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Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and
solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study
the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow
in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex
fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of
special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it
is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The
weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation
for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the
plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate
the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and
isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

hydraulic fracture, XFEM, porous media, fluid flow, multi-physics coupling

PACS number(s): 46.15.-x, 46.50.+a, 91.60.Ba

Citation: T. Wang, Z. L. Liu, Q. L. Zeng, Y. Gao, and Z. Zhuang, XFEM modeling of hydraulic fracture in porous rocks with natural fractures, Sci. China-Phys.
Mech. Astron. 60, 084612 (2017), doi: 10.1007/s11433-017-9037-3

1       Introduction

Hydraulic fracturing, also known as “fracking” [1], is the
fracturing process of the formation driven by fluid overpres-
sure, and is widely used in exploiting oil, gas and geother-
mal reservoirs. A successful fracking treatment may greatly
increase the production of gas, which makes the technique
economically attractive. Therefore, the optimization of the
process related to fracking is becoming increasingly impor-
tant.

*Corresponding authors (ZhanLi Liu, email: liuzhanli@tsinghua.edu.cn; Zhuo
Zhuang, email: zhuangz@tsinghua.edu.cn)

Conventional modeling approaches to fracking problems
are usually based on analytical 2D models, which were
developed by assuming planar, symmetric, bi-wing crack
geometries in infinite elastic medium, such as the Kris-
tianovic-Geertsma-de Klerk (KGD) and Perkins-Kern-Nord-
gren (PKN) models [2,3]. For the KGD model, the fracture
cross-section is assumed to have constant width. For the
PKN model, the fracture cross-section is assumed to be
elliptical and to maintain a constant height along the fracture.
Later, planar three-dimensional (3D) and pseudo-three-di-
mensional (P3D) analytical or semi-analytical models are
developed to obtain more complex fracture length, height,
and width growth profiles [4]. These models provide valu-
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able insight and perspectives for our understanding of the
fracking problems and supply validation cases for compari-
son with numerical results.
Numerical simulation is an efficient way to improve the

understanding of fracking and thus leads to better reservoir
treatments. Many numerical methods have been proposed
to model HF [5], such as displacement discontinuity method
(DDM) [6], universal method [7], cohesive zone method
(CZM) [8], discrete fracture network (DFN) method [9],
phase field method [10] and extended finite element method
(XFEM) [11,12]. The DDM is based on the boundary ele-
ment method (BEM) [13] and requires to remesh the grid
when the fracture propagates. It’s easy to deal with the
rock with faults, joints, fractures and other discontinuities.
The universal method proposed by Hunsweck et al. [7] is
a finite element method (FEM) based algorithm to simulate
plane strain HF in an impermeable elastic media, and it can
predict the existence of fluid lag [7]. The CZM is powerful
in modeling adhesives, bonded interfaces and rock fractures
[14], and it has been used to model HF [8,15]. The other
applications of CZM for the analysis of HF include the work
by Boone and Ingraffea [16], Mohammadnejad and Khoei
[17], Carrier and Granet [18], Salehi and Nygaard [19]. The
DFN method is based on analytical or semi-analytical solu-
tions [9]. It has high efficiency in solving fracking problems
and is widely used in commercial software in petroleum
engineering. The phase field method can capture the fracture
surface automatically and has attracted a sustained attention
in the field of fracking recently [10,20].
For HF in petrol engineering, especially in shale gas extrac-

tion, the fluid flow in a porous rock has a major influence on
the deformation and flow characteristics, so the rock has to
be considered as porous media [5]. The simulation of frack-
ing in porous media needs the modeling of (1) behavior of
solid skeleton and fluid bulk phases, as well as their interac-
tion; (2) fracture propagation in arbitrary paths; (3) fluid flow
in the developed fracture network and porous medium. Nev-
ertheless, most of the early HF models assume that the rock
is impermeable, ignoring the interstitial flow in the media,
but the interstitial flow is very important for understanding
the complex fracture phenomenon in porous rocks. The fluid
flow in a deformed porous media is first studied by Terzaghi
[21] for one-dimensional (1D) consolidation problems. It has
been extended to a 3D consolidation theory including Darcy’s
law of fluid transport by Biot [22]. Their pioneering work has
attracted many researchers’ interests due to its abundant prac-
tical applications. The fundamental mechanics applications
for porous media have been illustrated by many researchers
[23-25].
In the last decades, XFEM has emerged as a powerful nu-

merical tool for the analysis of fracture problems [26-29] and
recently has been widely used in solving complex HF prob-
lems bymany researchers [30-34]. In the recent XFEM based

computational HF models, the fluid flow in fractures and in-
terstitials of the porous media are mostly solved separately.
For the fluid transport in deforming porous media, the Darcy-
Biot approach has been adopted as an extension of the stan-
dard materials [35,36]. For the fluid flow in the fracture,
the classical Poiseuille law is often adopted for laminar flow
of the incompressible viscous fluid [37]. Then by combin-
ing with a transport equation for fluid the pressure distribu-
tion along fracture surface can be obtained [16,38]. Gordeliy
et al. [32] apply XFEM to solve the fully-coupled frack-
ing problems. Gupta and Duarte [39] present the simulation
of non-planar 3D HF, which focus on propagating fractures
with complex geometries. The effect of Mode III stress in-
tensity factors (SIFs) is also considered in the calculation of
both fracture propagation direction and length. Faivre et al.
[30] and Salimzadeh et al. [31] employ the XFEM models
of the HF propagation in poroelasticity materials. Réthoré et
al. [40] propose XFEM for incorporating discontinuity in the
pressure field and use it in both unsaturated and saturated frac-
turing porous media. Recently, Khoei et al. [41,42] study the
interaction between the HF and frictional natural fault using
the XFEM technique. However, there still are some difficul-
ties in dealing with the complex fluid flow in multi-fractures
and fracture intersection in both 2D and 3D fracture networks
[17,43-45]. For example, how to deal with the continuity of
fluid flow and the distribution of fluid at the intersection of
the fractures, the FEM formulation of the elements with two
fractures. In this paper, the fluid flow in fractures and inter-
stitials of the porous media are solved in a unified framework
by regarding the fractures as the special porous media and
introducing Poiseuille-type flow inside them. Multiple level
sets are used to describe the fracture intersection, which is
suitable for fracture network propagation along the arbitrary
path. The most advantage of present method is that it is con-
venient to deal with fluid flow inside the multiple fractures
and permeability of the rock. Based on this method, a fully
coupled fracture network propagation problem is studied and
some useful conclusions for engineering practice are given.

2       Coupling model and field equations

2.1       Problem description

Hydraulic fracture is a highly coupled problem between solid
deformation and fluid flow, which contains the following as-
pects: (1) pore pressure in the media can cause expansion or
contraction of solid, then deformation of solid can affect inter-
stitial flow in the media; (2) fluid can drive fracture opening
and propagating, then fracture opening in turn can affect the
fluid flow in fracture; (3) the fluid will exchange between the
fracture and the surrounding porous rocks. In order to simu-
late this highly coupled problem, some basic assumptions are
introduced: (1) the media are permeable, elastic and brittle,
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governed by the Biot constitutive relation and characterized
by fracture toughnessKIC , Young’s modulus E , Poisson’s ra-
tio , Biot constant and undrained Poisson’s ratio u; (2)
driving fluid is incompressible and has a constant dynamic
viscosity µ; (3) fracture is a kind of special porous media and
fluid flow inside the fracture is the Poiseuille-type flow; (4)
fluid transport in the interstitial space can be described by the
well-known Darcy’s law; (5) gravity is neglected in the fluid
transport equation.
The coupling method proposed is the combination of

XFEM with Biot theory of poroelasticity, the fluid flow in
the fracture and the interstitial flow in porous media are
solved in a unified framework, multiple level set functions
are used to describe multiple fractures and the intersection of
the fractures, as shown in Figure 1.

2.2       Deformation of porous media

A general situation is considered here. The initial domain
of a 3D deformation body is 0 and the current domain is
. There are some discontinuous surfaces such as HFs and

natural fractures denoted by c in , as shown in Figure 2.
The motion of a body can be described by x=φ(X, t), where x
denotes spatial coordinate and X denotes material coordinate.
The displacement field u can be written as:

u x X X Xt= = ( , ) . (1)

A momentum equation in the updated Lagrangian descrip-
tion is

b u+ = 0, in ,¨ (2)

where is material gradient, σ is Cauchy stress tensor, b is

Figure 1         (Color online) Coupling framework for hydraulic fracture prob-
lem, f i is the simplification of the signed distance function f i(X) to describe
the location of the fracture.

body force vector, ρ is an average mass density of the porous
media defined as = (1 ) +s w, in which φ stands for
the porosity of media, s and w are the densities of solid and
fluid, respectively. The inertia effect is also considered by
introducing the inertia item in momentum equation.
The boundary is a union set of displacement boundary

( u), traction boundary ( t) and crack surface ( c). There
are =u t c and =u t , as presented in Figure 2.
Thus, the boundary conditions of porous solid are given by

u u
n t
n t

= , on ,
= , on ,
= , on ,c

u

t

c

(3)

where n is the normal direction to the related boundary, u is
the given displacement on u, t is the given traction on t,
and tc is the traction on c. Note that the traction tc imposed on
HF andNF respectively represent fluid pressureP and contact
traction tcont.
The fluid can affect the solids in two ways: (1) fracture

opens and propagates under the fluid pressure, (2) expansion
or contraction of the solid is caused by pore pressure. The first
way is illustrated in details in sect. 4. For the second one, the
Cauchy stress σ in an equilibrium equation is modified as the
Biot effective stress σ′:

Ip= + , (4)

where is Biot coefficient, p is pore pressure and I is a sec-
ond order identity tensor. Note that compressive stresses are
negative.

2.3       Unified description of fluid flow in fracture and in-
terstitial

2.3.1   Interstitial flow in porous media
The fluid flow in an interstitial space can be described by
the proverbial Darcy’s law, which is an empirical equation
for interstitial flow in non-deformable porous media. It can
also be derived from Navier-Stokes equations by discarding
the inertial terms [46]. Neglecting the fluid density variation
effect [47], Darcy’s law can be employed as:

( )q p b= ,i i i, f (5)

where k µ= / is the permeability coefficient (k is intrinsic
permeability, which has dimension of length squared, µ is
fluid dynamic viscosity coefficient), b g=i if f is a body force
per unit volume of fluid ( f is fluid density, gi is gravity com-
ponent in i-direction).
Consideration of mass conservation of a compressible fluid

leads to the local continuity equation:

t
q+ = ,i i, (6)
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Figure 2         (Color online) Hydraulic driving fracture. (a) Orientation of normal and tangent vectors of local fracture surface, and the displacement jump vector;
the 3D body with hydro-discontinuity represented by initial configuration (b) and current configuration (c).

where is flux source density (i.e. a rate of injected fluid vol-
ume per unit volume of the porousmedia). Note that eq. (6) is
in a linearized form since the variation effect of fluid density
is neglected, such that the fluid is incompressible.
The boundary of fluid flow is a union set of the prescribed

pressure boundary ( p) and flow boundary ( q). The boundary
conditions are given by

qp
p p

= , on ,
= , on ,

q

p
(7)

where q is the given volume flux on q and p is the given
pressure on p. There are =q p and =q p .
For the fluid filled porous media, the Biot formulation of

constitutive equations is based on the assumptions of linear-
ity between stress p( , )ij and strain ( ),ij . It is reversibility of
the deformation process, which means that there is no energy
dissipation during a closed loading cycle. With the respective
addition of scalar pore pressure p and variation of fluid con-
tent to stress and strain group, the Biot linear constitutive
relations can be obtained by extending the known elastic ex-
pressions. Particularly, the most general form of an isotropic
poroelasticity material response is

p G
G

+ = 2 +
2

1 2
,ij ij ij v ij (8)

( )p M= .v (9)

Without the pore pressure p, eq. (8) degenerates to the clas-
sical elastic constitutive relation. The parametersG and are
thus identified as the shear modulus and Poisson’s ratio of the
drained elastic solid. The additional Biot constitutive con-
stants and M characterize the relation of stress and strain
coupling between solid and fluid. Biot modulus M can be
expressed:

M
G

=
2 ( )

(1 2 )(1 2 )
,u

2
u

(10)

where u is Poisson’s ratio of the undrained elastic solid.
Combination of Darcy’s law eq. (5), continuity eq. (6), and

constitutive relation eqs. (8) and (9) leads to the governing
equation of pore pressure p [24]:

( )p
t

M p M
u
t

M b( ) = + .i i
i i

,
f ,

(11)

Thus, the diffusion of pore pressure is coupled with the
change rate of volumetric strain. In a steady state, eq. (11) is
uncoupled and becomes a Poisson equation; while in a dy-
namic situation, the pressure field is coupled with the defor-
mation field.
It is interesting to note that the diffusivity coefficient for

pore pressure equation can be expressed as a ratio of mobility
coefficient to a storage coefficient 1/M. The storage coeffi-
cient is defined under the constraint of zero volumetric strain
for pore pressure.

2.3.2   Fluid flow in fracture
The fracture is also regarded as a kind of porous media con-
sidering the permeability coefficient k µ= / . However, a
modification of fluid transport is needed to account for an in-
crease of fluid flow inside the opening fracture. On the phe-
nomenological level and at a range of fracture opening where
Navier-Stokes free flow is not explicitly considered, this can
be simulated by a modification of Darcy’s law by adding an
additional part w µ= / 12frac

2 to the fluid flux along tangen-
tial direction of fracture. Thus, the mobility coefficient at
each point in the whole domain is expressed as:

w µ
k µ

= / 12 , intangential of fracture,
/ , otherwise.

2

(12)

The constitutive modeling of the additional part frac should
account for a Poiseuille-type flow, governed by the above
quadratic dependence on the fracture opening w which is vi-
sualized in Figure 2(a).
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The fracture is a curved surface where the mobility coeffi-
cient varies in different directions. There are two directions
tangential to facture surface and one direction perpendicular
to the surface. In a local fracture surface coordinate system,
a mobility coefficient matrix is defined:

w
µ

w
µ

k
µ

= diag
12

,
12

, .local

2 2

(13)

3       Weak form of coupling equation

The discrete equations are constructed by the standard
Galerkin procedures. The admissible space for the displace-
ment and pressure fields is defined as follows:

u X u X u X u u

X X X
U

t t C t t

p t p t C p t p t
=

( , ) ( , ) , ( , ) = ( ), on , discontinuous on ,

( , ) ( , ) , ( , ) = ( ), on ,p

0
u c

0
(14)

u X u X u u

X X X
U

t t C X t

p t p t C p t
=

( , ) ( , ) , ( , ) = 0 , on , discontinuous on ,

( , ) ( , ) , ( , ) = 0, on .p

0

0
u c

0
(15)

The weak form of momentum equation is given by
for u X t U( , ) .

u X
W W W W W

U
=

( ) ,

kin ext int pore c

0
(16)

where δWkin is virtual kinetic work performed by inertia, δWext

is virtual external work performed by applied loads, δWint is
virtual internal work, δWpore is virtual work performed by pore
pressure, δWc is virtual work performed by fluid pressure or
contact traction on the HF and NF surface c.They are respec-
tively defined by

u uW = d ,¨kin

\ c
(17)

u b u tW = d + d ,ext

\ c t
(18)

u
x

W = d ,int

\ c

(19)

u
x

W
p

= d ,pore

\ c

(20)

u tW = d .c
c

c
(21)

Substituting eqs. (17)-(21) into the momentum eq. (16),
the weak form of momentum equation can be given by

u u

u b u t u
x

u
x

u t
p

d

= d + d d

     d d .

¨
\

\ \

\
c

c

c t c

c c

(22)

Using Galerkin weighting, the variation form of diffusion
eq. (11) can be obtained by multiplying any kinematically
admissible test function for the fluid pressure p:

p p
p
t

M p M
u
t

M Mb( ) = ( ) + + d .i i
i i

,
f , (23)

Adopting the standard Galerkin procedure, the weak form of pressure field equation can be obtained by applying the diver-
gence theorem, imposing the natural boundary conditions and satisfying the prescribed pressure boundary conditions:

u
x

n bp M p p M p p p M
p

p M p M( ) ( )d + d + d = d + d + ( ) ( )d .f
q

(24)

4       XFEM discretization

4.1       Approximation of displacement and pressure field

Each fracture surface is implicitly described by the signed dis-
tance function f i(X), so that f i(X)=0 indicates fracture surface,

which can be dispersed in terms of shape function N(X):

XN f( ) = 0 .
I

I I
i

(25)

A fracture tip position function gi(X, t) is also defined so
that the fracture is containedwithin the sub-domain gi(X, t)>0.
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Thus, the fracture surface is defined by

X X Xf g tif ( ) = 0 and ( , ) > 0.i i
c
0 (26)

Note that the implicit functions f i(X) and gi(X, t) are only
needed to be defined locally around the fracture. Further-
more, for elementwise propagation of the fracture, the func-
tion gi(X, t) can be replaced by the index set of those fractured
elements.
The conventional XFEMdisplacement field is expressed by

[48]:

( )

u X X

u q X X

t N

t H f H f

( , ) = ( )

( ) + ( ( )) ( ) ,

I

n

i

n
=1

=1

I

I I
i i i

I

e

F

(27)

where ne is the number of nodes in the element, nF is the num-
ber of fractures, including HF and NF, uI(t) is the displace-
ment of node I, q t( )I

i is the additional freedom of node I for
i-th fracture, and H(x) is a Heaviside function:

H x x
x

( ) = 1 > 0,
0 0.

(28)

Expanding eq. (27) and subdividing each term into parts
which are associated with f i(X)<0 and f i(X)>0, we have

( )

u u

u q

N H

N H H H N

= (1 )

+ + ,
i q

n

I

n

= =1
I I

i

I I
i

I
i

I
i

I

F e

(29)

where Hi=H(f i(X)), ( )XH H f= ( )I
i i

I and NI=NI(X) for simpli-
fication.
By a rearrangement of the extended finite element basis

and the nodal degrees of freedom, the fracture can be rep-
resented by superposed elements and phantom nodes. Thus,
for elements with only one fracture, the displacement field of
eq. (29) can be rewritten as:

u X u X X

u X X

t t N H f

t N H f

( , ) = ( ) ( ) ( ( ))

+ ( ) ( ) ( ( )) .

I S

I S

I I

I I

1 1

2 1

1

2

(30)

For elements containing two cross-fractures, the displace-
ment field of eq. (29) can be rewritten as:

u X u X X X u X X X

u X X X u X X X

t t N H f H f t N H f H f

t N H f H f t N H f H f

( , ) = ( ) ( ) ( ( )) ( ( )) + ( ) ( ) ( ( )) ( ( ))

+ ( ) ( ) ( ( )) ( ( )) + ( ) ( ) ( ( )) ( ( )),

I S I S

I S I S

I I I I

I I I I

1 1 2 2 1 2

3 1 2 4 1 2

1 2

3 4

(31)

where Si is the node sets of superposed element I, uI
i is the

nodal degrees of freedom of the superposed element i, and
defined as:

( )u u q XH f= + ( ) .
i

n

=1
I
i

I I
i i

I

F

(32)

Each element contains both the original real nodes and
phantom nodes. Such recasting simplifies the implementa-
tion of XFEM effectively, since the nodal force of superposed
elements can be calculated in the same way as in the conven-
tional FEM [49].
The fracture is embodied by the presence of a displacement

jump [u]=u+−u− across Γc, with u+ and u− denoting the dis-
placement along c

+ and c , respectively.
The normal and shear displacement jump w u= n and

v u= t1
along c are defined as:

u n u tw v= , = ,1 (33)

where w and vwill be referred to as the “aperture” and “ride”,
respectively.
In order to discretize the diffusion eq. (11), the suitable

shape function expression is taken for the pressure field in

both fracture and rocks. Since the fracture does not impose
any discontinuity in the fluid flow, the fluid pressure as well
as the pore pressure should not be enriched to ensure the fluid
flow continuity across the fracture, and they are approximated
using the standard FEM as [50]:

X Xp t N p t( , ) = ( ) ( ),
I

I I (34)

where pI is the pore pressure at node I or the fluid pressure in
the fracture located at the phantom node I.

4.2       Discretization of equilibrium and flow equations

By performing the spatial discretization of eq. (22), the dis-
crete momentum equation of the solid is expressed as:

M u f f f f f= ,¨ ext int pore fluid cont (35)

where M is mass matrix, f ext, f int, f pore, f fluid and f cont are
the nodal external force, internal force, pore pressure force,
fracture fluid force and contact traction force, respectively.
They are assembled from each element node. Please note that
bold f is nodal force, f is level set value; and boldM is mass
matrix, M is Biot modulus.
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For a fractured element e that is divided into two elements,
its two superposed elements nodal forces can be written as:

M N N XH f= (( 1) ( ))d ,ei
i eT +1

e (36)

f N b X

N t X

H f

H f

= (( 1) ( ))d

+ (( 1) ( ))d ,

ei
i e

i e

ext T +1

T +1

e

e
t

(37)

f B XH f= (( 1) ( ))d ,ei e
i eint T +1

e (38)

f N
x

X
p

H f= (( 1) ( ))d ,ei
i epore T +1

e (39)

f N np= ( 1) d ,ei
ifluid T

e
c

(40)

f N t= ( 1) d ,ei
icont T

ce
c

(41)

where i denotes the superposed elements, as shown in
Figure 3. B is the discrete strain-displacement operator
matrix with respect to the current coordinates [51]. The
expression is similar for a case where an element is divided
into four superposed elements. Note that the nodal force
vector fe is a sum of the nodal forces from two superposed
elements, i.e.

f f= ,
i=1

2

e ei

n F

(42)

where fei is the force vectors of the superposed element i.
Substituting eq. (34) into eq. (26) and neglecting the

body force of fluid, the discrete form of the coupled seepage
eq. (11) can be derived:

C P K H up p= , (43)

where

C N N
M

=
1

d ,T (44)

K N Nw
µ

w
µ

k
µ

= ( ) diag
12

,
12

, d ,T
2 2

(45)

H N N= ( ) d ,T (46)

P N q n N= d + ( ) d ,
q

(47)

whereN is shape function matrix and q is the given fluid flux
on prescribed flow boundary.
In summary, the finial discretization equation of the cou-

pled problem is the combination of eqs. (35) and (43).

5       Numerical strategy

5.1       Integration scheme

For evaluation of the integrals eqs. (36)-(42) in the elements
in which a Heaviside function appears, a modified numeri-
cal quadrature method such as subdomain integration should
be adopted [52]. The element is divided into several subdo-
mains, and each subdomain is integrated individually. How-
ever, some difficulties arise in subdomain integration method
when the propagating fracture is considered. For example,
if the fracture cuts the element into a very small domain,
the accurate integration in this small domain requests a large
number of integral points in the element, which results in
lower efficiency. To suppress the need for element subdivi-
sion, Natarajan et al. [53-55] use a simple integration method
proposed for polygonal domains, which is accurate and less
sensitive to mesh distortion. In this paper, one-point integra-
tion method is adopted to improve the efficiency. The hour-
glass control is used in the element. More details on the hour-
glass control scheme are illustrated in refs. [56,57]. Using
one-point integration, it is naturally assumed that the stresses
are constant within the element and given by the values at the
origin of parent coordinate system.
Expanding eqs. (36)-(42) with one-point integration, each

item in the discrete momentum eq. (35) can be expressed as:

Figure 3         Decomposition of a fractured element into two elements (a), four elements (b): solid and hollow circles denote the original nodes and additional
phantom nodes, respectively.
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where V is the total volume of the unfractured element, Vei
is the activated volume (the region surrounded by solid line
in Figure 3) of the corresponding superposed element which
consists of regular and phantom nodes. f stab in eq. (51) is
a stabilization force vector to control hourglass modes since
the one-point integration scheme is adopted [56]. A

e
c is the

fracture surface area generated by cutting the element e with
fracture surface, and n(e1/e2) is normal vector of each fracture
surface in the elements, note that ne1=−ne2.
As shown in eqs. (48)-(53), during calculating the force

vectors for a fractured element, we can only modify them by
the element volume fraction. This modification can be easily
implemented into the standard FEM process, which is an ex-
traordinary merit of the phantom node method in comparison
with the conventional XFEM.

5.2       Explicit time integration

The explicit time integration is used for both solid fracture
and fluid flow over a whole domain. The dynamics analysis
procedure is based upon the implementation of an explicit in-
tegration rule together with the use of lumped mass matrices.
The momentum eq. (35) is integrated using the central-dif-
ference integration rule, which can be expressed as:

u u u

u u u

t t

t
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+

2 ,

= + ,

¨i i i

i i
i

i

( +1/2) ( 1 /2) ( )
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( +1 /2)

i i( + 1) ( )

(55)

where u is velocity vector and ü is acceleration vector, the
subscript i refers to the increment number in an explicit time
step. The central-difference integration is explicit in the sense
that the kinematic state is advanced using the known values
of u i( 1 /2) and ü i( ) from the previous increment.

The coupled seepage eq. (43) is integrated using the ex-
plicit forward-difference time integration rule, which can be
given as:

p p t p= + .i i
i

i( +1) ( )
( +1)

( ) (56)

The key to improving the computational efficiency is to use
the lumped mass matrixM and lumped capacitance matrix C.

( )u M F F= ,¨ i i
I

i( ) 1 ( ) ( ) (57)

( )C P Pp = ,i i
q

i( ) 1 ( ) ( ) (58)

whereF is the applied load vector, FI is the internal force vec-
tor, P is the applied nodal source vector, and PI is the internal
flux vector.

5.3       Fracture propagation criterion

The stress and displacement fields at fracture tip are the es-
sential to establish fracture criteria. We consider the general
mixed-mode fractures with two modes as mode I and II. In
terms of the polar coordinate (r, θ) centered at the fracture
front, where r is the distance from the fracture front, and θ is
the counterclockwise angle relative to the tangent to fracture
surface at the front location, the stress components of fracture
tip stress field in polar coordinate is written as [58]:
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(59)

where KI and KII are the stress intensity factors (SIFs) of
modes I and II, respectively.
In the fracture criterion adopted, it’s assumed that fracture

propagates when the circumferential stress reaches the criti-
cal value, which is related to the fracture toughness [59], at
the crack tip location in terms of polar coordinate (r, θ). In ac-
cordance with linear elastic fracture mechanics (LEFM), this
criterion can be extended to the fractured orthotropic materi-
als for plane problems [60,61]. The criterion can be expressed
as:

K
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K K
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= =
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= =
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c

2

2

c

c

max

(60)

By substituting the stress component σθθ of eq. (59) into
eq. (60), the fracture criterion for homogenous material is
given by
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The above equations can be solved by
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which can determine the direction of fracture propagation and
whether the fracture will propagate.
In this paper, the displacement extrapolation method is

adopted to calculate SIFs, which can be expressed as:

K Gw
r

K Gv
r

= 2 2 ( + 1),

= 2 2 ( + 1),

I

II

(65)

where w and v are the “aperture” and “ride”, respectively, as
visualized in Figure 2(a).

6       Numerical examples

6.1       KGD hydraulic fracture model

In case of zero lag and zero leak-off, the propagation of a HF
in an impermeable medium is governed by two competing
dissipative mechanisms [62]: one is the flow process char-
acterized by fluid viscosity and injection rate; the other is the
fracture process characterized by rock toughness. For the vis-
cosity dominated HF propagation, the toughness dissipation
is negligible compared to the energy consumed to viscosity
fluid flow, and for the toughness dominated HF propagation,
the viscous dissipation is so small that can be negligible com-
pared to the energy consumed in fracturing the rock.
The ability of the coupled method in simulating the viscos-

ity dominated HF and toughness dominated HF is presented
here by comparing the numerical results obtained with an
available analytical solution for the plane strain KGD model.
The analytical solutions for the plane strain KGD model

are dependent on the dimensionless toughness Km, which is
defined as:

( )
K K

E µ Q
= ,m 3

0

1/4 (66)

where Q0 is injection rate, the material parameters E′, K′ and
μ′ are defined as follows:

E E K K µ µ=
1

, = 32 , = 12 .IC2
(67)

The HF propagation regime is dominated by toughness
when Km is larger than 4.0, and is dominated by viscosity
when Km is smaller than 1.0 [63].
The fractures are driven under a constant injection rate. The

input parameters are listed in Table 1. Three different mesh
densities are used, with element numbers of 1701, 6717 and
25037, respectively. The simulation results compared with
the analytical solutions are presented below.

6.1.1   Viscosity dominated fracture propagation
To verify the viscosity dominated HF propagation regime, the
fluid viscosity used here is μ=100 cP, and the evolution pa-
rameter Km=0.92 is smaller than 1.0, which indicates that the
simulated HF is in the viscosity dominated regime and thus
can be approximated by the zero toughness solution. The sim-
ulation results and corresponding analytical solutions for the
KGD models with the viscosity dominated HF propagation
are shown in Figure 4. We can see that the numerical solu-
tion agrees well with the analytical solution.

6.1.2   Toughness dominated fracture propagation
To verify the viscosity dominated HF propagation regime, the
fluid viscosity used here is μ=100 cP. The evolution parame-
terKm=9.16 is larger than 4.0 throughout the fracture propaga-
tion, which indicates that the simulated HF is in the toughness
dominated regime and thus can be approximated by the zero
viscosity solution. The simulation results and corresponding
analytical solutions for the KGD models with the toughness
dominated HF propagation are shown in Figure 5. We can see
that the numerical solution agrees well with the analytical so-
lution except for the inlet pressure at the initial time. This is
because an initial length of fracture should be given, which
is used to start the calculation of the fluid flow. Therefore,
there is a certain difference between the numerical solution
and analytical solution at the initial time, this difference will
be reduced with the mesh refinement and time evolution.

6.2       Permeability effect on the hydraulic fracture

In this section, the influence of the rock permeability on the

Table 1        Input parameters for KGD model

Parameter Value

E (MPa) 17000

ν 0.2

KIC (MPa m) 1.46

Q0 (m2/s) 0.0001
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Figure 4         (Color online) Comparison of the results with analytical solution for the plane strain KGD model with viscosity dominated HF propagation. (a)
Fracture opening at injection point; (b) inlet pressure at injection point.

Figure 5         (Color online) Comparison of the results with analytical solution for the plane strain KGD model with toughness dominated HF propagation. (a)
Fracture opening at injection point, (b) inlet pressure at injection point.

fracking process is studied. We consider the boundary value
problem of a square domain with a given initial fracture of
length a=8 m in its center, which is shown in Figure 6(a). The
length and width of the domain are 80 m. The deformation at
all sides is fixed and all the sides are assumed to be permeable,
i.e. p=0.0 Pa. The material parameters are listed in Table 2.
The evolution of a typical inlet fluid pressure curve over time
is shown in Figure 6(b).
Figure 7(a)-(c) shows a fracture propagating in horizontal

direction with the contour of fluid pressure at three different
times. We can observe that the fluid pressure is higher within
the fracture and adjacent zone, and nearly zero in the rest do-
main, because Poiseuille-type fluid inside the fracture flows
rapidly compared to the Darcy’s flow inside porous media.
The fracture opening width along the fracture is shown in
Figure 7(d). The pressure distribution inside the fracture is
plotted for the different time in Figure 7(e). We can find that
the pressure increases up to the point where the fracture be-
gins to propagate. This is followed by a decreasing pressure
due to the increasing fracture length and opening width, i.e.
the fracture volume. The drop of pressure is well known in
fracking, for example, the KGD solution in the previous sub-

section. During the further process, the fluid pressure again
increases due to the influence of the fixed sides of the domain,
which is different from the KGD solution because the KGD
model is an infinite domain model, and the boundary is free.
Next, we consider the influence of the rock permeability on

the fracking process. Figure 8(a)-(c) shows the fracture line
and the contour of fluid pressure under different permeability
of the media at time t=5 s. It can be found that the fracture
does not propagate under a given injection rate if the perme-
ability is large enough, as shown in Figure 8(a). If the perme-
ability is small enough, the fluid is almost entirely inside the
fracture, as shown in Figure 8(c). Further, the fracture can
propagate for a period of time if the permeability is appro-
pri-ate, as shown in Figure 8(b). Then it is arrested because
the infiltrating area becomes large enough, the fluid leak-off
rate and the injection rate achieve a balance.

6.3       Fluid flow in fracture network

In this section, the complex fluid field in the propagating frac-
ture network is studied, which is the most advantage of this
coupling method.  The influence  of the injection rate and the
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Figure 6         (Color online) Hydraulically induced fracture driven by fluid injection. (a) Boundary value problem. All the sides are mechanically constrained and
are assumed to be permeable (p=0 Pa); (b) inlet fluid pressure p in the fracture over total injected time.

Table 2       Material parameters

Parameter Value

E (MPa) 255

ν 0.3

KIC (MPa m) 0.0167

Q0 (m2/s) 0.0004

α 1.0

νu 0.358

μ (cP) 1.0

k (md) (1 md=9.87×10−14 m2) 200

in-situ stress on the fracture network propagation is investi-
gated in order to provide the guidance of fracture network
optimization.
In this example, we consider a local HF network, which is

one cluster of the whole network of HF in the current stage.
An initial vertical main fracture and five horizontal NFs at
the same interval are placed. The geometry and the boundary
conditions are illustrated in Figure 9(b). The length and width
of the domain are 10 m. The length of the main fracture and
five NFs are 6 and 1.25 m, respectively. The material proper-
ties  are the  same as  those listed  in Table 2.  The symmetry

Figure 7         (Color online) Hydraulically induced fracture driven by fluid injection. (a)-(c) Fracture and fluid pressure p; fracture opening width w (d) and fluid
pressure (e) along fracture at three times t=1, 5, 20 s, respectively.
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Figure 8         (Color online) Hydraulically induced fracture driven by fluid injection under different media permeability at time t=5 s. (a)-(c) The permeability of
media is 2.0×105, 2.0×104 and 2.0×103 md, respectively.

Figure 9         (Color online) (a) Hydraulically fracture network driven by fluid injection at current stage, a bridge plug is set to hydraulically isolate the previously
stimulated stages; (b) local fracture network domain consists of HF and NFs for studying, lower side of the domain is the symmetry boundary and the other
three sides are mechanically constrained and assumed to be permeable.

boundary is applied at the lower side of domain and the other
three sides are mechanically constrained and assumed to be
permeable. The fluid is injected from the inlet of the main
fracture and then distributes into five NFs and drives them to
propagate. Initially, the fractures are supported by the contact
traction to prevent the penetration [64].
The injection rate Q0 at the inlet of main fracture is

0.0002 m2/s. The variations of the fluid pressure p at the
inlet positions of five NFs (denoted by five red points in
Figure 9(b)) with time are shown in Figure 10. It can be found
that with the time evolution, the inlet pressure increases to
a high value and then descends. The nearer the NF is to the
main inlet, the higher the pressure is. Figure 11 shows the
fracture evolution morphology at different time. After frack-
ing, the fracture network is expanded and will be used for
the gas output. It can be found that the NF near the injection
point propagates further since more fluid flows into it.
Next the different injection rates are used to study the in-

fluence of injection rate on fracture network development.
Figure 12 shows the fracture network morphology at time
t=100 s  corresponding  to  different  injection  rates.  Corre-

Figure 10         (Color online) Inlet fluid pressure of the five NFs over the total
injected time.

sponding to the largest injection rate, the fractures in
Figure 12(c) fully propagate, and the fracture network is
more uniform, which is considered more productive for the
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gas and oil transport. The propagation length of the main
fracture and five NFs under different injection rates are given

Figure 11         (Color online) Fracture evolution morphology for fracture net-
work at different times. (a) t=0 s, (b) t=30 s, (c) t=60 s, (d) t=100 s, respec-
tively.

Figure 12         (Color online) Fracture network evolution morphology at the
same time t=100 s with different inlet fluid flow rates. (a)Q0=0.000002 m2/s,
(b) Q0=0.00002 m2/s, (c) Q0=0.0002 m2/s, respectively.

in Figure 13. Interestingly, it is found that increasing the in-
jection rate has a more significant influence on the develop-
ment of horizontal NF than on the main fracture.
Further, the formation conditions, especially the in-situ

stresses and initial pore pressure, also have great influence
on forming complex  fracture network.  For a  single HF,
the fracture always tends to propagate in the direction of the
maximum in-situ stress. However, it is more complex for
the fracture network. Figure 14 shows the fracture network
morphology and the fluid pressure contour under different
in-situ stresses at time t=100 s. We can find that the fluid
distribution is more uniform in Figure 14(d) (in this case, the
in-situ stress in x-direction is the same as that in y-direction),
and all the fractures (including one main fracture and five
NFs) propagate simultaneously to generate a more uniform
fracture network. The length of the main fracture and the
total fracture network at different in-situ stress difference
are given in Figure 15(a). It further demonstrates that small
in-situ stress difference is good for the uniform development
of fracture network. The final lengths of five NFs for differ-
ent cases are all shown in Figure 15(b) and they nearly have
an exponential decrease.

7       Concluding remarks

The main conclusions of this work are summarized below:
(1) A new computational HF model is developed to study the
fracking in permeable rocks. In this model, the fluid flow in
fractures and rock media is solved in a unified framework by
considering the fracture as a special porous media and intro-
ducing Poiseuille-type fluid flow inside the fracture. (2) The
XFEM formulation for multiple fractures and fracture inter-
section in porous solid and finite element formulation for the

Figure 13         (Color online) The propagation length of one main fracture and
five NFs under different injection rate.
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Figure 14         (Color online) Fracture evolution morphology for fracture network and the fluid pressure contour under different formation conditions. (a) The
initial condition and in-situ stress configuration; (b)-(f) the simulation results for different in-situ stresses along x-direction at the same time t=100 s.

Figure 15         (Color online) (a) The vertical fracture propagation length and total fracture propagation length (one main fracture and five NFs) vs difference of
in-situ stress; (b) the final length of five NFs (each point represents the fracture tip position of NF) corresponding to five cases in Figure 14(b)-(f).

unified fluid flow are derived based on virtual work principle.
The most advantage of this coupling computation model is
that it’s convenient to deal with fluid flow inside the fracture
network and in the rock. (3) The plane strain KGD model
dominated by viscosity and toughness and the fluid flow in-
side the fracture network are simulated to show the accuracy
and applicability of the coupling method. (4) Large injection
rate, low rock permeability and isotropic in-situ stresses tend
to lead to a more uniform and productive fracture network.

The findings in this study can help to understand some ob-
served behaviors in the field of fracking and provide the guid-
ance for fracture network optimization. For unconventional
reservoirs, there is mainly soft rock with quasi-brittle fracture
and strong anisotropy. It also contains many bedding planes
and natural fractures. In order to simulate hydraulic fractur-
ing in unconventional reservoirs, the future research should
aim to develop a complete solution that takes into account
the anisotropy of material constitutive and damage evolution
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to model microscopic fractures in the present method.
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