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By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin (DSEFG) method
is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin (IEFG) method is used for 2D
transient heat conduction problems, and the finite difference method is applied in the splitting direction. The discretized system
equation is obtained based on the Galerkin weak form of 2D problem; the essential boundary conditions are imposed with the
penalty method; and the finite difference method is employed in the time domain. Four exemplary problems are chosen to verify
the efficiency of the DSEFG method. The numerical solutions show that the efficiency and precision of the DSEFG method are
greater than ones of the IEFG method for 3D problems.
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1 Introduction

Heat conduction problems exist widely in many engineering
fields. However, only for linear problems with simple
boundary conditions and geometrics can analytical solutions
be obtained [1,2]. Thus, many researchers have developed
effective numerical methods, such as finite element method
(FEM) [3], boundary element method (BEM) [4,5], and
meshless methods [6-9], to solve these problems.
The FEM and BEM are popular for obtaining numerical

solutions of a lot of science and engineering problems

[10,11]. However, these methods rely strongly on the mesh
of the problem domain, so a remeshing technique must be
used to obtain the numerical results with high precision for
crack growth and extremely large deformation problems.
In meshless methods, the shape function only relies on the

node distribution in the problem domain, meaning that many
complicated problems can be solved with great computa-
tional precision without the remeshing technique [12-14].
3D heat conduction problems can be effectively solved

with the improved element-free Galerkin (IEFG) method
[15]. Because the weighted orthogonal functions are used,
fewer coefficients are included in IEFG method than in the
original EFG method. The computational speed of IEFG
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method is higher—up to 30% less CPU time; moreover,
other engineering and science problems can also be solved
using the IEFG method. Zhang et al. [16,17] applied it to
solve 3D potential problems and 3D wave equations. Peng et
al. [18] applied it to solve 3D viscoelasticity problems.
However, the computational efficiency of the IEFG method
is still much lower than that of the FEM. Therefore, the IEFG
method must be further improved to obtain higher compu-
tational efficiency.
Li and Shen [19] first present a dimension splitting method

(DSM). The key point of the DSM is to divide a 3D problem
into many related 2D ones. Li et al. [20-22] applied the DSM
to a 3D linearly elastic shell and to 3D compressible, rotat-
ing, and incompressible Navier-Stokes equations. Hansen
and Ostermann [23,24] solved quasilinear and evolution
parabolic equations with the DSM. In fact, the DSM is a
convenient and efficient numerical method for various
equations [25-28]. It is obvious that the DSM can improve
computational efficiency greatly.
In this paper, by introducing the dimension splitting

method, a 3D transient heat conduction problem is trans-
formed into some related 2D problems; then, a DSEFG
method for 3D transient heat conduction problems is pre-
sented. The IEFG method is used for these 2D problems, and
the finite difference method is applied in the splitting di-
rection. The discretized system equation is obtained based on
the Galerkin weak form of the 2D transient heat conduction
problem, the essential boundary conditions are imposed with
a penalty method, and the finite difference method is em-
ployed in the time domain. Four exemplary problems are
chosen to verify the efficiency of the DSEFG method, and
the numerical solutions show that the efficiency and preci-
sion of the DSEFGmethod are greater than those of the IEFG
method.

2 Dimension splitting procedure of 3D heat
conduction problems

Consider the 3D transient heat equation:

c T
t k T Q tx x( , ) = 0, ( ), (1)2

with the boundary conditions:
T T x= 0, ( ), (2)1

k T qn x= 0, ( ), (3)2

and
k T h T Tn x( ) = 0, ( ), (4)a 3

and initial condition:
T T= , (5)t=0 0

where T is temperature; ρ is density; t is time; c is heat
capacity; k is thermal conductivity; Q(x, t) is the ratio of heat

per unit volume per unit time; Γ is the boundary of the
problem domain Ω, given by Γ=Γ1∪Γ2∪Γ3, where Γ1, Γ2, and
Γ3 are the boundary with known temperature T , flux q , and
heat transfer coefficient h, respectively; Ta=Ta(x, t) is med-
ium temperature; T∞ is the temperature of the surrounding
fluid; T0 is initial temperature, and n is the unit vector out-
ward normal to Γ.
Assume that domain Ω is divided into L planes along di-

rection x3. The distance between adjacent planes is Δx3.
Then, L+1 2D sub-domains Ω(k), (k=0,1, …, L) are obtained
as:

x x= × [ , ] , (6)
k

L k k k L
=0

1 ( )
3
( )

3
( +1) ( )

where

a x x x c x a c= < < = ,   [ , ], (7)L
3
(0)

3
(1)

3
( )

3

x x x c a L= = ( ) / . (8)k k
3 3

( +1)
3
( )

For a fixed x k
3
( ) and time t, a 3D transient heat conduction

problem is transformed into several related 2D problems,
i.e.,

k T
x

T
x c T

t k T
x Q t

x x x x x

x

x

+ = ( , ),

= ( , , ),  ( , ) ,
(9)

k k

2

1
2

2

2
2

2

3
2

1 2 3
( )

1 2
( )

and the corresponding boundary conditions are

T T t x x x x xx x= ( , ),  = ( , , ),  ( , ) , (10)k k
1 2 3

( )
1 2 1

( )

k T q t x x x x xn x x= ( , ),  = ( , , ),  ( , ) , (11)k k
1 2 3

( )
1 2 2

( )

k T h T t T t
x x x x x

n x x
x

= ( ( , ) ( , )),

= ( , , ),  ( , ) .
(12)k k

a

1 2 3
( )

1 2 3
( )

For a fixed time t, T T x x x t= ( , , , )k
1 2 3

( ) is the temperature in
the sub-domain k( ) with boundary k( ), and

=k k k k( )
1
( )

2
( )

3
( ).

Eqs. (9)-(12) can be solved with the IEFG method in the
sub-domain k( ). The finite difference method is applied in
the splitting direction x3 and in the time domain. Then, the
numerical solutions of eqs. (1)-(5) can be successfully ob-
tained.
Eqs. (9)-(11) are equivalent to the following functional:

T k T
x

T
x

T c T
t

k T
x

Q

Tq h T TT

= 1
2 + d

+ d

d
2

d . (13)

k
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k k

T
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2

2
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2

3
2
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2
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k

k k

( )

( )

2
( )

3
( )

Selecting the penalty method to apply essential boundary
conditions, we obtain

040711-2Z. J. Meng, et al. Sci. China-Phys. Mech. Astron. April (2019) Vol. 62 No. 4



T k T
x

T
x

T c T
t

k T
x

Q

Tq h
T

TT

T T T T

= 1
2 + d

+ d

d
2

d

+1
2 ( ) ( ) d , (14)

k

k

k k

k

T

1

2

2

2
( )

2

3
2

( )

( )
2

( )

( )

k

k

k k

k

( )

( )

2
( )

3
( )

1
( )

where is the penalty factor.
The variation of eq. (14) is

T k T
x

T
x

T c T
t

k T
x

Q

Tq T h T T

T T T

= + d

+ d

d ( )d

+ ( ) d

= 0. (15)
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3 The DSEFG method for 3D transient heat
conduction problems

3.1 IMLS approximation

In 2D sub-domain k( ), M nodes x I
k( ), I=1,2,…,M, are dis-

tributed. The temperature, T(x, t), at point x I
k( ) at time t is

represented as:

T x t T x tx( , ) = ( , , ), (16)I
k

I
k k

3
( ) ( )

3
( )

where T x tx( , , )k k( )
3
( ) at any point x(k)=(x1, x2) is related to the

nodes x I
k( ), (I=1,2,…,n), whose domains of influence cover

the point x k( ).
In this paper, the IMLS approximation is selected to obtain

shape functions. In the 2D sub-domain k( ), T x tx( , , )h k k( )
3
( )

is the approximation of T(x, t) at point x xx = ( , )k( )
1 2 , and the

trial function is

T x t p ax x x

P x a x
x

( , , ) = ( ) ( )

= ( ) ( ),
, (17)

h k k

i

m

i
k

i
k

T k k

k k

( )
3
( )

=1

( ) ( )

( ) ( )

( ) ( )

where p x( )i
k( ) is a basis function, m is the number of basis

functions, P x( )kT ( ) is the vector of basis functions, and a x( )k( )

is the vector of the coefficient a x( )i
k( ) .

For the 2D sub-domain k( ), the basis function can be

chosen as:
Linear basis

x x mP = (1, , ), ( = 3), (18)T
1 2

or
Quadratic basis

x x x x x x mP = (1, , , , , ), ( = 6). (19)T
1 2 1

2
1 2 2

2

A weighted least-squares method is applied to obtain the
coefficients a x( )i

k( ) in eq. (17). The difference between the

functions T x tx( , , )k k( )
3
( ) and T x tx( , , )h k k( )

3
( ) must be mini-

mized.
Define

J w T x t T

w p a T

x x x

x x x x

= ( ) ( , , )

= ( ) ( ) ( ) , (20)

I

n
k

I
k h

I
k k

I

I

n
k

I
k

i

m

i
k

i
k

I

=1

( ) ( ) ( )
3
( ) 2

=1

( ) ( )

=1

( ) ( )
2

where x I
k( ), (I=1,2,…,n), are nodes that influence domains

covering the point x xx = ( , )k( )
1 2 , ( )w x xk

I
k( ) ( ) is the weight

function, and T T x tx= ( , , )I I
k k( )

3
( ) .

The matrix form of eq. (20) is

J Pa T W Pa T= ( ) ( ), (21)T

where

T T TT = ( , , … , ), (22)n
T

1 2

p p p
p p p

p p p

P

x x x
x x x

x x x

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

, (23)

k k
m

k

k k
m

k

n
k

n
k

m n
k

1 1
( )

2 1
( )

1
( )

1 2
( )

2 2
( )

2
( )

1
( )

2
( ) ( )

and

w
w

w

W

x x
x x

x x

=

( ) 0 0

0 ( ) 0

0 0 ( )

. (24)

k k

k k

k
n
k

( )
1
( )

( )
2
( )

( ) ( )

To obtain a x( )k( ) , the minimization condition requires that

J
a A x a x B x T= ( ) ( ) ( ) = 0, (25)k k k( ) ( ) ( )

where

A x P WP( ) = , (26)k( ) T

B x P W( ) = . (27)k( ) T

From eq. (25), we have

a x A x B x T( ) = ( ) ( ) . (28)k k k( ) 1 ( ) ( )

Thus, the local approximation is
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T x t Tx x x T( , , ) = ( ) = ( ) , (29)h k k

I

n

I
k

I
k( )

3
( )

=1

( ) ( )

where the shape function is

x x x x
P x A x B x

( ) = ( ( ), ( ), ..., ( ))
= ( ) ( ) ( ). (30)

k k k
n

k

T k k k

( )
1

( )
2

( ) ( )

( ) 1 ( ) ( )

For f g p p px x( ), ( ) span( , , , )m1 2 , let us define

f g w f gx x x x( , ) = ( ) ( ) ( ). (31)
I

n

I II
=1

In span(p1, p2, …, pm), if the set of functions
p p px x x( ), ( ), … , ( )m1 2 and the weight function w{ }i satisfy

p p w p x p x

k j
A k j

k j m

( , ) = ( ) ( )

=
0, ,

, = ,
( , = 1, 2, … , ). (32)

k j
i

n

i k i j i

k

=1

This is called a weighted orthogonal function set about
points x{ }i .
From eq. (31), eq. (25) is written in detail as:

p p p p p p
p p p p p p

p p p p p p

a
a

a

p T
p T

p T

x
x

x

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

( )

( )

( )

=

( , )
( , )

( , )

. (33)

m

m

m m m m

k

k

m
k

I

I

m I

1 1 1 2 1

2 1 2 2 2

1 2

1
( )

2
( )

( )

1

2

If the function set{ }p x( )i
k( ) , i m( = 1, 2, … , ), is weighted

orthogonal about points x{ }i , i.e.,

p p i j( , ) = 0, , (34)i j

then eq. (33) becomes

p p
p p

p p

a
a

a

p T
p T

p T

x
x

x

( , ) 0 0
0 ( , ) 0

0 0 ( , )

( )

( )

( )

=

( , )
( , )

( , )

. (35)

m m

k

k

m
k

I

I

m I

1 1

2 2

1
( )

2
( )

( )

1

2

Then we can directly obtain

a p T
p p i mx( ) = ( , )

( , ) ,  = 1, 2, … , . (36)i
k i I

i i

( )

The corresponding matrix form of eq. (36) is

a x A x B x T( ) = ( ) ( ) , (37)k k k( ) * ( ) ( )

where

p p

p p

p p

A x( ) =

1
( , ) 0 0

0 1
( , ) 0

0 0 1
( , )

. (38)k

m m

* ( )

1 1

2 2

Substituting eq. (36) into eq. (17) yields

T x t T x tx x x

x T

( , , ) = ( ) ( , , )

= ( ) , (39)

h k k

I

n

I
k

I
k k

k

( )
3
( )

=1

* ( ) ( )
3
( )

* ( )

where the shape function is

x x x x
P x A x B x

( ) = ( ( ), ( ), … , ( ))
= ( ) ( ) ( ). (40)

k k k
n

k

k k k

* ( )
1
* ( )

2
* ( ) * ( )

T ( ) * ( ) ( )

This is IMLS approximation for 2D problems. In this
method, the coefficient a x( )i

k( ) can be obtained simply and
directly, and singular or ill-conditioned equations can be
avoided. Then, the computational efficiency and solution
precision of the MLS approximation are improved.

3.2 DSEFG method for 3D heat conduction problems

From eq. (39), we obtain

T x t
t t T x t

T x t
t

T x t

x x x

x x

x x

x T

( , , ) = ( ) ( , , )

= ( ) ( , , )

= ( ) ( , , )

= ( ) , (41)

k k

I

n

I
k

I
k k

I

n

I
k I

k k

I

n

I
k

I
k k

k

( )
3
( )

=1

* ( ) ( )
3
( )

=1

* ( )
( )

3
( )

=1

* ( ) ( )
3
( )

* ( )

T x t
x x T x t

T x t
x

x
x

x

x T

( , , )
= ( , , )

= ( , , )

= ( ) , (42)

k k

I

n

I I
k k

I

n

I
I

k k

k

2 ( )
3
( )

3
2

3
2

=1

* ( )
3
( )

=1

*
2 ( )

3
( )

3
2

* ( )

T x t
x

x

T x t

T x t

L x x x

B x x

B x T

( , , ) = ( ) ( , , )

= ( ) ( , , )

= ( ) , (43)

k k

I

n

I
k

I
k k

I

n

I
k

I
k k

k

( )
3
( )

=1

1

2

( ) ( )
3
( )

=1

( ) ( )
3
( )

( )

where
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T x t
t

T x t
t

T x t
t

T x x

x

= ( , , ) , ( , , ) ,

… , ( , , ) , (44)

k k k k

n
k k

1
( )

3
( )

2
( )

3
( )

( )
3
( ) T

T x t
x

T x t
x

T x t
x

T x x

x

= ( , , ) , ( , , ) ,

… , ( , , ) , (45)

k k k k

n
k k

2
1

( )
3
( )

3
2

2
2

( )
3
( )

3
2

2 ( )
3
( )

3
2

T

B x B x B x B x( ) = ( ( ), ( ), … , ( )), (46)k k k
n

k( )
1

( )
2

( ) ( )

B x
x

x
( ) =

( )

( )
. (47)I

k I
k

I
k

( ) ,1
* ( )

,2
* ( )

Substituting eqs. (39) and (41)-(45) into eq. (15), we have

k

c

k Q

q

h T T

T

x T x T

x T x T

x T

x T

x T

x T x T

= ( ( ) ) ( ( ( ) ))d

+ [ ( ( ) ) ( ( )

( ) )] d

( ( ) ) d

( ( ) ) ( ) d

+ ( ( ) ) ( ( ) ) d

=0. (48)

k k k

k k

k k

k k

k k

k k k

* T * ( ) * ( ) ( )

* ( ) * ( )

* ( ) ( )

* ( ) ( )

* ( )
a

( )

* ( ) * ( ) ( )

k

k

k

k

k

( )

( )

2
( )

3
( )

1
( )

The integration terms of eq. (48) are rendered as follows:

k

k

k

x T x T

B x T B x T

T B x B x T

T K T

( ( ) ) ( ( ( ) )) d

= [ ( ( ) ) ( ) d ]

= [ ( ) ( ) d ]

= , (49)

k k k

k k k

k k k

T * ( ) * ( ) ( )

( ) T ( ) ( )

T T ( ) ( ) ( )

T

k

k

k

( )

( )

( )

c

k Q

c

k

Q

x T x T

x T

T x x T

x x T

x

T AT CT f

[ ( ( ) )( ( )

( ) )]d

= ( ) ( ) d

( ) ( ) d

( ) d

= [ ], (50)

k k

k k

k k k

k k k

k k

* ( ) * ( )

* ( ) ( )

T * T ( ) * ( ) ( )

* T ( ) * ( ) ( )

* T ( ) ( )

T (1)

k

k

k

k

( )

( )

( )

( )

q

q

x T

T x

T f

( ( ) ) d

= ( ) d

= , (51)

k k

k k

* ( ) ( )

T * T ( ) ( )

T (2)

k

k

2
( )

2
( )

h T T

h T T

x T

T x x

T H T f

( ( ) ) ( ) d

= ( )( ( ) ) d

= ( ), (52)

k k

k k k

* ( )
a

( )

T * T ( ) * ( )
a

( )

T (3)

k

k

3
( )

3
( )

T

T

x T x T

T x x T

x

T K T f

( ( ) ) ( ( ) ) d

= ( ) ( )d

( ) d

= [ ], (53)

k k k

k k k

k k

* ( ) * ( ) ( )

T * T ( ) * ( ) ( )

* T ( ) ( )

T

k

k

k

1
( )

1
( )

1
( )

where

kK B x B x= ( ) ( ) d , (54)k k kT ( ) ( ) ( )
k( )

cA x x= ( ) ( ) d , (55)k k k* T ( ) * ( ) ( )
k( )

kC x x= ( ) ( )d , (56)k k k* T ( ) * ( ) ( )
k( )

Qf x= ( ) d , (57)k k(1) * T ( ) ( )
k( )

qf x= ( ) d , (58)k k(2) * T ( ) ( )
k

2
( )

hH x x= ( ) ( )d , (59)k k k* T ( ) * ( ) ( )
k

3
( )

h Tf x= ( ) d , (60)k k(3) * ( ) ( )
k

3
( )

K x x= ( ) ( )d , (61)k k k* T ( ) * ( ) ( )
k

1
( )

and

Tf x= ( ) d . (62)k k* T ( ) ( )
k

1
( )

Then, we obtain

T CT AT K H K T
f f f f
[ + + ( + + )

( + + + )] = 0. (63)

T

(1) (2) (3)

As TT is arbitrary, we obtain

CT AT KT F+ + = , (64)

where

K K H K= + + , (65)

F f f f f= + + + . (66)(1) (2) (3)

To solve eq. (64), the problem domain Ω is uniformly
divided into L planes by inserting L−1 points
x x x, , … , L

3
(1)

3
(2)

3
( 1) along the direction x3. The distance be-

tween the adjacent planes is Δx3. Then, we calculate the
temperature at time t of the plane when
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x x x x= , , … , L
3 3

(1)
3
(2)

3
( 1).

Suppose x x x tT( , , , )1 2 3
(1) , x x x tT( , , , )1 2 3

(2) , …, x xT( , ,1 2

x t, )L
3
( 1) is the approximate value of the temperature in the

plane x x x x= , , … , L
3 3

(1)
3
(2)

3
( 1), respectively. Let

x x x t a tT T T( , , , ) = = ( , ), (67)t1 2 3
(0)

( )
(0)

x x x tT T( , , , ) = , (68)t1 2 3
(1)

( )
(1)

x x x tT T( , , , ) = , (69)t1 2 3
(2)

( )
(2)

…

x x x tT T( , , , ) = , (70)L
t
L

1 2 3
( 1)

( )
( 1)

x x x t c tT T T( , , , ) = = ( , ). (71)L
t
L

1 2 3
( )

( )
( )

Using the finite difference method, we obtain

x
k LT

T T T2 +
( )

, ( = 1, 2, … , 1), (72)k t
k

t
k

t
k

( ) ( )
( 1)

( )
( )

( )
( +1)

3
2

t k LT
T T

, ( = 1, 2, … , 1). (73)t t
k

t
k

( + )
( )

( )
( )

Then, from eq. (64) we have

x
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The corresponding matrix form is

H D
D H D

D H D

D H D
D H

T

T

T

T

T
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GT F
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where

x
D C=

( )
, (80)

3
2

x tH C A K= 2
( )

+ + , (81)
3

2

and

tG A= . (82)

In eq. (79), the initial values T t t( + )
(0) and T t t

L
( + )
( ) can be

obtained from eqs. (67) and (71), respectively. Eqs. (67) and
(71) are the boundary conditions in the splitting direction of
the original problem.
Let

E

H D
D H D

D H D

D H D
D H

= , (83)

Z T T T

T T

= ( ) , ( ) , ( ) ,
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Eq. (79) can be written as:
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EZ R= . (86)
The solutions of eq. (86) are the temperatures of the nodes

on each plane k( ), (k L= 1, 2, ..., 1) at time t t+0 . Fur-
thermore, the temperature at any time t can be solved. Then,
applying linear interpolation, we can obtain the temperature
T(x1, x2, x3, t) of any nodes in the problem domain Ω as:

x x x t x x
x x x x t

x x
x x x x t

T T

T

( , , , ) = ( , , , )

+ ( , , , ). (87)

k
k

k
k

1 2 3
3 3

( )

3
1 2 3

( )

3
( +1)

3

3
1 2 3

( +1)

4 Numerical examples

Four exemplary problems are chosen to show the advantage
of the DSEFG method by analyzing numerical results under
different scale parameters, node distributions, and time step
lengths.
In this section, a regular node distribution and the back-

ground mesh for numerical integrations are selected to obtain
the final discretized system of equations; the 4×4 Gaussian
quadrature is selected to compute integrals on each cell of the
background mesh, the cubic spline function is selected as the
weight function, and the basis function is linear.

4.1 3D problem with heat loss

Consider the equation:

T T T T T t tx= + + 2 , , [0, ], (88)t, ,11 ,22 ,33 0

with boundary conditions:

T T T
T T T

= =

= = = = 0, (89)
x x x

x x x

=0 = =0

= =0 =

1 1 2

2 3 3

and initial condition:
T x x xx( , 0) = sin sin sin , (90)1 2 3

where Ω=[0, π]×[0, π]×[0, π].
The analytical solution is

T t x x xx( , ) = e sin sin sin . (91)t5
1 2 3

To discuss the convergence of the DSEFG method for 3D
transient heat conduction problems, the influences of scale
parameter, node distribution, and time step in the numerical
computation are presented.
For this example, 13 planes are uniformly inserted into

domain Ω along the splitting direction x3, and 15×15 nodes
are uniformly distributed on each plane with α=1.0×105.
The numerical results of the DSEFG method under dif-

ferent values of dmax are shown in Figure 1. We can see that
when the value of dmax is 1.05-1.3, the numerical solution of
the DSEFG method has great computational precision.
Table 1 shows the relative error norms and CPU time of the

DSEFG and IEFG methods under different values of dmax.
The computational precision and speed of the DSEFG
method are greater than those of the IEFG method for the
same dmax. In this numerical example, we let dmax =1.1.
Figure 2 shows the numerical solutions of the DSEFG

method under different node distributions. It can be seen that
the numerical results obtained with the DSEFG method are
close to the analytical ones under different node distribu-

Figure 1 The results obtained by the DSEFG method with different dmax.

Table 1 The relative error norm and CPU time of the DSEFGand IEFG
methods under different dmax

dmax
Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

1.05 0.0013 0.0014 15.01 94.24

1.1 0.0012 0.0016 14.89 93.91

1.15 0.0012 0.0020 15.00 140.21

1.2 0.0013 0.0028 15.00 137.86

1.25 0.0015 0.0035 15.04 138.74

1.3 0.0017 0.0044 14.98 139.13

Figure 2 The results obtained with the DSEFG method with different
node distributions.
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tions.
Table 2 shows the relative error norms and CPU times of

the DSEFG and IEFG methods with different node dis-
tributions. As in the first example, the computational preci-
sion and speed of the DSEFG method are greater than those
of the IEFG method with the same node distribution. Based
on the relative error norm of the DSEFG method, the method
is convergent.
Table 3 shows the relative error norms and CPU time of the

DSEFG and IEFG methods with different time step lengths.
From Table 3, we can obtain the conclusion that the time step
length Δt has more important effects upon the numerical
results of the DSEFG method. The error of the DSEFG
method decreases as the time step length Δt decreases, which
means that the DSEFG method is convergent about the time
step length Δt. Because the IEFG method considers 3D
equations completely, the numerical results show that the
method is affected a little by the time step length; thus, a
large time step length is selected for the method.
From the example, we can see that the computational

speed can be greatly improved through the DSEFG method;
and, under the same node distribution, the computational
precision of the DSEFG method is greater than that of the
IEFG method.
The numerical solutions along the axis x3 with the DSEFG

and IEFG methods are shown in Figure 3. It can be con-
cluded that both methods are effective, and that the DSEFG
method is faster and more accurate than the IEFG method.
For this example, the CPU time of the IEFG method does

not change much with the time step length Δt, because most

of the CPU time is spent computing shape functions at nodes
in the first time step, and the time step length Δt affects the
CPU time a little.

4.2 A 3D problem with natural boundary conditions

Study the equation:

T T T T t tx= + + , , [0, ], (92)t, ,11 ,22 ,33 0

with natural boundary conditions:

T T T

T T T

= =

= = = = 0, (93)
x x x

x x x

,1 =0 ,1 = ,2 =0

,2 = ,3 =0 ,3 =

1 1 2

2 3 3

and initial condition:

T x x x
x x x

x( , 0) = 1 + 2cos cos cos
+3cos(2 )cos(3 )cos(4 ), (94)

1 2 3

1 2 3

where Ω=[0, π]×[0, π]×[0, π].
The analytical solution is

T t x x x
x x x

x( , ) = 1 + 2e cos cos cos

+3e cos(2 )cos(3 )cos(4 ). (95)

t

t

3
1 2 3

29
1 2 3

When the DSEFG method is used to solve this problem,
we choose x3 as the splitting direction, and the distance be-
tween adjacent planes is Δx3. The natural boundary condi-

tions are T T= = 0
x x,3 =0 ,3 =3 3

, such that the values at the

nodes on the plane x3=0 are approximately equal to the va-
lues at nodes on the plane x3=Δx3 when Δx3 is smaller. This
means that the number of planes along x3 should be large. In
this paper, we choose the number of planes to be 50, with
α=1.0×105, dmax=1.4, Δt=0.01 s, and t0=0.3 s. The node
number is 11×11×51. Then, the error is 0.0025 and the CPU
time is 11.95 s.
When using the IEFG method to solve this problem, the

Table 2 The relative error norm and CPU time of the DSEFG and IEFG
methods under different node distributions

Number of
nodes

Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

5×5×5 0.0076 0.0180 3.29 17.19

7×7×7 0.0025 0.0079 5.40 27.36

9×9×9 7.9153×10−4 0.0044 8.01 38.83

11×11×11 4.6640×10−5 0.0028 10.49 52.62

13×13×13 3.5768×10−5 0.0020 12.90 69.20

15×15×15 2.9648×10−5 0.0014 14.89 93.91

Table 3 The relative error norm and CPU time of the DSEFG and IEFG
methods under different time step Δt for t0=1 s

Δt (s)
Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

0.001 0.0012 0.0016 14.89 93.91

0.002 0.0023 0.0016 10.38 86.44

0.004 0.0046 0.0018 7.95 84.69

0.005 0.0058 0.0014 7.54 84.01

0.01 0.0118 0.0015 6.53 83.35

Figure 3 The results obtained by the DSEFG and IEFG methods along
direction x3.
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node distribution is 11×11×11 and α=1.0×105, dmax=1.4,
Δt=0.01 s, and t0=0.3 s; then the error is 0.0031 and the CPU
time is 19.37 s. If the node distribution of the IEFGmethod is
also 11×11×51, the CPU time will be 177.03 s.
The relative error norms and CPU times of the DSEFG

method, IEFG method, and FEM at different times t are
shown in Table 4, with 10×10×10 cubic elements with 8
nodes being used in FEM. FEM is shown to be faster than the
DSEFG method, which has greater computational accuracy
than the IEFG method and FEM.
When the problem domain is divided into 20×20×20 cubic

elements with 8 nodes, the relative error norm of FEM is
0.0066 when t0=0.3 s, but the CPU time is 76.92 s. Compared
with the DSEFG method with error 0.0025 and CPU time
11.95 s, FEM spends much more CPU time than the DSEFG
method, and its computational accuracy is lower.
Figures 4-6 show the values of T obtained by both the

DSEFG and IEFG methods along the directions x1, x2, and x3
at different times t. Both of the two methods are shown to be
effective, and the DSEFG method is both faster and more
accurate than the IEFG method.
Figure 7 shows the numerical results of heat flux along

direction x1. The heat flux Q1 along x1 is defined as

Q k T
x=1

1
, where k is the thermal conductivity and the

negative sign indicates that the heat flux moves from the
higher temperature region to the lower one.

4.3 3D problem with essential boundary conditions

Let us consider the equation
T T T T x t tx= ( + + ) + sin ,  ,  [0, ], (96)t, ,11 ,22 ,33 3 0

with essential boundary conditions:

Table 4 The relative error norm and CPU time of the DSEFG method,
IEFG method, and FEM

Time
Relative error norm CPU time (s)

DSEFG IEFG FEM DSEFG IEFG FEM

t0=0.3 s 0.0025 0.0031 0.0159 11.95 19.37 11.08

t0=0.5 s 0.0014 0.0017 0.0175 14.68 20.40 11.76

t0=0.7 s 8.0774×10−4 8.7544×10−4 0.0169 16.97 21.47 13.16

t0=0.9 s 4.6178×10−4 4.4814×10−4 0.0143 19.44 22.52 14.8

Figure 4 Temperature results at (x1, π/5, π/5).

Figure 5 Temperature results at (7π/10, x2, 7π/10).

Figure 6 Temperature results at (9π/10, 9π/10, x3).

Figure 7 Heat flux results at (x1, π/5, π/5).
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T x x= sin + e sin , (97)x
t

=0 3
2

21

T x x= sin e sin , (98)x
t

= 3
2

21

T x x= sin + e sin , (99)x
t

=0 3
2

12

T x x= sin e sin , (100)x
t

= 3
2

12

T T x x= = e sin( + ), (101)x x
t

=0 =
2

1 23 3

and initial condition:
T x x xx( , 0) = sin( + ) + sin , (102)1 2 3

where Ω=[0, π]×[0, π]×[0, π].
The analytical solution is

T t x x xx( , ) = e sin( + ) + sin . (103)t2
1 2 3

For this problem, the parameters selected for the DSEFG
and IEFG methods are α=1.0×103, dmax=1.2, Δt=0.01 s. The
node number is 9×9×9. If we choose x1 or x2 as the splitting
direction, the relative error norm is 0.0055. If we choose x3 as
the splitting direction, this norm is 0.0053. Then, the splitting
direction affects the performance of the DSEFG method
little. In general, we choose the splitting direction to simplify
application of the boundary conditions; here, x3 is chosen for
that purpose.
Table 5 shows the relative error norms and CPU times of

the DSEFG and IEFG methods under different values of
dmax. Table 6 shows the same quantities with different node
distributions.
The relative error norm and CPU time of the DSEFG and

IEFG methods at different times t are shown in Table 7. It is
apparent that the computational accuracy and speed of the
DSEFG method make it advantageous over the IEFG
method.
Figures 8 and 9 show the heat conduction solutions along

directions x2 and x3. Both of the two methods are effective,
with the DSEFG method being faster and more accurate.
Figure 10 shows the numerical results of the heat flux along
x1.

4.4 Heat conduction problem with Dirichlet boundary
conditions on a half-torus cylinder

As a fourth example, we study the heat conduction problem:
T T T T T

r x
= ( + + ) + ,

( [1, 2], [0, ], [0, 1]), (104)
t, ,11 ,22 ,33

3

with Dirichlet boundary conditions:
T x t x(1, , , ) = (sin + ) e , (105)t

3 3

T x t x(2, , , ) = e , (106)t
3 3

T r x t x( , 0, , ) = e , (107)t
3 3

T r x t x( , , , ) = e , (108)t
3 3

T r t r
r( , , 0, ) = 4

3
1

4 sin e , (109)t

and

T r t r
r( , , 1, ) = 4

3
1

4 sin + 1 e , (110)t

Table 5 The relative error norm and CPU time of the DSEFG and IEFG
methods under different dmax

dmax
Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

1.1 0.0053 0.0111 2.06 26.91

1.2 0.0053 0.0098 2.03 27.36

1.3 0.0062 0.0082 2.01 26.69

1.4 0.0070 0.0070 2.12 26.54

1.5 0.0079 0.0071 2.09 27.26

Table 6 The relative error norm and CPU time of the DSEFG and IEFG
methods under different node distributions

Number of
nodes

Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

5×5×5 0.0218 0.0490 0.41 4.12

7×7×7 0.0092 0.0190 1.01 11.83

9×9×9 0.0053 0.0098 2.02 27.36

11×11×11 0.0040 0.0060 3.61 52.25

13×13×13 0.0035 0.0040 5.88 97.55

Table 7 The relative error norm and CPU time of the DSEFG and the
IEFG methods

Time
Relative error norm CPU time (s)

DSEFG IEFG DSEFG IEFG

t0=0.1 s 0.0053 0.0098 2.50 27.36

t0=0.2 s 0.0053 0.0097 2.90 40.99

t0=0.3 s 0.0051 0.0096 3.79 55.66

Figure 8 Temperature results at (3π/8, x2, 3π/8).
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and initial condition:

( )T r x r
r x, , , 0 = 4

3
1

4 sin + . (111)3 3

The analytical solution of this problem is

T r x t r
r x( , , , ) = 4

3
1

4 sin + e . (112)t
3 3

For this example, the parameters selected for the IEFG
method are α=1.0×104, dmax=1.2, Δt=0.001 s; the number of
time steps is 10, and 9×31×21 nodes are distributed. We
select the cubic spline function as the weight function. Then,
the relative error norm is 0.0024 and the CPU time is
554.05 s.
The same parameters are selected for the DSEFG method.

When x3 is chosen as the splitting direction, the problem
domain is divided into 20 equal parts and 9×31 nodes are
distributed non-uniformly on the two-dimensional sub-
domain of the half-torus, as shown in Figure 11. The relative
error norm is 0.0016 and the CPU time is 11.92 s. When r is
chosen as the splitting direction under the same node dis-

tribution, the relative error norm is 0.0052 and CPU time is
18.38 s. The DSEFG method also can be applied to the
problem of the domain shape varying in the splitting direc-
tion.
From the above results, the accuracy and efficiency are

much better for splitting direction x3 than for splitting di-
rection r. This is because, when x3 is chosen, eqs. (105)-(108)
(which have relatively simple forms) are the boundary con-
ditions of the corresponding two-dimensional problems; and
when r is chosen, eqs. (107)-(110) (which are more com-
plicated) are the boundary conditions. In other words, the
splitting direction affects the accuracy and efficiency of the
DSEFG method. The greater accuracy and efficiency al-
lowed by splitting along x3 can also be shown through nu-
merical computation by MATLAB.
Choosing x3 as the splitting direction, Figures 12-14 show

the results obtained by the IEFG and DSEFG methods along
the different directions. We can see that both methods offer
great computational precision, with the DSEFG method
having greater computational speed than the IEFG method.

Figure 9 Temperature results at (3π/8, 3π/8, x3).

Figure 10 Temperature results at (x1, 5π/8, 5π/8).

Figure 11 Node distribution in a two-dimensional sub-domain of a half-
torus.

Figure 12 Temperature of analytical, DSEFG, and IEFG results along
direction x3.
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5 Conclusions

The DSEFG method for 3D transient heat conduction pro-
blems was introduced in this paper.
By introducing the dimension splitting method, a 3D heat

conduction problem was transformed into some related 2D
problems, which were solved by the IEFG method. The
discretized system equation was obtained with the Galerkin
weak form, the essential boundary conditions were imposed
by the penalty method, and the finite difference method was
employed in the time domain and the splitting direction.
Then, the formulae of the DSEFG method for 3D transient
heat conduction problems were obtained.

Four numerical examples show that the DSEFG method is
efficient and that the final numerical solutions are affected by
the scaling parameter, node distribution, and time step
length. The numerical results show that the computational
efficiency and computational precision of the DSEFG
method are greater than those of the IEFG method.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 11571223, and 51404160) and the Science and Tech-
nology Innovation Foundation of Higher Education of Shanxi Province
(Grant No. 2016163).
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