 = ηx|Φ (x, t)|2, which suggests that
|Ψ (x, t)|2 = ηx

∫ ∞
−∞WΦ (x, p, t) dp. This then equates to

|Ψ (x, t)|2 = ηx
π~

2L

∞∑
j,k=−∞

(−1) jkWΨ̃ (x − Lk, p̃, t). (22)

Using the secondary properties of the Wigner function, we
obtain

|Ψ (x, t)|2 = ηx
π~

2L

∞∑
j,k=−∞

(−1) jkWΨ̃ (x̃, p̃, 0). (23)

By substituting eq. (8) into the equation above, the probabil-
ity density |Ψ (x, t)|2, which characterizes the quantum carpet,
can be further deconstructed into basic background and inter-
ference terms [49]:

|Ψ (x, t)|2 = ηx
π~

2L

∞∑
j,k=−∞

(
B+j,k + B−j,k + I j,k

)
. (24)

This deconstruction can always be achieved regardless of
the form of the initial state Ψ(x, 0). The background terms
B±j,k can be expressed by the Wigner function of the initial
state Ψ (x, 0) as B±j,k = (−1) jkWΨ (±x̃,± p̃, 0). The interfer-
ence terms I j,k = (−1) jkI (x̃, p̃, 0) can also be obtained from
I(x, p, t) = WΨ̃(x, p, t) −WΨ(x, p, t) −WΨ(−x,−p, t).

In our calculations, the initial state Ψ (x, 0) is eq. (3), such
that the specific expressions for B±j,k and I j,k are

B±j,k =
(−1) jk

π~
G

(
±x̃ − x̄

sx

)
G

(
±p̃ − p̄

sp

)
(25)

and

I j,k = −2
(−1) jk

π~
G

(
x̃
sx

)
G

(
p̃
sp

)
cos

(
x̄ p̃ − p̄x̃
~/2

)
, (26)

where G is defined as G (θ) = exp
(
−θ2/2

)
. The oscillation of

interference terms I j,k comes from the “cos” factor in eq. (26),
which depends on the variables x̃ and p̃.

An analysis of the relationship between background and
interference terms and their corresponding geometries are
given in Figures 5 and 6 with the notations

∑
θ =

∑∞
θ=−∞ . B+j,k

propagates in the direction of p̄ whilst B−j,k propagates against,
as shown in Figure 5(a) and (b). The total background can be
obtained using

∑
j,k B+j,k +

∑
j,k B−j,k (Figure 5(c)). In fact, only

the terms
∑

j B±j,k with even k will contribute to the total back-
ground. Conversely, the sum

∑
j B±j,k will oscillate to 0 if k is

odd due to the factor (−1) jk in B±j,k. As shown in Figure 5(d),

t/(T/2)

x
/L

(a)

(b)

(c)

(d)

Figure 5 (Color online) Geometry ascribed to the background terms.
The color code and associated parameters x̄, sx, p̄ are the same as those in
Figure 1. (a) B+j,k propagates toward the p̄ direction.

∑
j B+j,0,

∑
j B+j,−2, and∑

j B+j,−4 are shown from left to right. (b) B−j,k propagates against the direction
of p̄.

∑
j B−j,2,

∑
j B−j,4, and

∑
j B−j,6 are shown from left to right. (c) The total

background obtained using
∑

j,k B+j,k +
∑

j,k B−j,k. (d) The summation over j
leads to the spread of wave packet. B+44,−2, B+50,−2 and B+56,−2 are shown from
left to right.

t/(T/2)

x
/L

(a)

(b)

Figure 6 (Color online) Geometry ascribed to the interference terms.
The color code and associated parameters x̄, sx, p̄ are the same as those in
Figure 1. Here, negative values are represented in blue. (a) The slope of
the interference term I j,k depends on the integer j. I0,0, I1,0, I2,0, and I3,0

are displayed from bottom to top. Each term is centered along straight line
x̃ = 0, where j = 0, 1, 2, 3 and k = 0. (b) The intercept of I j,k showing its de-
pendence on integer k. I−3,1, I−3,2, and I−3,3 are displayed from left to right.
Each term is centered along straight line x̃ = 0, where j = −3 and k = 1, 2, 3.

the sum over j leads to the spread of the wave packet.
Moreover, it is quite clear to get the corresponding geome-

tries of interference terms. Every I j,k digs several parallel
canals along straight line x̃ = 0 with different slope con-
trolled by j (shown in Figure 6(a)) and intercept controlled
by k (shown in Figure 6(b)).

3 Discrete quantum carpets

3.1 Theoretical analysis

Let |1⟩ , |2⟩ , ..., |N⟩ be a complete set of orthogonal projectors
for a quantum system. A Hamiltonian composed of nearest-
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neighbor two-body interactions then takes the form of

Ĥ = − J
2

N−1∑
n=1

(|n + 1⟩ ⟨n| + |n⟩ ⟨n + 1|) , (27)

where J represents the coupling strength. This Hamiltonian is
equivalent to infinite-square-well if the basis |1⟩ , |2⟩ , ..., |N⟩
are regarded as position eigenstates and their total number N
is large enough. The discrete version of the initial state of
eq. (3) is

|Ψ0⟩ = A
N∑

n=1

exp
[
− (xn − x̄)2

4s2
x

]
exp (i p̄xn/~) |n⟩, (28)

where A =
[∑N

n=1 G ((xn − x̄) /sx)
]−1/2

is the normalization
coefficient and xn = nL/N are points equally spaced in the
discrete well. By solving the dynamic Schrödinger equation
i~ ∂

∂t |Ψ⟩ = Ĥ |Ψ⟩ through the initial conditions proposed in
eq. (28), we get the time-dependent state:

|Ψt⟩ = Û†D̂Û |Ψ0⟩ , (29)

where the operator Û is unitary with matrix elements:

⟨ j| Û |k⟩ =
√

2
N + 1

sin
(
π

jk
N + 1

)
. (30)

The operator D̂ is diagonal with matrix elements:

⟨n| D̂ |n⟩ = exp (−iεnt/~) , (31)

where εn are the energy eigenvalues such that

εn = −J cos
(
π

n
N + 1

)
. (32)

A numerical calculation of the discrete carpet |⟨n | Ψt⟩|2,
where N = 150, is given in Figure 7(a) with the horizontal
coordinate t and vertical coordinate n. It shows the same be-
havior with the continuous one (Figure 7(b)).

3.2 Experimental methods

A reasonable way to observe a discrete carpet is through a
waveguide array, as shown in Figure 8. Here, a photon prop-
agates into a waveguide array through N single-mode chan-
nels that are parallel to each other. The latter can be described
by position eigenstates |1⟩ , |2⟩ , . . . , |N⟩, where |n⟩ represents
a photon cited within the array at xn = nL/N. The gap be-
tween these waveguides make it possible to overlap individ-
ual modes. In this case, the waves propagating between

(a)

(b)

t/(T/2)

t/(30t0)

x
/L

n

Figure 7 (Color online) A comparison of the discrete quantum carpet (a)
and the continuous quantum carpet (b). The color code and associated pa-
rameters x̄, sx, p̄ are the same as those in Figure 1. Here, n is the position
eigenstate |n⟩, t is the evolution time, t0 is a time unit defined by t0 = ~/J,
and T is the notation given by eq. (5).

Photon

x

y

z

N

Figure 8 (Color online) An example of a waveguide array showing a pho-
ton propagating in the x-z plane to form a carpet.

waveguides (in the x direction) satisfy the Hamiltonian in
eq. (27) [53]. To observe quantum carpets, we manipulate the
wave length of the photon and the space between waveguides.
By doing this, the quantum carpets appear as the two ex-
perimental parameters have the ability to make single-mode
waveguides overlap.

In the z direction, propagating photons along waveguides
occurs through uniform motion, which transforms the time
evolution into a space variation. Here, we are able to input
the same initial state at z = 0 to detect the photon at z = zi.
Through the statistical distribution of photons, the discrete
quantum carpet at a given moment t = zi/c is obtainable,
where c is the speed of light in the medium. By combining
each of the distributions at z1, z2, z3, ... together, we can there-
fore obtain the experimental discrete quantum carpet.

As shown in Figure 7, N = 150 is sufficient to observe
a clear pattern of carpet while the experiments can couple
waveguides up to 104 channels [54], which can fully satisfy
the requirement.

4 Summary

In this study, we have analyzed three essential features of
continuous (i.e., full revival, fractional revival and diag-
onal canal) and discrete quantum carpets. For the frac-
tional revival feature, we have interpreted this as a super-
position of several oddly extended wave packets with the
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same amplitude. Their absolute phases were also obtained
from Gaussian sum theory. The relationships between back-
ground/interference terms of diagonal canals and their geo-
metric representations were analyzed explicitly. The sum of
background terms forms the spread, reconstruction, and re-
flection of wave packets, and each interference term consti-
tuted several parallel canals within the carpet. With regard
to the discrete carpet, we proposed a method to experimen-
tally observe this phenomenon using current optical waveg-
uide technology. Overall, we believe our results improved
the understanding between the fundamental “particle in box”
model and intricate quantum carpet patterns.
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f (5) + f (6) + = + [ f (−2) + f (−1) + f (0)] + [ f (1) + f (2) +
f (3)] + [ f (4) + f (5) + f (6)] + . In this way, we form
∞∑

n=−∞
exp

(
iπn

x − x′

L

)
exp

(
−iπn2α

β

)

=

 ∞∑
n=−∞

exp
[
iπnβ

(
x − x′

L
− qα

)]
×


β∑

j=1

exp
[
iπ j

(
x − x′

L
− j

α

β

)] , (a1)

where qα = 1 if α exists as an odd number and qα = 0 if
α exists as an even number. If we use the ordinary Poisson
summation formula [55]:
∞∑

n=−∞
ei2πnθ =

∞∑
n=−∞

δ (n − θ), (a2)

with δ as the Dirac delta function, the expression in eq. (a1)
can be given by

2L
β

∞∑
n=−∞

β∑
j=1

δ (κ) exp
[
iπ j

(
qα +

2n − jα
β

)]
, (a3)

where κ = x − x′ − Lqα − 2Ln/β. If we substitute eq. (a3)
into eq. (12), and switch the order between summation and
integration, we then obtain eq. (13).

Appendix B Pattern decomposition

For the Wigner function:

WΦ (x, p, t) =
1
π~

∞∑
j,k=−∞

∫ ∞

−∞
Ψ̃∗ (x + y − 2L j, t)

× Ψ̃ (x − y − 2Lk, t) e2ipy/~dy. (a4)

If we replace y by y = z + 2L j and switch the order in the
summation to
∞∑

j,k=−∞
f ( j, k) =

∞∑
j,k=−∞

f ( j, k − j), (a5)

we get

WΦ (x, p, t) =
1
π~

 ∞∑
j=−∞

e4ipL j/~

 ∞∑
k=−∞

∫ ∞

−∞
Ψ̃∗ (x + z, t)

× Ψ̃ (x − z − 2Lk, t) e2ipz/~dz. (a6)

By using the ordinary Poisson summation formula (a2) and
replace z with z = y − Lk, we have

WΦ (x, p, t) =
π~

2L

∞∑
j,k=−∞

(−1) jkWΨ̃ (x − Lk, p, t) δ (p − p̃) .

(a7)

This then becomes

|Ψ (x, t)|2 = ηx
π~

2L

∞∑
j,k=−∞

(−1) jkWΨ̃ (x − Lk, p̃, t). (a8)

From Ψ̃ (±∞, t) = 0, i~ ∂
∂t Ψ̃ (x, t) = − ~2

2m
∂2

∂x2 Ψ̃ (x, t), and the
eq. (a8), we obtain

|Ψ (x, t)|2 = ηx
π~

2L

∞∑
j,k=−∞

(−1) jkWΨ̃ (x̃, p̃, 0). (a9)

By substituting eq. (8) into eq. (a9), we find that

|Ψ (x, t)|2 =ηx
π~

2L

∞∑
j,k=−∞

(−1) jk×[WΨ (x̃, p̃, 0)

+WΨ (−x̃,− p̃, 0) + I (x̃, p̃, 0)], (a10)

where

I (x, p, t) =WΨ̃ (x, p, t) −WΨ (x, p, t) −WΨ (−x,−p, t)

= − 2
π~

Re
∫ ∞

−∞
Ψ∗ (x + y, t)Ψ (−x + y, t) e2ipy/~dy.

(a11)

If we define the background and interference terms as B±j,k =
(−1) jkWΨ (±x̃,±p̃, 0) and I j,k = (−1) jkI (x̃, p̃, 0), we finally
yield

|Ψ (x, t)|2 = ηx
π~

2L

∞∑
j,k=−∞

(
B+j,k + B−j,k + I j,k

)
. (a12)
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