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Method for studying diatomic rovibrational spectra at a given
vibrational state
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An algebraic method for rotational energies at a given vibrational state (AMr(v)) is proposed in this study in order to obtain
unknown high-lying rovibrational energies. Applications of this method to the ground electronic state X1Σ+ of CO and the excited
state C1Σ+ of 39K7Li molecules show the following: (1) the AMr(v) can give the rational upper limit J of a rotational quantum
number of a diatomic electronic state; (2) the full AMr(v) rovibrational energies {EυJ}υ of given vibrational states not only
reproduce all known experimental data excellently but also predict precisely the values of all high-lying rovibrational energies,
which may not be available experimentally.
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1 Introduction

Molecular rovibrational spectra are indispensable for
studying molecular spectral structures and the molecular
dynamics [1-3]. Molecular rotations may cause molecular
anisotropic phenomena, which are very important in in-
vestigating molecular collisions and reactions. Accurate in-
formation on full rovibrational spectra is crucial for
calculating molecular reaction cross-sections and reaction
rates [4], as well as assigning molecular spectroscopic bands
and identifying astronomic materials. I particular, highly
excited rovibrational levels are essential for intramolecular

vibrational redistribution and collision energy transfer [5-7].
However, it is usually difficult to obtain accurate values of

high-lying rovibrational levels for many molecular electronic
states [8-11] because of the limitations in the experimental
measurements. Although some diatomic rovibrational levels
can be obtained quantum-mechanically [12-16], accurate
high-lying rovibrational energies are still rarely given theo-
retically because of basic approximations used in the dif-
ferent quantum methods.
Recently, Sun et al. [17] have proposed an algebraic

method for rotational energies (AMr) to study theoretically
rotational energies [εJ] and rovibrational interaction energies

J
int based on some known accurate experimental rovibra-
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tional spectra E J
texp . Although the AMr obtained the correct

rotational energies [εJ] and rovibrational interaction energies

J
int of some electronic systems, the high-lying rovibrational

energies of highly excited rotational states (J′) for given vi-
brational states υ′s were still not acquired. One of the main
obstacles in obtaining them was that the upper boundary
(limit) of the rotational states (J′) for a given vibrational state
υ could not be estimated based on molecular spectroscopic
theory. The present study solves this problem, and we pro-
pose a novel algebraic method for rotational energies at gi-
ven vibrational states (AMr(v)) that allows us to obtain the
high-lying rotational energies [EυJ]υ of given υ, which may
not be otherwise obtained experimentally and theoretically.
Sect. 2 presents the AMr(v) method. Sect. 3 studies the high-
lying rovibrational energies of CO−X1Σ+ and 39K7Li−C1Σ+

systems using the AMr(v). Finally, sect. 4 concludes this
study.

2 Theoretical method

The non-relativistic expression of rovibrational energies for
a stable diatomic molecular electronic state can be given as
the Dunham formula [18]:
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where XυJ stands for the component of the molecular-con-
stant vector Xυ=(Gυ, Bυ, −Dυ, Hυ, …) at a given rotational
state J, which appears in the Herzberg equation [19]
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The algebraic method for rotational energies at a given
vibrational state (AMr(v)) is proposed based on the metho-
dology of the algebraic method for vibrational energies
(AMv) [20-22], and it starts by rewriting eq. (2) into a matrix
form
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and δEυ is a small variational term to offset any possible
experimental error, as mentioned in ref. [22]. Of course, if
the experimental data are accurate enough, δEυ≡0 could be
set to increase the computation speed of the CO−X1Σ+ and
39K7Li−C1Σ+ systems below.
Since, for some given vibrational state υ, modern laser

spectroscopic technologies can almost always obtain an en-

ergy subset consisting of m rovibrational energies E J
t

m
exp of

a diatomic electronic state for m rotational states J′s, n(<m)
of the m experimental rovibrational energies could be chosen
and used to solve eq. (6) using the standard algebraic
method. Then, the Cm

n molecular-constant vectors Xυ=(Gυ,
Bυ, −Dυ, Hυ, …) are obtained using Cm

n groups of energies

( )E J
t

n
exp . One of the Cm

n vectors best satisfies the following

physical criteria
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where “exp” stands for “experimental data” and “cal” in-
dicates “calculated data”. NJ(υ) in eq. (11) denotes the
number of possible rovibrational levels at any given vibra-
tional state υ, and the symbol J represents the maximum
rotational quantum number of the given electronic state. The
physical value of J may be determined as follows.
Any bound rovibrational energy EυJ must satisfy the radial

Schrodinger equation of a diatomic system
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where U(r) is the total electron (potential) energy, μ is the
reduced mass of the two nuclei, r is the internuclear distance,
J denotes the total angular momentum or the rotational
quantum number, and Λ represents the projection of orbital
angular momentum. J is the rotational quantum number that
makes the effective potential V r( )J a monotonously de-
creasing function with r increasing to rmax (as shown in
Figure 1, curve VJ=294). rmax is the dissociation internuclear
distance of a diatomic system. Such a monotonously de-
creasing potential V r( )J has no potential well and cannot
hold any bound rovibrational state. Therefore, eq. (14) has no
bound physical solution. In other words, any meaningful
rotational quantum number J that corresponds to a bound
rovibrational (rotational) energy cannot be greater than J .
Since, for most stable diatomic systems, the derivative of

the potential U(r) is zero when r is equal to the equilibrium
internuclear distance re or rmax, U′(re)=0 and U′(r→rmax)≈0.
Therefore, there must be a maximum derivative umax=
max{U′(re<r<rmax)} between the equilibrium position re and
the dissociation distance rmax, and it has
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If the rotational quantum number J is large enough, w
wqthe derivative of the effective potentialV r( )J will always
be less than zero. That is, there is no bound molecular ro-
vibrational state at all, and this is where the definition and the
value of J originate from Figure 1 shows an example of this
process.
Emin(J) and Emax(J) in eq. (13) are defined, respectively, as:

{ }E J V r( ) = min ( ) , (17)Jmin

{ } { }E J V r r r D U r( ) = max ( < < ) + ( ) , (18)Jmax e max e max

where Emin(J) is the minimum of the effective potential, and
Emax(J) denotes the maximum of the effective potential when
r>re. The second term in eq. (18) is a compensation term that
is used to offset the potential truncation error, since VJ(∞) is
usually unavailable, and it also leads to the self-consistent
result Emax(J=0)≡De.
On the basis of the above definitions and discussions, one

may analyze the physical criteria in eq. (8) to (13). Eq. (8)
indicates that the calculated rovibrational levels should re-
produce the experimentally derived levels precisely. Eqs. (9)
and (10) require that the rovibrational state with the larger
quantum number has the higher energy. Eq. (11) states that
the number of rotational energies NJ(υ+1) of a higher vi-
brational state (υ+1) should be smaller than NJ(υ) of a lower
υ, and both are smaller than the upper limit J of a given
electronic state. Such a quality is consistent with the state-
ment in ref. [19]. Eq. (12) means that the variational term
E Ji

(if it is necessary to use it) should be sufficiently small

so that energy E Ji
change will be significantly smaller than

the experimental error. Finally, eq. (13) represents the phy-
sical restriction that any physical bound state energy EυJmust
stay in-between the minimum and maximum energies Emin(J)
and Emax(J), respectively, of the given effective potential
VJ(r) obtained by our AMv [20-22] or other methods such as
accurate ab initio calculations. Actually, if there is no ac-
curate potential curve VJ(r) available, the AMr(v) can still
work well, just without criterion eq. (13).
The number NJ(υ) of rotational energies for a given vi-

brational state υ is determined using the physical criteria eqs.
(9)-(11), and (13) together. For example, if the rovibrational
energy EυJ predicted by eq. (6) falls outside the limits Emin(J)
and Emax(J) in eq. (13), it cannot exist, which implies that J−1
is the last rotational level and may determine NJ(υ) si-
multaneously. The same applies for the other physical cri-
teria eqs. (9)-(11). If one of these criteria cannot be satisfied,
the prediction stops, and NJ(υ) is determined.
Figure 2 gives the calculation process of the AMr(v). For

each vibrational state , n rovibrational energies from m
experimental energies are selected to calculate the mole-
cular-constant vector Xυ=(Gυ, Bυ, −Dυ, Hυ, …) and generate
the rovibrational energies. If these results meet the physical
criteria in eq. (8) to (13) better, they are saved, and the
previous results are replaced. This process continues for all
Cm

n possible selections, and the best solution X best is found
out of the Cm

n results. Then, the AMr(v) turns to the next
vibrational state.
In order to show the influence of different selections and

how the physical criteria work, Table 1 lists 10 different
calculated rovibrational energies for the (υ=28, J=50) state of

Figure 1 Effective potentials VJ(r) for a different rotational state J of the
CO−X1Σ+ system. It is shown that the upper limit J of the rotational
quantum number for this system is 294.
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the 39K7Li−C1Σ+ system, which will be discussed in detail in
the next section. For comparison, the first line of this table
gives the result of the best selection in this study and shows
that the error between the AMr(v) and the experiment-based
energy is less than 0.001 cm−1. However, Selection 2 (No. 2)
gives a completely wrong rovibrational level not only be-
cause of its huge error compared to the experimental value
but also because the energy is higher than the upper limit
Emax(J=50)=3694.664 cm−1 (listed in Table S8 of the Sup-
porting information online). Selections 3 to 6 also give large
differences from the experimental data, and after careful
examination in Table S8, it can be found that the energies of
these selections do not meet the physical criteria of eq. (9) or
(10). Selections 7 to 9 give relatively better results, but not as
good as the first one. As illustrated in our previous work [21],
these errors usually result from the “butterfly effect” of ex-
perimental errors in different selections. It is worth noting
that, although the last selection (No. 10) generates the exact

rovibrational energy for the (υ=28, J=50) state, its rovibra-
tional energies for other rotational states are less accurate
than the first selection. For instance, the error of Selection 1
for the (υ=28, J=0) state is also less than 0.001 cm−1, but that
of selection 10 is more than 100 times greater than this. As a
matter of fact, for each vibrational state, there are hundreds
of concrete requirements from the physical criteria in the
AMr(v) to ensure the reliability of its prediction.
Since the AMr(v) does not directly solve the diatomic

Schrodinger equation using extensive orbital parameters of
base functions to mimic the atomic orbital, it spends much
less computational time in theoretical calculations. The
mathematical and physical converging requirements in eq.
(8) to (13) and the accurate experimental energies used in eq.
(6) can ensure a rational and reliable prediction of the rovi-
brational energies. The smaller the error of the experimental
energies E J

texp , the better the accuracy of the predicted ro-
vibrational energies [21,22].
It should be mentioned that the present AMr(v) has a

certain application scope. First, as we stated before, eqs. (1)
and (2) are non-relativistic formulae, so the current AMr(v)
method may not be used to study systems with an obvious
relativistic effect. Second, all of the above physical analyses
are based on the Born-Oppenheimer approximation. There-
fore, for the hydrogen molecule or some special degeneracies
as described in ref. [23], our results may contain notable
errors. Third, mathematically speaking, eqs. (1) and (2) are
both expansion series, and the truncation error always exists
when only finite terms are taken into account. However, with
the flexible order skill [21,22], this truncation error could be
suppressed well.

3 Application and discussion

The AMr(v) is applied to study the unknown high-lying ro-
vibrational energies of the CO−X1Σ+ and 39K7Li−C1Σ+ elec-
tronic systems in this section. The experiment-based
rovibrational levels EυJ used as the input choices in the
AMr(v) calculations are obtained using the Herzberg equa-
tion (eq. (2)) and the molecular constants in Table 3 of ref.
[24] and in Table 2 of ref. [25] for the CO−X1Σ+ and 39K7Li
−C1Σ+ systems, respectively. The experiment-based energies
as the input choices for the CO−X1Σ+ and 39K7Li−C1Σ+ sys-
tems are listed in Tables S1 and S2, respectively. The number
of known rotational states for each vibrational state υ given
in each table of the two systems is specified in Table 1 of ref.
[24] and in Figure 2 of ref. [25], respectively. The experi-
ment-based rovibrational energies chosen in the final con-
verged AMr(v) studies are listed in italic bold in each table.
In order to obtain the effective potential VJ(r) used to

specify the two boundary limits Emin(J) and Emax(J) in eqs.
(17) and (18) for the physical criterion in eq. (13) of the

Figure 2 Calculation process diagram of the AMr(v).

Table 1 Different calculated rovibrational energies from different selec-
tions

No. Selections J (cm−1) E J= 28, =50
cal E EJ J

tcal exp

1 {3, 5, 9, 23, 39, 46, 49} 3183.648 <0.001

2 {1, 2, 4, 6, 8, 9, 10} 3773.802 590.154

3 {8, 9, 10, 11, 13, 14, 15} 3105.730 77.918

4 {5, 8, 9, 10, 12, 13, 15} 3120.974 62.674

5 {5, 7, 8, 11, 12, 15, 17} 3260.563 76.915

6 {5, 6, 7, 12, 13, 14, 17} 3262.907 79.259

7 {20, 21, 22, 23, 24, 25, 30} 3181.888 1.760

8 {1, 2, 4, 9, 10, 23, 47} 3183.033 0.615

9 {1, 3, 5, 6, 11, 29, 49} 3183.863 0.215

10 {42, 44, 45, 46, 47, 48, 49} 3183.648 <0.001
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AMr(v) study, the variational algebraic method (VAM) [22]
is used to generate the full vibrational spectrum {Eυ}. The
calculated VAM spectra for the CO−X1Σ+ and 39K7Li−C1Σ+

systems are listed in Tables S3 and S4, respectively [24-26].
The VAM Rydberg-Klein-Rees (RKR) potential curves U(r)
can be obtained using the full VAM vibrational spectra and
the RKR procedure. The effective potentials VJ(r) for a dif-
ferent rotational quantum number J can be obtained using eq.
(15), and the value of the upper bound J of the rotational
quantum number of each electronic state can be found using
eq. (16) as J =294 for CO−X1Σ+ and as J =226 for 39K7Li
−C1Σ+. The respective effective potentials VJ(r) are shown in
Figures 1 and 3.
So far, all necessary data required by the physical criteria

described in eq. (8) to (13) have been prepared, and one
could use the AMr(v) to study the full rovibrational levels
{EυJ}, including the high-lying ones that are not available
experimentally for each vibrational state υ. The best con-
verged molecular constants, Xυ=(Gυ, Bυ, −Dυ, Hυ, …), for the
converged rovibrational levels [EυJ] and the number of pre-
dicted rovibrational levels VJ(υ) at each given vibrational
state can be generated by solving eq. (6) and using the
converging criteria in eq. (8) to (13) and are listed in Tables
S5 and S5 for CO−X1Σ+ and 39K7Li−C1Σ+, respectively. The
values in parentheses of the last column of both tables are the
numbers of rotational states given by refs. [24,25]. All var-
iational terms δEυ in eq. (6) are taken as δEυ≡0 for each
electronic system.
It can be seen from both Tables S5 and S6 that the lowest

order molecular constants (energies) Gυ for every vibrational
state from the AMr(v) agree perfectly with the energies, with
J=0 in the first row of Table S1 in ref. [24] and Table S2 in
ref. [25]. VJ(υ) from the AMr(v) gradually decreases as the
vibrational quantum number increases, in agreement with the
statement in Chapter 7 of ref. [19], whereas VJ(υ) increases
with the number of rotational states shown in each parenth-

esis of the last column of each table in refs. [24,25].
Tables S7 and S8 present the full AMr(v) rovibrational

energies {EυJ}υ of each vibrational state for the CO−X
1Σ+ and

39K7Li−C1Σ+ systems, respectively. All data in these tables
are exact, and they are carefully examined in our calculation.
In Tables S7 and S8, Emin(J) and Emax(J) represent the

minimum and maximum of the effective potentials for each
rotational state J, as described in sect. 2. It can be seen that all
predicted levels are found within these two limits. It can also
be observed in Tables S1, S2, S7, and S8 that the greatest
difference between the experimental data and the AMr(v)
energies exists in the (υ=15, J=32) rovibrational state for the
CO−X1Σ+ system and the (υ=36, J=20) rovibrational state for
the 39K7Li−C1Σ+ system, respectively, and they are only
0.0004678 and 0.0043680 cm−1 with 0.00000145% and
0.000126% relative errors, respectively. Therefore, the
AMr(v) not only reproduces perfectly all known experi-
mental data but also predicts correctly all high-lying rovi-
brational energies of given vibrational states. Thus, it is
reasonable to believe that all predicted AMr(v) data have the
same accuracy as the experimental data in refs. [24,25].
Finally to give an intuitive picture, Figures 4 and 5 show

the full rovibrational energies {EυJ}υ in each vibrational state
for the CO−X1Σ+ and 39K7Li−C1Σ+ systems, respectively.

“Full lines” are the experiment-based rovibrational energies
[24,25], and “dashed lines” represent the AMr(v) data. After
a careful comparison, some interesting native properties of
the levels can be found in these figures. First, for a given
vibrational state, the rovibrational energies increase with the
rotational quantum number, and they may finally even ex-
ceed the dissociation energy De for the VJ=0(r) potential.
Second, for the rovibrational levels with the same rotational
quantum number, they also increase with the vibrational
quantum number, but by contrast, the relevant increment
decreases in most cases.

Figure 3 Effective potentials VJ(r) for a different rotational state J of the39K7Li−C1Σ+ system. It is shown that the upper limit J of the rotational
quantum number for this system is 226.

Figure 4 Full rovibrational spectra {EυJ}υ for each vibrational state of the
CO−X1Σ+ electronic system. Full lines are the experiment-based data [24];
dashed lines represent the AMr(v) data.
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4 Conclusions

In summary, a novel algebraic method AMr(v) for rotational
energies at a given vibrational state υ is proposed, which
allows us to obtain the full rovibrational energies {EυJ}υ
based on some known accurate experimental energies. The
AMr(v) uses a set of physical converging criteria to find the
best rovibrational energies, particularly the high ones that
may not be found experimentally. The applications of this
method to the CO−X1Σ+ and 39K7Li−C1Σ+ systems demon-
strate the following: (1) the AMr(v) can find the upper bound
J of the rotational quantum number of a given electronic
system and the maximum rotational quantum number Jmax

cal at
the given vibrational state υ; (2) the AMr(v) can give the
rotational energy boundaries, namely, the minimum and
maximum values Emin(J) and Emax(J), respectively, of the
effective potentials VJ(r) for each rotational state J; (3) the
AMr(v) can obtain the well-converged rovibrational con-
stants Xυ=(Gυ, Bυ, −Dυ, Hυ, …) and the full rovibrational
energies {EυJ}υ for the given vibrational state; and (4) the full
AMr(v) rovibrational energies not only reproduce all known
experimental data excellently but also correctly predict all
high rovibrational energies, which may not be available ex-
perimentally.
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