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A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-
aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with
the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report
the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense
large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal
profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with
respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the
excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner
of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form
of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a
turbulence model.
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1 Introduction

Equilibrium turbulent boundary layers (TBLs), including
canonical TBLs on a flat plate with zero pressure gradient,
and those with the so-called equilibrium pressure gradients
[1,2], are characterized by wall-normal mean profiles varying
only with the local quantities (velocity and length), indepen-
dent of the flow history. In contrast, non-equilibrium TBLs
are more frequently encountered when the flows are subjected
to strong disturbances such as separations and shocks. Sub-
sequent relaxations towards equilibrium flows form so-called
relaxation TBLs, where there are often intense fluctuations
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inherited from upstream, and redistributed and dissipated af-
terwards, balanced by a large adverse pressure gradient. In
general, the relaxation TBLs are non-equilibrium and can-
not be described by the classical boundary layer theory. The
turbulence models, whose closure forms and parameters are
optimized for canonical flows, thus yield poor predictions for
the relaxation TBLs [3].

For obvious engineering interests, relaxation TBLs have
been investigated for several decades [4]. Various distur-
bances have been studied, including separation and reattach-
ment induced by protruding obstacles [5-7], pressure gra-
dients [8], shock-wave/boundary-layer interactions [9, 10],
and variations in boundary conditions such as curvature [11],
roughness [12-14], micro vortex generators [15], wall tem-
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perature [16, 17], and blowing or suction [18]. In these stud-
ies, the main focus is on the response and development of the
mean profiles, as well as the flow structures, to identify the
differences and similarities among various perturbations. As
concluded in the review by Smits and Wood [4], these stud-
ies suggest extra requirements for turbulence models in more
complex flow conditions.

Compared to efforts made in collecting data and carrying
out empirical analyses of non-equilibrium TBLs, the theoret-
ical framework is lacking. The difficulty lies in the complex-
ity of the response and relaxation processes in the presence
of many physical factors [4]. Here, we carry out a direct nu-
merical simulation (DNS) study of the relaxation TBLs in
compression ramps with varying angles, and report the dis-
covery of surprisingly simple distributions of the Reynolds
stress and turbulent heat flux when a canonical flow compo-
nent is subtracted out. A symmetry-based argument [19-25]
is employed to predict the form of the distributions, a β-
distribution. Furthermore, their magnitudes exhibit power
law scaling with respect to the streamwise distance from the
corner of the compression ramp. The results suggest that
the relaxation TBL obeys the dilation symmetry, which is a
specific form of the self-organization in this non-equilibrium
flow, and the β-distribution can be used for the development
of the turbulence model. Note that the symmetry-based idea
has been successfully implemented for modeling the natural
and bypass transitions in TBLs [26], which are well-known
to be in non-equilibrium.

The paper is organized as follows. Sect. 2 explains the
DNS details and the general features of the flows behind the
compression ramp. Sect. 3 presents the results, including the
Reynolds stress and turbulent heat flux distributions in the re-
laxation TBLs, their β-distributions, and the streamwise de-
velopment. Sect. 4 contains discussions and conclusions.

2 DNS details and flow features

The DNS of compression ramps has been conducted with an
open-source full Navier-Stokes solver called OpenCFD, de-
veloped by Li et al. [27] at the Institute of Mechanics of

Chinese Academy of Sciences for the scientific computation
of spatially-developing compressible turbulent flows. A lam-
inar incoming boundary layer flow with Mach number 2.9 is
perturbed by blowing and suction disturbances to induce a
transition, and then a fully-developed turbulent state finally
reaches a Reynolds number (Reθ = 2344 ) [28,29] around the
ramp corner, where the shock-wave/boundary-layer interac-
tion occurs. Three ramps (case A14, A20 and A24) are sim-
ulated at inclination angles of 14◦, 20◦ and 24◦. They induce
shock waves of different strengths and generate separations
of different sizes. Behind the compression corner, the TBL
relaxes to form the relaxation TBL, before flowing out of the
simulation domain.

The three simulations have similar domains with similar
computational meshes. As shown in Figure 1, the extension
of the flat plate is from −335 mm to 0 mm, and of the ramp
from 0 mm to 50 mm along the ramp surface, where the origin
is chosen to be at the ramp corner. The wall-normal extension
is 35 mm and the spanwise extension is 14 mm. The mesh
number is 2160 × 160 × 140. Following the convention, the
dense mesh is set in the corner region at −35 mm≤ x ≤ 35
mm and near the wall, and is uniform in the spanwise di-
rection. Characteristic mesh resolutions for the 24◦ ramp,
for example, are: ∆x+ ≈ 4.0, ∆y+w ≈ 0.5 and ∆z+ ≈ 5.0
(superscript plus denotes wall unit normalization) before the
separation.

The inlet is a two-dimensional supersonic laminar bound-
ary layer located at the 200 mm downstream leading edge of
a flat-plate. Two-dimensional laminar results, obtained with
the same grid and inflow conditions as the turbulent calcula-
tions, are selected as the initial conditions. A non-reflecting
boundary condition is used for both the upper boundary and
outlet, and a periodic boundary condition is used in the span-
wise direction. Non-slip and isothermal (Tw = 2.84T∞) wall
conditions are used for the flat plate and ramp surface, except
within −305 mm< x < −285 mm on the wall where there is
a non-zero distribution of the wall-normal velocity set as the
blowing and suction disturbances, following Pirozzoli et al.
[30].

In the simulation, spatial coordinate is normalized to 1 mm
and the other quantities are normalized with respect to the

Figure 1 Illustration of the computational domain and mesh.
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corresponding free-stream values. Dimensionless Navier-
Stokes equations are solved with finite difference algorithms
in curvilinear coordinates. The convective flux terms are
computed by the Steger-Warming splitting method and dis-
cretized using the WENO-SYMBO method of Martı́n et al.
[31]. The viscous flux terms are discretized with the eighth-
order central difference scheme. An explicit third-order to-
tal variation diminishing (TVD)-type Runge-Kutta method is
used for the time evolution. The mean quantities (profiles)
are obtained by averaging in time and in the spanwise di-
rection. Snapshots are also acquired for visualizing instanta-
neous flow structures.

The 24◦ ramp case has been measured experimentally by
Bookey et al. [32] and computed by Wu et al. [33] and Li et
al. [28,29] with DNSs. Figures 2 and 3 compare the skin fric-
tion coefficient and mean wall pressure distributions of the
current DNS with those of previous studies [28, 31, 32, 34],
which show that the current simulation is reasonably accu-
rate.

Figure 4 is a numerical Schlieren visualization of the in-
stantaneous flow structures in the corner region. A canonical

x (mm)

C
f

Figure 2 Skin friction coefficient distribution for the 24◦ ramp denoted by
A24. See Figure 4 for the definition of x.

Figure 3 Mean wall pressure distribution for the 24◦ ramp. δ is the bound-
ary layer thickness at x=–35 mm.

Figure 4 Numerical Schlieren visualization of instantaneous flow struc-
tures in the corner region of the 24◦ ramp.

TBL develops before reaching the corner, and the flow de-
flects near the corner, generating a strong shock wave with
an abrupt pressure rise (Figure 3), and inducing a separation
around the corner. The vortexes in the TBL penetrate the
oblique shock wave [35] and shed into the flow interior, and
then reattach to the ramp, resulting in strong turbulent fluctu-
ations in the bulk of the subsequent relaxation TBL.

The above observations can be further validated by exam-
ining the mean-field contours. Figure 5 exhibits the spatial
distributions of the mean pressure, mean temperature, tur-
bulent kinetic energy, and temperature fluctuation intensity
for the 24◦ ramp. Basically, we can divide the flow field
into three regions: the equilibrium incoming TBL, the cor-
ner region with intense shock-wave/boundary-layer interac-
tion, and the relaxation TBL. From Figure 5(a) one finds that
the incoming TBL is undisturbed before x = −21 mm for the
24◦ ramp; from Figure 5(b)-(d) one finds that a quasiparallel
flow is reestablished (such that the boundary layer approxi-
mation is applicable) after the reattachment location at about
x = 7 mm (see Figure 5(b)). The latter is set to be the be-
ginning of the relaxation TBL, which will be the focus of the
subsequent study. The relaxation TBL is significantly differ-
ent from the incoming equilibrium TBL in several aspects.
First, a strong streamwise adverse pressure gradient develops
throughout the relaxation process. The isopressure lines are
curved in the wall-normal direction, revealing a strong wall-
normal velocity fluctuation to balance the mean pressure vari-
ation. Second, compared with those of the incoming TBL, the
mean temperature, turbulent kinetic energy, and temperature
fluctuation intensity are significantly enhanced in the bulk
(i.e., away from the near-wall region) of the relaxation TBL;
in particular, the latter two fluctuation intensities occupy the
bulk flow. We believe that this turbulence is the result of two
processes, one from the shock-wave/boundary-layer interac-
tion shedding from the corner region, and the other from the
adverse pressure gradient formed globally. Below, a quanti-
tative model will be developed based on this understanding.

Figure 6(a) visualizes this turbulence with vortical struc-
tures extracted by the common Q criterion for the 24◦ ramp
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Figure 5 (Color online) Contours of (a) mean pressure, (b) mean temperature together with streamlines and mean velocity vectors ahead of and behind the
corner, (c) turbulent kinetic energy, and (d) temperature fluctuation intensity, for the 24◦ ramp. The dash-dot lines in (b)-(d) denote the location of the boundary
layer thickness (i.e., δ99).

Figure 6 (Color online) Instantaneous vortical structures extracted by the Q criterion (a) and Ω criterion (b) for the 24◦ ramp. The colors show the magnitude
of the turbulent kinetic energy.

at Q = 0.05. Indeed, one sees a crowd of intense large-scale
eddies in the bulk of the relaxation TBL, which are much
stronger, bigger, and much more energetic than those in the
incoming equilibrium TBL. Because the Q criterion may give
different vortical structures when the threshold is changed,
we also use the recently reported Ω method [36] to extract
the vortex structures. In Figure 6(b) both small and large
vortexes are captured by the Ω method and the vortexes on
the ramp remain more energetic. These energetic eddies sig-
nificantly distort the mean fields of the relaxation TBL (see
Figure 5(b) for the mean velocity distortion) and present new

challenges for the theoretical approach beyond the classical
boundary layer theory.

The mechanism for the turbulence intensification due to
shock-wave/boundary-layer interactions has been widely dis-
cussed in the literature [4, 37, 38]. Anyiwo and Bushnell
[39] and Zang et al. [40] pointed out that the shock wave
can amplify turbulence through its oscillations and the jump
condition. Settles et al. [41] and Ardonceau [42] found
that longitudinal roll-cells may be formed to produce three-
dimensional effects, which contribute as well. Here, the
shock wave indeed oscillates significantly, and induces mas-
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sive separations, contributing to the remarkable turbulence
enhancement.

3 Results

3.1 Reynolds stress and turbulent heat flux profiles

The main concerns of this study are the description of the
streamwise development of the Reynolds stress and turbulent
heat flux in the relaxation TBL, owing to their paramount im-
portance in turbulence modeling. As shown in Figure 4, the
relaxation TBL remains quasiparallel along the ramp surface.
Therefore, the Reynolds stress is −ρũ′′v′′ (denoted by Wuv

hereinafter) and the turbulent heat flux, −Cpρ̄T̃ ′′v′′ (denoted
by W

Θ
hereinafter), where ρ is the density, T is the temper-

ature, Cp is the specific heat at constant pressure, and u and
v are the streamwise and wall-normal velocity components,
respectively; the tilde denotes the Favre (density-weighted)
average, the superscript ′′ denotes the Favre fluctuation, and
the overbar denotes the Reynolds average.

Following the convention, Wuv is normalized with respect
to the mean wall shear stress at the local x position. Figure 7
displays the wall-normal W+uv profiles at three x locations (see
Figure 5 for the definition of x) for the three ramps, com-
pared with that of the equilibrium TBL at x = −35 mm. In
the bulk of the equilibrium TBL, one finds that W+uv is smaller
than unity and decreases monotonically with increasing dis-
tance from the wall. In contrast, there are huge increments
for the W+uv profiles on the ramps (Figure 7). For exam-
ple, the maximum W+uv is about 16 for x = 21 mm of the
24◦ ramp. The amplification of the Reynolds stress increases
with increasing ramp angles owing to increasing interaction
strength. For all of the ramps, the Reynolds stresses decay in
the streamwise direction, showing relaxation of the perturbed
TBLs. Another remarkable difference is that, in the bulk flow
of the relaxation TBLs, W+uv first increases with the distance

from the wall and reaches a peak near the half height of the
boundary layer thickness, and then decreases and vanishes
near the boundary layer edge. This is due to the strong tur-
bulence shedding from the corner region and occupying the
bulk of the relaxation TBLs, as shown in the previous sec-
tion. Similar outer peaks can be found in the equilibrium
TBLs with strong adverse pressure gradients [43]. The dif-
ference is that, in the current case, the strong turbulent fluc-
tuations largely originate from the corner region with strong
shock-wave/boundary-layer interaction, but in the latter, they
are solely due to the adverse pressure gradient. Nevertheless,
both cases have a common nature of the pressure-induced re-
distribution of the turbulent intensity.

In order to quantify the relaxation TBL, we choose to in-
vestigate the excess Reynolds stress, which is defined by sub-
tracting the Reynolds stress of the equilibrium TBL out of the
relaxation TBL. Spina et al. [44] have concluded that W+uv

in the bulk of equilibrium TBL is invariant with respect to
the Mach number, Reynolds number, and wall temperature.
Thus, we simply subtract the W+uv(−35) profile (at x = −35
mm) from W+uv(x) at all x locations throughout the relaxation
TBL. Note that, in the current simulation, the equilibrium W+uv

is small compared to W+uv(x) in the relaxation TBL, thus the
excess W+uv profiles are similar to the original W+uv profiles
shown in Figure 7.

Unlike the Reynolds stress, more complexities appear
when deriving the turbulent heat flux profile of a specific
equilibrium TBL. We first need to seek a proper normaliza-
tion of the turbulent heat flux. The isothermal wall condition
has been applied in the current simulation. An attempt to
use the wall heat flux to normalize the turbulent heat flux,
as displayed in Figure 8(a), shows significant scatter in the
near-wall region (10 < y+ < 200). In this case, it is difficult
to determine the magnitude of the final equilibrium turbulent
heat flux to be subtracted from the relaxation turbulent heat
flux.

Note that, for the present simulations, there is a distinct
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Figure 7 (Color online) Reynolds stress profiles at different x locations on the ramps of angle (a) 14◦, (b) 20◦ and (c) 24◦. The Reynolds stress of the
equilibrium TBL at x = −35 mm is also plotted for comparison.
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peak in the molecular heat flux profile at about y+=6 in the
viscous sublayer, owing to the rapid change in mean temper-
ature there in supersonic TBLs with wall temperatures close
to the adiabatic case. This peak heat flux is apparently larger
than the wall heat flux and has significant scatter. If this local
peak magnitude is used as an alternative reference heat flux to
normalize the turbulent heat flux (denoted by W#

Θ
), as shown

in Figure 8(b), we find a better data collapse in the near-wall
region. We then postulate that the turbulent heat fluxes of
equilibrium TBLs become self-similar under the normaliza-
tion with respect to the near-wall peak value (which may fluc-
tuate with strongly cooled or heated walls). Then, we subtract
the W#

Θ
(−35) profile from W#

Θ
(x) at all x locations throughout

the relaxation TBL to get the excess W#
Θ

. Again, note that
the equilibrium W#

Θ
(−35) is small compared to the relaxation

W#
Θ

.
To compare with Figure 7, the W#

Θ
profiles are shown in

Figure 9 for different x locations and for all of the ramps. One
sees that W#

Θ
behaves similarly to W+uv, revealing large ampli-

fications of W#
Θ

, increasing with increasing ramp angles, in
the bulk flows of the relaxation TBLs. Also, W#

Θ
reaches its

peak at about the half-height of the boundary layer thickness,
and decays in the streamwise direction in a similar way to

W+uv.

3.2 Beta distribution for the excess Reynolds stress and
turbulent heat flux

Chen et al. [24] have discovered that, for canonical incom-
pressible TBLs, the defect total stress (or Reynolds stress in
the bulk) obeys a power law with respect to the wall distance,
owing to the dilation symmetry in the presence of the non-
slip wall, as a result of the self-organization. It is interesting
to examine whether the dilation symmetry still prevails (or,
the turbulence remains to be self-organized) when the relax-
ation TBL is far from equilibrium.

In the wall-normal direction, the mean flow in the relax-
ation TBL is in fact quasiparallel between the ramp surface
and the free stream. This is evidence that the dilation sym-
metry imposed by the wall is preserved. According to Chen
et al. [24], two dilation centers emerge in the TBL, one at the
wall and the other at the edge of the TBL. Consequently, one
can construct a dual-power-law:

f (y/δr) = A
(

y
δr

)α−1 (
1 − y
δr

)β−1

, (1)

Figure 8 (Color online) Profiles of the turbulent (thick lines) and molecular (thin lines) heat fluxes normalized with respect to the mean wall heat flux (a),
and the peak molecular heat flux (b) in the viscous sublayer. The profiles are acquired at x = 35 mm for all of the three ramps and compared with those of the
equilibrium TBL at x = −35 mm.
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Figure 9 (Color online) Turbulent heat flux profiles at different x locations on the ramps of angles 14◦ (a), 20◦ (b), and 24◦ (c). The turbulent heat flux of the
equilibrium TBL at x = −35 mm is also plotted for comparison.
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where A is a proportionality coefficient, δr is the boundary
layer edge, α − 1 and β − 1 are the scaling exponents quan-
tifying the power laws with respect to the distances from the
ramp surface and the outer dilation center (i.e., δr), respec-
tively. Note that this dual-power-law provides an opportunity
for describing the non-monotonic variations of the excess W+uv

and W#
Θ

in the relaxation TBL. The f function, if normal-
ized with respect to its integration through the boundary layer
(e.g., from 0 to 1), is simply the so-called β-distribution:

P (ξ, α, β) =
ξα−1 (1 − ξ)β−1

Beta (α, β)
, (2)

where Beta (α, β) = Γ(α)Γ(β)
Γ(α+β) is the β function, and Γ (α) =∫ +∞

0 tα−1e−tdt is the gamma function. The β-distribution is
known as a continuous probability density function defined
on the interval [0, 1] and with α and β defining its shape.

Below, we validate the β-distribution for the wall-normal
profiles of the excess W+uv and W#

Θ
of the relaxation TBLs.

To determine the parameters in the β-distribution, we have
used the least squares method. We find that δr can be set to
1.25δ99 (δ99 is the commonly defined boundary layer thick-
ness, where the mean velocity is 99% of the free stream mean

velocity) and is adequate for all simulated cases for different
ramp angles and at all streamwise locations, while α and β
are varied. To measure α and βwith the least squares method,
we set ξ = y

/
δr, and normalize W+uv and W#

Θ
with their inte-

grations in
[
0, y

/
δr

]
, denoted by W+uv,d and W#

Θ,d, respectively.
The results are shown in Figure 10 for the 24◦ ramp, as ex-
amples. To be consistent with Figures 7 and 9, the excess
W+uv and W#

Θ
are plotted in the dimensionless coordinate y/δ

with the β-distribution (or eq. (1)). Indeed, with appropriate
values of α and β, the β-distribution accurately describes the
DNS data for both the excess Reynolds stress and turbulent
heat flux, and at all streamwise locations. Similar results can
be found for the other ramps. It is then interesting to see how
α and β vary in the streamwise direction for different cases,
as shown below.

3.3 Streamwise development

We have measured the shape factors α and β (which give the
scaling exponents by subtracting 1) in the β-distribution for
W+uv,d and W#

Θ,d at different x locations of the three ramps, as
shown in Figure 11.

mm

mm

mm

Eq.(1)

Eq.(1)

(−
3
5
 m

m
)

(−
3
5
 m

m
)

99 99

(a) (b)

Figure 10 (Color online) DNS-measured excess Reynolds stress (a) and excess turbulent heat flux (b) profiles at different x locations on the 24◦ ramp
compared with the dual-power-law f (or β-distribution).

(a) (b)

(mm) (mm)

Figure 11 (Color online) Streamwise developments of α and β for the excess Reynolds stresses (a) and excess turbulent (b) heat fluxes of the 14◦, 20◦,
and 24◦ ramps. The horizontal coordinate xs denotes the distance from the corner along the ramp. Dashed lines indicate the convergence of α and β in the
streamwise direction.
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It is surprising that α and β quickly evolve to constants
such that both the W+uv,d and W#

Θ,d profiles become self-similar
from the very beginning of the relaxation TBL. Also surpris-
ing is the invariance of the ultimate shapes of the profiles with
respect to the ramp angles. The ultimate α and β are 2.7 for
both W+uv and W#

Θ
; the ultimate β is 4.0 for W+uv and 3.5 for

W#
Θ

, respectively. Note that the ultimate β of W#
Θ

is slightly
smaller than that of W+uv. This gives a fuller profile for W#

Θ

near the outer edge of the relaxation TBL, probably owing to
the different efficiencies in the momentum and heat transports
by eddies.

It is important to examine the decay rates of the integrated
excess W+uv and W#

Θ
, denoted byΛ+ (the total excess Reynolds

stress) and Ω# (the total excess turbulent heat flux), respec-
tively. Their decays in the streamwise direction are displayed
in Figure 12 with the log-log plot for all three ramps. One
observes a power-law decay in both quantities (Λ+ and Ω#),
which is an additional evidence that the relaxation TBLs are
self-organized to preserve the streamwise dilation symme-
try, in addition to the wall-normal dilation symmetry shown

above. The scaling exponents of the decay seem to be ramp-
angle-dependent. For Λ+, the scaling exponents are about
–0.5, –1.0, and –1.5 for the three ramp angles (14◦, 20◦,
and 24◦), respectively; for Ω#, they are –0.5, –0.6, and –0.7.
These values quantify, in our view, the relaxation TBL, and it
will be interesting to examine its universality with more data.

Finally, a further validation of the self-preservation is
demonstrated in Figure 13. Indeed, the DNS data of the W+uv,d
and W#

Θ,d profiles at different x locations and for all ramps
collapse to the corresponding β-distributions with the above-
mentioned ultimate α and β. The peak locations in Figure 13
are given by α−1

α+β−2 owing to the β-distribution, which are at
y/δr ≈ 0.36 and 0.4 (or y/δ99 ≈ 0.45 and 0.5) for W+uv,d and
W#
Θ,d, respectively.

4 Discussions and conclusions

In their review [4], Smits and Wood identified three levels of
complexity in a perturbed TBL: a simple one where the

(a) (b)

(mm)(mm)

Figure 12 (Color online) Streamwise decays of the total excess Reynolds stresses (a) and total excess turbulent heat fluxes (b) for the 14◦, 20◦, and 24◦

ramps. The solid lines show the corresponding power laws.

β β

Figure 13 (Color online) In the self-preserving region, for all three ramps. (a) The renormalized excess Reynolds stress (W+uv,d) profiles collapse to the
β-distribution with α=4 and β=2.7; (b) the renormalized excess turbulent heat flux (W#

Θ,d) profiles collapse to the β-distribution with α=3.5 and β=2.7.
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perturbation is so weak that the response exhibits a self-
preservation; a more complex one where the perturbation is
sudden and severe, and the thin-shear-layer approximation is
applicable for practically all of the recovery region; and the
most complex one where the boundary layer separates with
a significant spatial extension. There is no doubt that com-
pression ramps belong to the second or third level. Compres-
sion ramps are also classified by Smits and Wood as com-
plex flows subjected to multiple perturbations [4]. There-
fore, it is somewhat astonishing to observe a self-preserving
β-distribution in the relaxation TBL of the present compres-
sion ramp. This simplicity is important for applications.

We attribute the presently observed self-preservation to
the wall-induced dilation symmetry, which is the essential
physical mechanism for wall turbulence to be self-organized,
whether or not the wall turbulence is in an equilibrium state.
In particular, the present findings validate the proposition of
She et al. [20, 21, 26] that wall-bounded flows, whether in
equilibrium or not, are constrained by the dilation symme-
try. A consequence is that one can adopt a new strategy to
study complex wall-bounded flows: to identify and quantify
the symmetry-related properties of the flow, which have an
accurate analytical description for the mean fields in general.
We regard this strategy as the most exciting conclusion of this
study.

More specific findings are the β-distributions and power-
law decays of the excess Reynolds stress and turbulent heat
flux in the relaxation TBLs of the compression ramps. These
quantifications may be significant for the engineering com-
putations of such flows, which are still a challenge to date
[45].
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