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As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled
dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics
(SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate
formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid
properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with
the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and
the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number
of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the
graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in
order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations
of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
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1 Introduction

Recent years have seen numerous studies on the dynamics of
multibody systems, especially those on the coupled overall
motion and elastic deformation of a rigid-flexible multibody
system [1-3]. However, few studies have dealt with the
coupled dynamics between a multibody system and sur-
rounding fluid even though the design of many engineering
products, such as the pantograph of a high speed train, the
blades of a wind turbine and the inflatable membrane

structures, require proper dynamic modeling and analysis of
the coupling effects between the fluid and the multibody
system subject to both overall motion and elastic deforma-
tion.
Over past two decades, some efforts have been made to

study the aerodynamic problem of a rigid-flexible multibody
system approximately. For example, Yang et al. [4] and Cai
et al. [5,6] studied the dynamics of a hub-beam system
subject to an overall rotation and elastic deformation in the
air by using two empirical models of air drag forces [7], one
is proportional to the instantaneous velocity of the beam and
the other is proportional to the square of the instantaneous
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velocity of the beam. Their studies showed that the empirical
models for the air drag forces enabled one to establish the
coupled dynamic model of the rigid-flexible multibody
system easily and the efficiency of the computation process
was high since the dynamic model of the whole system was
quite simple. In addition, their numerical results of the beam
velocities matched well with the experimental ones. Never-
theless, their modeling of the air around the hub-beam sys-
tem was so rough that there was no possibility of computing
the flow field around the hub-beam system. In addition, their
studies did not offer detailed theoretical analysis of the forms
of the empirical models.
Recently, the dynamic studies of inflatable space structures

have attracted much attention in the framework of multibody
systems due to their particular features including low weight,
small volume and high reliability [8-11]. However, the dy-
namic studies of an inflatable space structure subject to both
overall motion and large deformation pose many tough
problems, such as the dynamic interaction between the
multibody system and the compressible fluid. Salama et al.
[9] developed a Control volume (CV) method with the finite
element modeling to investigate the folded inflatable cy-
lindrical tubes. They validated their numerical simulation by
using experimental results and observed a good agreement in
the overall inflation dynamics. Nevertheless, their approach
neglected the inertia of the inflation gas and might not be
adequate for simulating the fast deployment of a flexible
multibody system. Wang and Johnson [10] used the arbitrary
Lagrangian and Eulerian (ALE) finite element method to
model the flow of the inflation gas with the inertia force
included in the dynamic equations, and predicted the gas
properties at any position within the tube. This method re-
quires a large number of ALE finite elements to model the
flow of inflation gas and hence consumes much computation
time. In addition, some ill-shaped finite elements may easily
appear and even give rise to divergent computations.
To study the dynamics of a multibody system coupled with

fluid, it is natural to integrate available numerical approaches
to multibody system dynamics and to fluid dynamics. As the
numerical approaches to multibody system dynamics can
only be based on the Lagrangian description, the numerical
approaches to fluid dynamics based on the Lagrange de-
scription become preferred candidates for the integration
purpose. Among them, the smoothed particle hydrodynamics
(SPH) method has shown great potentials [12-14]. As a
mesh-free numerical approach, SPH method can naturally
avoid many problems of grid-based methods, such as ill-
shaped finite elements and time-consuming re-mesh process.
In addition to the good performance in studying in-
compressible fluids such as liquid [15-19], the SPH method
enables one to study compressible fluids such as air [20-22].
For example, Amdahl [20] firstly extended the application of
the SPH method by solving a planar problem involving in-

viscid and compressible aerodynamic flows. His numerical
results of the pressure fields and density fields showed a
good agreement with the analytic results. Bohbot et al. [22]
simulated the internal aerodynamics of a three-dimensional
automotive combustion chamber with moving boundaries
and strong variation of volume by introducing a Riemann
solver into the SPH method. They also validated their nu-
merical results via experiment data.
According to the successful applications of the SPH

method to aerodynamic problems mentioned above, it is
possible to study the dynamic interaction of the fluid and the
flexible multibody system undergoing both overall motion
and large deformation via the integration of the SPH method
and the finite elements of absolute nodal coordinate for-
mulation (ANCF) proposed by Shabana and Yakoub [23],
Yakoub and Shabana [24], and Mikkola and Shabana [25]
and developed by Tian et al. [26,27] and Liu et al. [28,29].
For example, the previous study of authors [30] modeled and
simulated the coupled dynamics of a partially liquid-filled
flexible multibody system and showed efficacy of the in-
tegrated approach of particles of SPH and finite elements of
ANCF.
With the advancement of the computer hardware, new

parallel computation techniques have been developed for
simulating the dynamic interaction of the fluid and the
multibody system by using graphics processing unit (GPU).
For example, Negrut et al. [31] studied the dynamics of li-
quid-filled structures via a GPU based parallel algorithm in
the framework of multibody system dynamics. Pazouki et al.
[32] also studied the fluid-structure interactions by using a
high performance computing approach based on GPU. In the
previous studies of authors [30,33], the coupled dynamics of
a partially liquid-filled flexible multibody system and the
dynamic fracture of a flexible multibody system with initial
cracks were successfully simulated via GPU.
The objective of this paper is to study the dynamic inter-

action of a rigid-flexible multibody system with compres-
sible fluid via the integration of the particles of SPH for
modeling the fluid, the natural coordinate formulation (NCF)
[34,35] for rigid bodies and the finite elements of ANCF for
soft bodies. The first problem in the above integrated ap-
proach is to cope with the compressibility of the fluid be-
cause it may lead to high oscillations of fluid density. The
second problem is to establish and use the energy equation of
compressible fluid because the thermodynamic temperature
will not remain constant compared with previous studies
under the assumption of constant temperature. The third
problem is to increase the computation efficiency since the
computation load for the coupled dynamic simulation is
extremely high.
The remaining part of the paper is organized as follows. In

sect. 2, the SPH method for aerodynamics is briefly in-
troduced. Then in sect. 3, the boundary conditions are
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outlined for periodical inflow and outflow, as well as moving
bodies and fixed walls. In sect. 4, the generalized-alpha
method and a two-step predictor-corrector are presented for
numerical simulation, and the entire computation process is
parallelized by using OpenMP and OpenACC directives.
Four case studies are discussed in sect. 5 so as to validate the
proposed approach. Finally, the conclusions are drawn in
sect. 6.

2 SPH method for fluid dynamics

2.1 Governing equations of compressible flow

According to the SPH method [13], the computation domain
of fluid can be meshed by using a number of non-connected
particles. According to the continuum mechanics, the con-
tinuity equations, the momentum equations and the energy
equations [13] for an arbitrary fluid particle a are written as:
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where ρa is the density of particle a, ea is the internal energy
per unit mass of particle a, ra , va and a are the entries of the
position vector ra, the velocity vector va and the Cauchy
stress tensor σa at particle a, respectively. Here, α = x, y, z
and β = x, y, z.
The Cauchy stress tensor can be detailed as:

p= + , (4)a a a

where pa is the isotropic pressure, and a are the entries of
the shear stress τa. The isotropic pressure pa in eq. (4) can be
determined from the following state equation of ideal gas:
p e= ( 1) , (5)a a a

where γ = 1.4 is the heat capacity ratio of gas. The internal
energy ea at particle a yields:

e M T= ( 1) , (6)a a
air

where Ta is the thermodynamic temperature of particle a, κ =
8.314 J mol−1 K−1 is a constant of ideal gas, and Mair =
0.02895 kg/mol is the molar mass of air. In addition, the
speed of sound at particle a is

c
p
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a

For an arbitrary particle a in the SPH method, the field
function and the corresponding gradient can be approxi-
mately expressed as:
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where W r W rr= ( / )( / )a ab ab ab ab ab , rab = ra ˗ rb, ra and rb are
the global position vectors of particles a and b, rab is the
distance between the two particles, Wab is the smoothing
function between the two particles, mb and ρb represent the
mass and density of particle b within the support domain of
particle a, h denotes the smoothing length, N is the total
number of particles within the support domain of particle a,
respectively. In this study, the following smoothing function
[13] is used:
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where R=rab/h, αd is called the normalization coefficient
equal to 120/h, 7/478πh2 and 3/359πh3 for one-, two-, and
three-dimensional computation domain, respectively. The
way of choosing the smoothing function can be found from
the works by Monaghan [12] and Liu et al. [13].
Substituting eqs. (8) and (9) into the right-hand sides of

eqs. (1)-(3) gives:
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where W r r W r= ( / )( / )a ab ab ab ab ab , vab are the entries of
vector vab = va−vb. The XSPH technique [36] is used to de-
scribe the motions of the fluid particles as:

t
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where the coefficient ξ is set as 0.5.

2.2 Riemann solver for SPH method

When the SPH method is used to model the compressible
fluid, such as the air, the density and pressure of each particle
may show a large difference during the computation process.
In addition, two arbitrary particles cannot be located at the
same position since the computation domain is discretized by
particles, and the discontinuity problem will always exist
between two particles [13]. Traditional SPH method can
hardly deal with such a discontinuity problem and usually
leads to pressure oscillations at contact interfaces between
two particles.
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To improve the computation accuracy of the compressible
flow, a Riemann solver is used for the SPH method herein-
after. The Riemann solver was firstly formulated by Mon-
aghan [37] and developed by Parshikov et al. [38,39], Cha
and Whitworth [40] later. The main differences between the
Riemann solver in SPH method and the standard solver in
SPH method is the pressure and the velocity terms in the
continuity equations, the momentum equations and the en-
ergy equations. The formulation is achieved by updating the
pressure of particle a and particle b with the following same
intermediate value:

p p
p p

= ,
= ,

(15)a ab

b ab

By using an acoustic-based solver [38], the above value in
eq. (15) can be approximated as:
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where ca and cb are the acoustic speeds at particles a and b. In
eq. (16), the velocity projections va and vb onto the line
connecting the two particles can be determined as:
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According to the acoustic-based solver, the summation of
the velocity projections should also be replaced with an in-
termediate value as:
v v v+ = 2 , (18)a b ab
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Hence, substituting the intermediate values into the con-
tinuity equations gives the momentum equations and the
energy equations as follows:
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It is necessary to note that, according to the work by Cha
and Whitworth [40], the replacements of the pressure terms
(pa and pb) and the velocity terms (va and vb) in eqs. (11)-(13)
by the intermediate values (pab

, va , vb and vab) in eqs. (20)-(22)
do not affect the conservation of momentum and total energy.

2.3 Variable smoothing length

The smoothing length h is very important for modeling

compressible flows via the SPH method because it has an
influence on the efficiency of computation and the accuracy
of solution directly. In the implementation of the SPH
method for incompressible flows, the smoothing length is a
constant depending on the initial averaged density of the
system. For the problems when the fluid expands or con-
tracts, in order to maintain consistent accuracy throughout
the space, an individual smoothing length should be assigned
for each particle according to the variation of the density of
each particle. There are many ways to evolve the smoothing
length dynamically to make sure that the number of the
neighboring particles remains relatively constant. In this
study, a popular method proposed by Benz [41] is adopted
into the evolution of the smoothing length. The method takes
the time derivative of the smoothing function in terms of the
continuity equation as:

h
t D

h
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d
d = 1 d

d , (23)a a

a

a

where the value of D is 1, 2 and 3 for one-, two-, and three-
dimensional problems, respectively. Each particle has its
own smoothing length since the smoothing length is assumed
to vary in both time and space. However, when the
smoothing length of particle a is greater than that of particle
b, particle a may not be covered in the support domain of
particle b although particle b is covered in the support do-
main of particle a. Therefore, particle b can not exert a force
on particle a so that the third law of Newton’s mechanics is
violated. In order to preserve the reciprocal interaction be-
tween the two particles, the symmetric smoothing length
should be used. As proposed by Benz [41], the following
mean value of the smoothing lengths can be used for a pair of
interacting particles:

h h h= +
2 . (24)a b

3 Boundary conditions

3.1 Boundary conditions of periodical inflow and out-
flow

In order to reduce the number of SPH particles involved in
the computation process and improve the computation effi-
ciency, the study adopts the boundary conditions of period-
ical inflow and outflow, where once a particle moves out of
the outflow domain as shown in Figure 1, it moves into the
inflow domain again, without any changes of the field
variables. Of course, the inflow and outflow may change
with each other if the direction of the flow changes. Besides
the great reduction in the number of particles, the other ad-
vantage of the boundary condition of periodic inflow and
outflow is that, the support domain of the particles near the
boundary is not cut off all of a sudden. That is, the particles
near the inflow or outflow boundary have interactions with
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the particles near the boundary on the other side of the do-
main. Thus, the number of particles in their support domains
is always enough. This situation is shown in Figure 1, where
particle a lies near the left boundary and therefore its support
domain extends beyond the left boundary. Under the above
boundary conditions, the support domain is continued
through the right boundary, and particles near the right
boundary within the extended support domain have inter-
actions with particle a.

3.2 Boundary conditions of moving body and fixed wall

As shown in Figure 1, some virtual SPH particles are em-
bedded on the surface of a moving rigid/flexible body ac-
cording to the previous study of authors [30,33], where the
initial physical properties of virtual particles, such as the
mass, density, pressure, and energy are same as those of the
real particles, but the motions of the virtual particles are
determined from the motion of the moving rigid/flexible
body, instead of solving the dynamic equations for real
particles. Hence, the position coordinates of each virtual
particle are set to be those of the corresponding material
point on the surface of the moving rigid/flexible body at any
given moment. However, the energy and density of the vir-
tual particles are obtained by solving the SPH equations as
those of the real particles. This strategy has shown good
performance in the dynamic simulation of liquid-filled
flexible multibody systems in the previous work of authors
[30], where detailed description about the above conditions
can be found. For the virtual particles embedded in fixed wall
boundaries, the only difference is to keep the position co-
ordinates of the virtual particles unchanged.

4 Computation strategies

4.1 Solving DAEs of multibody system

The generalized coordinate vector q of a multibody system
can be obtained by assembling the generalized coordinates of
rigid bodies and the absolute nodal coordinates of finite

elements of flexible bodies. In practice, the relative harder
components, such as a short and thick link, in the multibody
system are assumed as the rigid bodies, which can be mod-
eled by using the NCF proposed by Javier and Eduardo
[34,35]. The flexible components, such as beams and plates,
are modeled by using corresponding finite elements of
ANCF proposed by Gerstmayr and Shabana [42], Dmi-
trochenko and Pogorelov [43] and Dmitrochenko and Mik-
kola [44], respectively. Both NCF and ANCF give rise to
constant mass matrices for rigid bodies and flexible bodies,
respectively, as well as simple description for constraints. As
a consequence, the dynamic equations for a constrained ri-
gid-flexible multibody system can be expressed as a set of
differential algebraic equations (DAEs) as following [1,45]:

t
Mq F q Q q q

q
+ + ( ) ( , ) = 0,

( , ) = 0,
(25)q¨ T

whereM is the constant mass matrix, F(q) is the elastic force
vector, Φ(q, t) represents the vector that contains all con-
straint equations, Φq is the derivative matrix of Φ with re-
spect to q, λ is the Lagrange multiplier vector, Q q q( , )is the
external force vector including the interactive force applied
by the fluid.
A great variety of numerical integration methods have

been available for solving the DAEs like eq. (25) [46-49]. In
this study, the generalized-alpha method [50,51] is used. As
shown in the previous studies of authors [26,27,52,53], such
an integrated method exhibits very good applicability to si-
mulating the dynamics of rigid-flexible multibody systems
with clearance joints and the dynamics of liquid-filled flex-
ible multibody systems.

4.2 Solving ODEs of SPH particles

To simulate the fluid dynamics coupled with the rigid-flex-
ible multibody system, a set of ordinary differential equa-
tions (ODEs), shown as eqs. (14) and (20)-(23), for the SPH
particles should also be solved. A two-step predictor-cor-
rector scheme [36,54] with second-order accuracy is adopted
in the study. Detailed descriptions of this scheme can be
found in refs. [30,33]. More algorithms available for solving
the ODEs can be found in the work by Liu et al. [13]. For the
convenience of further discussions in the following part, the
left-hand sides of eqs. (14) and (20)-(23) are recast in a more
compact form as following:

D t t

A e
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According to the predictor-corrector scheme used in the
study, the predicted values of the field variables (ρa, va, ea, ha,
ra and pa) at the midpoint of the current iteration step are
written as:

Figure 1 (Color online) General view of the boundary conditions used.
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The updated values of the left-hand side of eq. (26) at the
midpoint of the current iteration step can be easily obtained
by using the predicted values shown in eq. (27). Then, the
corrected results of the field variables at the midpoint of the
current iteration step are further written as:
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According to the field variable values at the initial moment
and at the midpoint of the current iteration step, the final
corrected values of the field variables at the end of the cur-
rent iteration step can be computed as:
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4.3 Parallel computation based on OpenMP-OpenACC
directives

To simulate the coupled dynamics of the fluid and the rigid-
flexible multibody system, two coupled dynamic equations
should be solved simultaneously. One is the ODEs for the
SPH particles and the other is the DAEs for the rigid-flexible
multibody system. Hence, the computation process is very

time-consuming and the traditional serial computer program
can hardly solve such a dynamic problem due to the high
dimension of coupled nonlinear dynamics.
To increase the computation efficiency, a parallel compu-

tation approach based on OpenMP [55] and OpenACC1) di-
rectives is proposed as follows. The computations of the
elastic force vectors and their Jacobi matrixes of the finite
elements of ANCF are parallelized by using the OpenMP
directives. More details of the process can be found in the
works by Liu et al. [28,29] The computations of neighboring
particle detections and the solution of ODEs are parallelized
by using the OpenACC directives based on graphics pro-
cessing unit (GPU). More details about the OpenACC based
parallel scheme can be referred to the website and the pre-
vious works of authors [30,33]. All numerical simulations in
the study are accomplished on a 48G RAM workstation with
an Intel Xeon E5-2520*2 CPU (4 cores, 2.4GHz) and a 6G
RAM NVIDIA Tesla C2070 GPU (448 cores). As well
known, the OpenACC may not exhibit good performance
like CUDA2), which enables one to get a higher speed by
adjusting the data structure and the data access procedure,
but OpenACC can not to do so. Theoretically speaking,
hence, the maximal data transmission speed in the work-
station mentioned above is 6 GB/s, but the maximal speed
realized in the study is only about 2-3 GB/s. In the ongoing
research, the codes will be developed in the framework of the
CUDA.
In the final parallel computation program, three main

modules are included. In the pre-processing module, the
initial generalized coordinates of the multibody system are
computed, and all constant terms are evaluated and stored in
the computer memory in terms of a sparse matrix format. The
initial coordinates, velocities, energies, pressures and den-
sities of the SPH particles are computed. Initial neighboring
particle detections are performed based on the domain de-
composition method [30,33]. In the computation module, the
ODEs of the SPH particles are firstly solved by using the
predictor-corrector scheme shown in eqs. (26)-(29). Then,
the accelerations and inertia forces of the virtual particles are
evaluated, which can be further used as the external forces of
the multibody system. The DAEs for the multibody system
are solved by using generalized-alpha method. Finally, the
coordinates and velocities of the virtual particles are updated
according to the generalized coordinates of the multibody
system. In the post-processing module, the corresponding
results are stored and output, the configurations of the mul-
tibody system and the flow field are displayed. More details
about the overall flowchart for the parallel computation ap-
proach are shown in Figure 2.

1) The OpenACC standard. https://www.openacc.org (accessed 8 September 2017)
2) CUDA Parallel Computing Platform. https://developer.nvidia.com/cuda-zone (accessed 8 September 2017)
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5 Case studies

5.1 Airflow around a circular cylinder in the pipeline

As shown in Figure 3, the first case study is to check the
effectiveness of the proposed computation approach for si-
mulating the airflow along a rigid pipeline and around a rigid
circular cylinder obstacle.
Both the pipeline and the circular cylinder are fixed, and

the airflow is initially static, but under the action of a con-

stant acceleration vector g = [3, 0]T m s−2. Table 1 shows the
geometrical parameters of the pipeline and the circular cy-
linder obstacle.
In order to get quantitative results, two tracking points A

and B are marked in the pipeline. The airflow is modeled by
using 469567 real SPH particles and the fixed pipeline and
circular cylinder obstacle are described by using 14296 vir-
tual SPH particles. The initial particle distance is 0.1 m and
the initial smoothing length is 0.125 m. Both real particles

Figure 2 Flowchart of overall computation.
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and virtual particles have an initial density 1.0 kg/m3, and are
subject to an initial pressure 841 Pa. The boundary condi-
tions of periodic inflow and outflow are used as mentioned in
sect. 4. The positions of virtual particles do not need to be

updated, while the velocities, densities, pressures, energies
and smoothing lengths will be updated as the real particles.
The simulation time is 1.0 s, and the time step is chosen as
1.0×10−3 s according to the Courant condition and viscosity
condition [56]. The CPU time used is about 15 min.
Figure 4 shows the flow fields at different moments

computed by using the SPHmethod and the well known code
FLUENT, respectively. The results are in a good agreement
with each other. The subfigures clearly give the magnitude
distribution of the fluid particle velocities at 4 typical mo-
ments. The maximal velocities appear on the upper and
lower sides of the circular cylinder, while the minimal ve-
locities do on the left and right sides. As shown in Figure 4,
the flow field at 4 typical moments indicate that the dis-
turbance wave generated by the circular cylinder moves
away from it to the boundary of the pipeline. The wave
velocity is equal to the velocity of sound obtained by eq. (7).
Figure 5 gives the time histories of the flow velocities at

points A and B, which are also in a good agreement with
those computed by using FLUENT.
For further verification, Figure 6 shows the pressure fields

at different moments obtained by using the SPH method and
FLUENT. From those numerical results, it is obvious that the
computation approach proposed here is effective.

Figure 3 (Color online) Initial configuration of a pipeline with a fixed
circular cylinder.

Table 1 Geometrical parameters of the pipe and the cylinder (units: m)

l1 l2 l3 l4 d

100 50 15 40 20

Figure 4 (Color online) The flow fields at different moments computed by using the SPH method and FLUENT.
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5.2 Compression of gas in a sealed rectangular cavity

This case study deals with the dynamic analysis of the gas
compressed in a sealed rectangular cavity so as to validate
the proposed computation approach for simulating strongly
compressed flows. As shown in Figure 7, the initial config-
uration of the rectangular cavity has length l1=1.0 m for each
side. Under the action of an external force, the final con-
figuration reaches length l2=0.2 m for each side. The com-

pression speed is set as a constant V=0.5 m/s and the
directions are shown in Figure 7. With the initial particle
distance 0.01 m and the initial smoothing length 0.0125 m,
the final system is modeled by using 10000 real SPH parti-
cles and 2100 virtual SPH particles. Different from the first
case study, the virtual particles here are not fixed. They move
at a given velocity to keep a regular distribution, but the
particle distance and smoothing length will decrease during
the compression process. The initial pressure and initial
density of all particles are 1.0×104 Pa and 1.293 kg/m3. The
compression time is 0.8 s, the time step is chosen as
1.0×10−4 s, and the total CPU time used is about 130 min. It
can be observed that, with a shorter time step, the CPU time
is still longer than that of the first case study, even though the
number of particles is less.
Figure 8 gives the density fields of the gas computed by

using the SPH method and FLUNENT at initial 4 moments.
The figure indicates that the maximal density domains show
a symmetrical propagation to the center under a symmetrical
compression. The propagation domains reach the center at
about t = 0.005 s, and the speed is about 100 m/s, which
matches well with the analytical value obtained by eq. (7).
Figure 9 shows the time history of the average density in

the cavity obtained by using the SPH method and the
FLUENT, respectively. The two curves look almost identical

Figure 5 (Color online) Time histories of the flow velocities at points A
and B computed by using the SPH method and FLUENT.

Figure 6 (Color online) The pressure fields of the airflow at different moments computed by using the SPH method and FLUENT.
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in Figure 9.
Table 2 gives the works done by the external force and the

energy increments of the gas at different moments, which
also match very well with each other. The good results show

that the energy equation used in the study is effective.
As shown in Figure 10, the compression ratios are 2.041,

4.0, and 25.0, respectively, according to the size of the cavity
at the moments t = 0.3, 0.5 and 0.8 s. Thus, the corresponding
analytical values of the gas densities are 2.64, 5.17 and
32.33 kg/m3, respectively. The simulation results of the

Figure 7 (Color online) Initial and final configurations of a cavity with gas compressed.

Figure 8 (Color online) The density fields of the gas at initial 4 moments
computed by using the SPH method and FLUENT.

Figure 9 (Color online) Time histories of the average density in the
cavity computed by using the SPH method and FLUENT.

Table 2 Work of the force and the energy increment at different moments

Time (s) Work of the force (J) Energy increment
(J)

0.1 2219 2165

0.2 4897 4811

0.3 8240 8136

0.4 12556 12449

0.5 18379 18294

0.6 26745 26721

0.7 39966 40073

0.8 64591 64974
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corresponding averaged gas densities in the cavity obtained
by using the SPH method are 2.61, 5.09 and 31.75 kg/m3,
respectively. The above comparisons between the analytical
solution and the numerical results well support the efficacy
of the computation approach developed here.

5.3 Aerodynamics of a sliding multibody system

The third case study is to check the validity of the proposed
approach to simulating the aerodynamics of a rigid-flexible
multibody system composed of a rigid double-pendulum
sliding on a flexible cable in the air as shown in Figure 11.
The sliding multibody system has been studied by Seo et al.
[57], but the aerodynamic effects have not taken into con-
sideration. As shown in Figure 11, the cable is hanging on
points O and P under the action of gravity, and the gravita-

tional acceleration vector is chosen as g = [0, −9.81]T m/s2.
The rigid double-pendulum, which has a horizontal body AB
and a vertical body BC, is initial set as shown in Figure 11.
The initial position of point A is equal to the position of point
P.
Under the action of gravity, the double-pendulum is sliding

along the cable in the air. The details of the sliding multibody
system can be referred to the works by Seo et al. [57]. In
order to reduce the number of particles involved in the si-
mulation, only a rectangular domain around the multibody
system is modeled by using SPH particles. The upper and
lower boundaries are treated as fixed boundaries, and the left
and right boundaries are treated as periodical inflow and
outflow. Detailed geometrical parameters of the system are
shown in Table 3.
In this case, 40162 real particles and 1638 virtual particles

are used to model the air, the initial particle distance and the
smoothing length are 0.05 m and 0.0625 m, respectively. The
initial pressure and density of the fluid particles are equal to
those in the second case study. The hanging cable is modeled
by using 24 cable elements of ANCF, while the double-
pendulum is modeled by 2 rigid bodies of NCF. The circular
radius of the cross-section of the cable is 0.0015 m. The
density and the Young’s modulus of the cable material are set
as 5208.39 kg/m3 and 2.0×105 MPa, respectively. The cross-
section of the rigid bodies is set to be 0.0874 m×0.0874 m,

Figure 10 (Color online) The density fields of the gas at 3 typical moments computed by using the SPH method (t = 0.3 s, 0.5 s, 0.8 s).

Figure 11 (Color online) Initial configuration of the sliding multibody
system.

Table 3 Geometrical parameters of the sliding multibody system (units:
m)

l1 l2 l3 l4 l5 l6 lAB lBC lOP
10 10 3 0.5 3.8 3.5 1 1 4.02
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and the density is 349.45 kg/m3.
As shown in Figure 12, the two red curves are the trajec-

tories of points A and C on the rigid double-pendulum when
the aerodynamic force is ignored. They clearly indicate that
the convergent results match well with those obtained by Seo
et al. [57]. In addition, the two blue curves show the tra-
jectories of the above two points when the aerodynamic force
is taken into account in the dynamic simulation. The com-
parison of the two sets of trajectories indicates that the in-
fluence of air can not be ignored when the accurate
trajectories are of concern.
Figure 13 presents the flow fields and the dynamic con-

figurations of both sliding double-pendulum and cable at
different moments, where the direction and the magnitude of
the SPH particle velocities can be clearly shown. Further-
more, two fluid eddies near the two tips A and B caused by
the moving double-pendulum can be clearly observed when t
= 1.0 s.

5.4 Aerodynamics of a thin plate system

The final case study presents the three-dimensional aero-
dynamic analysis of a flexible multibody system composed
of two square thin plates under the action of gravity vector g
= [0, 0, −9.81]T m/s2 in the air. As shown in Figure 14, plate I
is hinged at three equidistance points A, B and C, while
plates I and II are hinged at three equidistance points D, E
and F. Point P is the center on the right edge of plate II. The
thickness, mass density, Young’s modulus and Poisson’s
ratio of the material are taken to be 2.0×10−3 m, 1000 kg/m3,
1.0×107 Pa and 0.3, respectively. Each plate is modeled by
using 100 rectangular plate elements of ANCF with the same
size. Similar case studies to testify the rectangular plate
elements of ANCF are referred to the works [43,58].
A three-dimensional rectangular domain around the dou-

ble-plate system is modeled by using SPH particles, and the
size of the domain is also given in Table 4. The upper, lower,

front and back boundaries are treated as fixed boundaries,
and the left and right boundaries are treated as periodical
inflow and outflow.
In order to study the effects of the number of SPH particles

Figure 12 (Color online) Trajectories of points A and C on the double-
pendulum.

Figure 13 (Color online) The flow fields and the dynamic configurations
of both sliding double-pendulum and cable at different moments.

Figure 14 (Color online) Initial configuration of a double-plate system
under gravity in the air.
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on the numerical simulation, three models are comparatively
studied, as shown in Table 5. The table also shows the initial
particle distance, smoothing length, step size, and compu-
tation time of three models. Furthermore, Model I is the case
study without the aerodynamic force taken into account.
Figures 15 and 16 present the time histories of the dis-

placements and velocities for point P in X- and Z-direction
for different models, respectively. They not only show the

convergent results, but also indicate that the movement of
double-plate system in the air exhibits a little bit of hysteresis
and smaller amplitude of the velocities under the action of
the aerodynamic force.
Figure 17 shows the dynamic configurations of the double-

plate system and the three-dimensional flow fields around
the system at 6 typical instants. From the flow fields, the
direction and magnitude of the SPH particles can be clearly
observed, and the three-dimensional fluid eddies can also be
observed in Figure 17 when t = 1.0 s in the flow fields.

6 Conclusions

As a continuing research of the previous studies of authors, a
new computation approach is proposed to model and simu-
late the coupled aerodynamics of a rigid-flexible multibody
system subject to both overall motion and large deformation
with compressible fluid. In the proposed approach, the SPH
method is used to model the fluid and a Riemann solver is
introduced to cope with the flow compressibility. To deal
with the coupled dynamics between the fluid and the mul-
tibody system, the virtual particles of SPH are embedded in
the interface boundaries of the multibody system and the
fluid. To avoid truncations of the supporting domains and
reduce the number of fluid particles involved in the com-
putation process, the boundary conditions of the periodic
inflow and outflow are used in the computation process. The

Table 5 Influence of the number of SPH particles on the computation
efficiency

Model II Model III Model IV

Initial particle dis-
tance (m) 0.2 0.111 0.0667

Smoothing length h
(m) 0.25 0.139 0.0833

Number of real par-
ticles 46590 264294 1206570

Number of virtual
particles 28210 85626 229830

Step size (s) 2.0×10−3 1.0×10−3 5.0×10−4

Computation time
(min) 91 275 1104

Table 4 Geometrical parameters of the double-plate system (units: m)

l1 l2 l3 l4
10 5 7 2

Figure 15 (Color online) Displacements of point P in X-, Z-directions computed via different models.

Figure 16 (Color online) Velocities of point P in X-, Z-directions computed via different models.
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ODEs for the SPH particles are solved by using a two-step
predictor-corrector scheme with the second-order accuracy,
while the DAEs for the multibody system are solved by using
the generalized-alpha method. Finally, four case studies are
presented to validate the effectiveness of the proposed
computation approach. The numerical results indicate the
potential of the proposed approach to simulate the dynamic
interaction of the fluid and the rigid-flexible multibody
system undergoing both overall motion and large deforma-
tion. The approach proposed is being further developed to
study the aeroelastic problem of a three dimensional wing
with a flapping control surface, where the flow field around
the control surface exhibits very complicated phenomena.
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