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In this mini-review we summarize the progress of modeling, simulation and analysis of shock responses of heterogeneous materials
in our group in recent years. The basic methodology is as below. We first decompose the problem into different scales. Con-
struct/Choose a model according to the scale and main mechanisms working at that scale. Perform numerical simulations using
the relatively mature schemes. The physical information is transferred between neighboring scales in such a way: The statistical
information of results in smaller scale contributes to establishing the constitutive equation in larger one. Except for the microscopic
Molecular Dynamics (MD) model, both the mesoscopic and macroscopic models can be further classified into two categories,
solidic and fluidic models, respectively. The basic ideas and key techniques of the MD, material point method and discrete Boltz-
mann method are briefly reviewed. Among various schemes used in analyzing the complex fields and structures, the morphological
analysis and the home-built software, GISO, are briefly introduced. New observations are summarized for scales from the larger to
the smaller.
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1 Introduction

It has long been recognized that the properties of materials
are not uniquely determined by their average chemical com-
position but also, to a large extent, influenced by their struc-
tures. A heterogeneous material is a substance which is non-
uniform in composition or character. The heterogeneous ma-
terials are ubiquitous in natural and industrial fields. In fact,
nearly all the materials in macroscopic scales used in our
daily life are heterogeneous. When a heterogeneous mate-
rial is shocked, the morphology and distribution of the meso-
scopic structures will largely influence the fields of stress
and temperature inside the material, and consequently in-
fluence the mechanical properties of the material, influence
the processes of failure nucleation and phase transition, etc.
The behaviors of mesoscopic structures and the resulted non-
equilibrium effects have been attracting more attention with
time [1, 2]. Such problems have been becoming an essen-
tial inter-discipline subject in the fields of modern mechanics,
physics and material science, etc. [3].

From the experimental side, since the shocking process is
very quick, it is generally difficult to measure the details of
the series actions occurred in the materials. From the the-
oretical side, since related to strong nonlinearity and com-
plex fields, a pure theoretical investigation on such a system
is nearly impossible. Therefore, numerical simulation plays a
non-sustitutable role in better understanding shocked hetero-

geneous materials.

Such problems generally show effects or influence on our
life in macroscopic scale, but are originated from the micro-
scopic scale. The scale for the series of actions spans from
10−10 m to 1 m, i.e., about 10 orders in magnitude. How
to model and simulate behaviors in such a wide scale has
plagued the scientific community for a long time. Currently,
the studies under the terminology, multi-scale modeling and
simulation, can be roughly classified into two categories. In
the first category, the complex problem is decomposed into
various scales. One chooses the theory and method according
to the specific scale and the dominant mechanism working in
that scale. The statistical results of simulations in the smaller
scale contribute to formulate the constitutive equation used in
the larger scale. In the second category, the mainly concerned
problems are around how to bridge the neighboring scales in
simulations. In this mini-review we focus mainly on studies
in the first category. Even in the first category there are too
many problems to be studied in one decade. Therefore, under
the topic of multi-scale modeling and simulations of hetero-
geneous materials, what we did in the past years are scattered
and can only show a few aspects of the field.

According to the shear behavior heterogeneous materi-
als can be classified into two kinds. The first kind is re-
ferred to as solid, and the second is referred to as fluid.
A typical differences between solid and fluid is that the
solid show anisotropic behaviors in both the microscopic and
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macroscopic scales, while the fluid shows isotropic behav-
ior in microscopic scale but anisotropic behavior in macro-
scopic scale. For solid heterogenous materials, what we con-
cerned in the past years are mainly focused on the shock-
ing responses of porous materials and microscopic mechani-
cal behaviors of metal under various loadings. These studies
present preliminary and fundamental references for modeling
the elasto-plasticity, damage and fracture of solid materials
under shock loading and unloading conditions. For fluid het-
erogeneous materials, we mainly studied the mechanical be-
havior and non-equilibrium phenomena in the kinetic trans-
portation, phase transition, chemical coupling, etc. These
observations present fundamental insights for modeling and
simulation of complex fluids.

A porous material is a material containing voids or tunnels
of different shapes and sizes. Such materials are commonly
found in natural and industrial materials. Examples are re-
ferred to brick, wood, carbon, ceramic, foam, explosive and
metal, etc. To have an effective application, their mechan-
ical and thermodynamical behaviors must be understood in
relating to their mesoscopic structures.

There contain a large quantity of micro-structures like dis-
locations, grain boundaries, voids, cavities, second phase
grains in macroscopic metal materials. These structures in-
fluence the strength of the materials. When model these ma-
terials, the morphology and evolution process of these micro-
structures should be taken into account. In the past years, we
investigated such systems via the MD simulation.

In fluid heterogeneous materials, around the shock-
induced structures, material interfaces and structures induced
by their stabilities, the thermodynamic non-equilibrium ef-
fects are pronounced. The traditional models based on
Navier-Stokes equations are critical in treating with such
problems. Under such cases, a kinetic model based on the
Boltzmann equation, the Discrete Boltzmann Model (DBM)
[4-8], can be used to adaptively capture the various non-
equilibrium behaviors.

When phase transition and/or chemical reaction exist, the
creation of new phase or matter and their evolution result in
heat creation/absorption and more complicated kinetic trans-
portation processes. The DBM is an effective mesoscopic
approach to access such a system.

The rest of the paper is organized as below. In sect. 2 vari-
ous models and simulation tools are introduced. Sect. 3 is for
the analysis schemes for the complex fields and structures.
The numerical experiments and observations are presented in
sect. 4. Sect. 5 summarizes the paper and gives perspectives.

2 Models and simulation tools

Generally speaking, we can model the system in microscopic,
mesoscopic and macroscopic scales. Since the matter can be
divided infinitely, the delimitation of the scales is relative. In
this review, the microscopic description is referred to as that
based on Molecular Dynamics (MD). The macroscopic scale

is referred to the scale of the whole system or a scale which
is comparable with the system dimension. Thus, the wide
range of scales in between the microscopic and macroscopic
are referred to as mesoscopic. It is clear that the so-called
mesoscopic scale is generally not referred to a specific scale,
but a scale series.

The macroscopic model is generally described by a set of
partial differential equations corresponding to the fundamen-
tal conservation laws. Because it uses the smallest number of
the mechanical quantities, the macroscopic model is the sim-
plest and frequently used in many engineering applications.
It has been well-known that the macroscopic model is not
sufficient to describe the complex behaviors occurring in het-
erogeneous materials under shock. Such behaviors are gen-
erally originated from the molecular scale and make effects
in macroscopic via a series of complex interactions between
various structures. Intuitively, the complete understanding of
the whole story resorts to the MD simulation. But, practi-
cally, it is far from possible to use MD to simulate behav-
iors in macroscopic scale. Under such cases, the mesoscopic
modeling technology which connecting the macroscopic and
the most necessary microscopic behaviors is needed. Com-
pared with the MD results, the mesoscopic modeling is some
kind of coarse-grained description of the microscopic details
via some slow or conservative variables.

2.1 Microscopic MD model

Molecular dynamics model describes physical movements of
particles (molecules or atoms) in the context of N-body in-
teraction, where N is the particle number in the system. In
the most common MD simulations, the trajectories of parti-
cles are tracked via numerically solving the Newton’s equa-
tions of motion for a system of interacting particles, where
forces between the particles are determined from the molec-
ular mechanics force fields (or interatomic potentials). The
MD method was originally proposed by theoretical physi-
cists in the late 1950s [9, 10], but now is extensively used
in chemical physics, materials science and the modeling of
bio-molecules, etc. Due to the vast number of particles in the
systems, the MD method resorts to numerical simulations.

The first important step in the MD simulation is to estab-
lish the inter-particle potential. In principle, a molecule is
influenced by all other surrounding molecules. Fortunately,
the strength of the interaction decreases quickly with the dis-
tance. Therefore, the second important step in the MD sim-
ulation is to truncate the inter-particle potential. The smaller
the truncation radius, the less the computational cost. The
validity of truncation position is determined by that the sim-
ulation results of known material parameters are correct. To
compute the force acting on a molecule, one has to search
all the surrounding molecules located within the truncation
radius. Because the one-by-one searching is not affordable
for a system with more than 1 million atoms, the third im-
portant step is to index the molecules in terms of a link-list
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corresponding to background grid mesh.
Based on the inter-particle potential we can obtain the

summation of the external forces acting on any molecule and
consequently the acceleration of it. Thus, from the current
position and velocity, we can obtain its position and veloc-
ity at the next time step. The positions and velocities of all
the molecules can be updated in the same way. Then the
summation of external forces acting on any molecule is up-
dated. via such iteration steps, we can track all the molecules
in the system. The physical variables like the energy, tem-
perature, pressure, density, flow velocity, etc, can be obtained
from the MD data via appropriate statistical calculations. The
micro-structures can be identified, described and tracked via
some data post-treatment algorithms. In our studies, the nu-
merical MD simulations are performed using the well-known
LAMMPS software package. The interatomic interaction
in each material is described by an embedded atom method
(EAM) potential [11, 12]. The dilative strain is applied uni-
formly through re-scaling the coordinates as in the Parrinello-
Rahman approach. The data are analyzed by using our home-
built softwares.

Now, we can obtain a preliminary estimation on the scale
of the material that the MD can be used to simulate. The
molecule numbers used in current MD simulations are gen-
erally less than 107. That is to say, molecule number in one
dimension is only in the order 102. For a general solid ma-
terial, the distance in between two neighboring particles is
about 10−10 m. It is clear that, for a practical MD simulation
in nowadays, the largest scale in one dimensional is smaller
that 0.1 µm. Since the time step is generally in the order of
femto-second, i.e. 10−15 s, the whole duration being simu-
lated is generally in the order of pico-second, i.e., 10−12 s.
At the same time, from the theoretical point of view, a long
MD simulation is mathematically ill-conditioned. It gener-
ates cumulative errors in numerical integration which can be
minimized via selecting proper algorithms and parameters,
but can not be eliminated entirely.

There are many phenomenological physical models for a
heterogeneous solid materials. In this review the material is
assumed to follow an associative von Mises plasticity model
with linear kinematic and isotropic hardening [13]. The Ma-
terial Point Method (MPM) [14-26] is used to simulate the
mesocopic and macroscopic behaviors in the shocked porous
materials.

2.2 Solid model and MPM

2.2.1 Physical model

If we introduce a linear isotropic elastic relation and assume
that the volumetric plastic strain is zero, the deviatoric stress
s or strain e can be decoupled from volumetric one, −PI or
θI/3, where P and θ are scalars, s and e are tensors. The
stress and strain tensors, σ and ε, can be written as:

σ = s − PI, P = −1
3

Tr(σ), (1)

ε = e +
1
3
θI, θ =

1
3

Tr(ε). (2)

Generally, the strain e can be decomposed as e = ee + ep,
where ee and ep are the traceless elastic and plastic compo-
nents, respectively. Until the von Mises yield criterion,

√
3
2
‖s‖ = σY , (3)

is reached, the material shows a linear elastic response, where
σY is the plastic yield stress increasing linearly with the sec-
ond invariant of the plastic strain tensor ep, i.e.,

σY = σY0 + Etan ‖ep‖ , (4)

where σY0 is the initial yield stress and Etan is the tangen-
tial module. The deviatoric stress s is calculated by s =
[E/(1 + ν)]ee, where E is the Yang’s module and ν the Pois-
son’s ratio. The pressure P is calculated by using the follow-
ing Mie-Grüneissen state of equation:

P − PH =
γ(V)

V
[E − EH(VH)], (5)

where PH, VH and EH are pressure, specific volume and en-
ergy on the Rankine-Hugoniot curve, respectively. The rela-
tion between PH and VH can be estimated by experiment. It
can be written as:

PH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0c2
0

(
1 − VH

V0

)
(λ − 1)2

(
λ
λ−1 × VH

V0
− 1

)2
, VH � V0,

ρ0c2
0

(
VH

V0
− 1

)
, VH > V0.

(6)

We assume that the initial material density and sound speed
are ρ0 and c0, respectively. The shock speed Us and the par-
ticle speed Up after the shock front follows a linear relation,

Us = c0 + λUp,

where λ is a characteristic coefficient of material. Both the
shock compression and the plastic work Wp result in increas-
ing of temperature. The temperature increase from shock
compression is calculated by

dTH

dVH
=

c2
0 · λ(V0 − VH)2

cv
[
(λ − 1)V0 − λVH

]3
− γ(V)

VH
TH, (7)

where cv is the specific heat. Eq. (7) can be obtained from
the thermal equation and the Mie-Grüneissen equation of
state [27]. The temperature increase due to plastic work is
calculated by

dTp =
dWp

cv
. (8)

Eqs. (7) and (8) can be written in the form of increment.
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2.2.2 Material-Point Method

The MPM is a particle method. It was originally introduced
in fluid dynamics by Harlow et al. [18] and extended to solid
mechanics by Burgess et al. [19], then developed by various
groups, including ours [20-26].

The MPM discretizes the continuum bodies with Np mate-
rial particles, where p is the index of particle. Each material
particle carries the information of mass mp, density ρp, po-
sition xp, velocity vp, strain tensor εp, stress tensor σp and
all other internal state variables necessary for the constitutive
model. At each time step, the calculations can be classified
into two parts: a Lagrangian part and a convective one. At
first, the computational mesh deforms with the body. It is
used to determine the strain increment, and the stresses in the
sequel. Then, a new position of the computational mesh is
chosen. Particularly, it may be the previous one. The ve-
locity field is mapped from the particles to the mesh nodes.
Nodal velocities are determined by using the equivalence of
momentum calculated for the particles and for the compu-
tational grid. The MPM not only takes advantages of both
the Lagrangian and Eulerian algorithms but also avoid their
drawbacks as well.

At each time step, the mass and velocities of the mate-
rial particles are mapped onto the background computational
mesh. The mapped momentum at node i is obtained by

mivi =
∑

p

mpvpNi(xp),

where Ni is the element shape function and the nodal mass mi

reads
mi =

∑
p

mpNi(xp).

Suppose that a computational mesh is constructed of eight-
node cells for three-dimensional problems, then the shape
function reads

Ni =
1
8

(1 + ξξi)(1 + ηηi)(1 + ςςi), (9)

where ξ, η, ς are the natural coordinates of the material parti-
cle in the cell along the x-, y-, and z-directions, respectively,
ξi, ηi, ςi take corresponding nodal values ±1. The mass of
each particle is equal and fixed, so the mass conservation
equation,

dρ/dt + ρ∇ · v = 0,

is automatically satisfied. The momentum equation reads,

ρdv/dt = ∇ · σ + ρb, (10)

where ρ is the mass density, v the velocity,σ the stress tensor
and b the body force. Eq. (10) is solved on a finite element
mesh in a lagrangian frame. Its weak form reads

∫
Ω

ρδv · dv/dtdΩ +
∫
Ω

δ(v∇) · σdΩ

−
∫
Γt

δv · tdΓ −
∫
Ω

ρδv · bdΩ = 0. (11)

Since the continuum bodies is described by a finite set of ma-
terial particles, the mass density can be written as:

ρ(x) =
Np∑
p=1

mpδ(x − xp),

where δ is the Dirac delta function with dimension of the in-
verse of volume. Substituting ρ(x) into the weak form of
the momentum equation converts the integral to the sums of
quantities evaluated at the material particles. So,

midvi/dt = ( f i)
int + ( f i)

ext, (12)

where the internal force vector is given by

f i
int = −

Np∑
p

mpσp·(∇Ni)/ρp,

and the external force vector is given by

f i
ext =

Np∑
p=1

Ni bp + f c
i ,

where the vector f c
i is the contacting force between two bod-

ies. In the case where all colliding bodies are composed of the
same material, f c

i is treated in the same way as the internal
force.

The nodal accelerations can be calculated by using eq. (12)
with an explicit time integrator. To have a stable simulation,
the time step Δt should be less than the critical value,

ΔtC =
Δxmin

max(cp + |vp|) ,

where Δxmin is the smallest cell size, cp the sound speed at
particle p. Once the motion equations have been solved on
the cell nodes, the new nodal values of acceleration can be
used to update the velocity of the material particles. The
strain increment for each material particle is determined by
using the gradient of nodal basis function evaluated at the po-
sition of the material particle. The corresponding stress incre-
ment can be obtained from the constitutive model. The inter-
nal state variables can also be completely updated. The com-
putational mesh may be the original one or a newly defined
one, choose for convenience, for the next time step. More
details of the algorithm can be referred to refs. [25, 26].

In our studies the possible phase transitions are studied via
MD and DBM, instead of MPM simulations.

2.3 Fluid model and DBM

Shock waves may occur in many different kinds of materi-
als. However, in parts of this review the discussion is re-
stricted to situations where the material may be described, to
a good approximation, by the model of a compressible, heat-
conducting fluid. The most frequently used hydrodynamic
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models in engineering applications are the Euler and Navier-
Stokes equations. The model described by Euler equations
assumes that (i) the fluid is always at its local thermody-
namic equilibrium, and consequently can be completely de-
scribed by the thermodynamic quantities, (ii) the change or
transition between various mechanical states is quasi-static
and iso-entropic. According to this model, the shock wave
has no thickness. The model by Navier-Stokes equations as-
sumes that all the relevant non-equilibrium behaviors can be
described by non-equilibrium linear responses of gradients of
physical quantities. The linear response of momentum flux is
described by the viscosity tensor which is proportional to the
gradient of flow velocity. The linear response of energy flux
is described by the heat conduction which is proportional to
the gradient of local temperature. According to this model,
the width of the shock wave depends on the viscosity and
heat conductivity. Around the various interfaces, such as
the material interfaces, shock fronts, new phase boundaries,
and within the chemical reaction zone, the non-equilibrium
effects may be so pronounced that the linear response the-
ory does not work any more. At the same time, some spe-
cific non-equilibrium status are invisible in the Navier-Stokes
model, although those information is helpful for us to physi-
cally understand the flow system. Under such conditions, the
models by Euler and Navier-Stokes equations may lead to
unreasonable results or missing valuable information. Con-
sequently, the DBM is more preferable.

2.3.1 Brief review of DBM

Historically, the DBM was developed from the well-known
Lattice Boltzmann Method (LBM) which was developed
from the lattice gas cellular automaton model [28]. Mathe-
matically, the DBM can be regarded as a special discretiza-
tion of the Boltzmann equation.

Roughly speaking, the discrete Boltzmann models can be
further classified into two categories. The first category is the
one generally referred to as LBM in literature. In the first cat-
egory the LBM is regarded as a kind of new scheme to numer-
ically solve partial differential equations, such as the Navier-
Stokes equaitons, etc. In the second category the DBM works
as a kind of novel mesoscopic and coarse-grained kinetic
model for complex fluids. The most important difference
between the two kinds of DBMs are as below. In the first
category the LBM must be faithful to the original physical
model, while in the second category, the DBM must possess
some points beyond the original physical model. The second
kind of DBM aims to probe the trans- and supercritical fluid
behaviors [7] or to study simultaneously the hydrodynamic
non-equilibrium (HNE) and thermodynamic non-equilibrium
(TNE) behaviors [4-6,8]. It has brought significant new phys-
ical insights into the systems and promoted the development
of new methods in the fields. For example, new observations
on fine structures of shock and detonation waves have been
obtained [29, 30]; these new observations have been used to

discriminate various interfaces [29, 30]; the intensity of TNE
has been used as a physical criterion to discriminate the two
stages, spinodal decomposition and domain growth, in phase
separation [8]; based on the features of TNE, some new front-
tracking schemes have been designed [31]. In a recent study,
the relation between TNE quantities and entropy production
rate has been established [32]. Since the goals are different,
the criteria used to formulate the two kinds of models are sig-
nificantly different, even though there may be considerable
overlaps between them.

Physically, the DBM can be regarded as a model being
coarser-grained than the Boltzmann equation. It can be ob-
tained via two important steps of coarser-grained model-
ings. The first step is the linearization of the collision op-
erator in the Boltzmann equation. In this step, we obtain the
Boltzmann-BGK-like equations. The second step is the spe-
cial discretization of the particle velocity space. The DBM
obtained in this way is roughly equivalent to a hydrodynamic
model supplemented by a coarse-grained model of the TNE
behaviours.

From the side of physical modeling, the MD is a micro-
scopic particle model which is independent of the continuum
assumption. Consequently, it can be used to study the TNE
behaviours, no matter the material is in solid or fluid state.
The MPM is based on the solid mechanics which is based on
the continuum assumption. The DBM is based on the Boltz-
mann equation. It includes and is beyond the hydrodynamic
model, for example, the Navier-Stokes equations [4-8]. Here
we briefly review the recently developed DBMs for multi-
phase flows and for detonation systems.

2.3.2 DBM for multiphase flows

In 2007, Gonnella, Lamura and Sofonea (GLS) [33] pro-
posed a LBM for liquid-vapor two-phase flows, where the
effects of interparticle force enter the force term of the lattice
Boltzmann equation. In 2011, our group proposed to use the
fast Fourier transform and its inverse to calculate the spatial
derivatives in the GLS model [34, 35]. In this way, the to-
tal energy conservation can be better held and the spurious
velocities can be refrained to a negligible scale in real sim-
ulations. Recently, our group further improved the model in
two sides, inserted a more practical equation of state and sup-
plemented a methodology to investigate the non-equilibrium
features in the system [8, 36].

The GLS LBM can be described by the following evolu-
tion equation:

∂ fki

∂t
+ vki · ∂ fki

∂r
= −1
τ

[ fki − f eq
ki ] + Iki, (13)

where the subscript ki are the indexes of the discrete velocity
and Iki reads

Iki = −[A + B · (vki − u) + (C + Cq)(vki − u)2] f eq
ki , (14)

with
A = −2(C +Cq)T , (15)
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B =
1
ρT

[∇(Pvdw − ρT ) + ∇ · Λ − ∇(ζ∇ · u)], (16)

C =
1

2ρT 2

{
(Pvdw − ρT )∇ · u + Λ : ∇u − ζ(∇ · u)2

+
9
8
ρ2∇ · u + K

[
− 1

2
(∇ρ · ∇ρ)∇ · u

− ρ∇ρ · ∇(∇ · u) − ∇ρ·∇u·∇ρ
]}
, (17)

Cq =
1

2ρT 2
∇ · [2qρT∇T ]. (18)

Here ρ, u, T are the local density, velocity, temperature, re-
spectively. The tensorΛ is contribution of density gradient to
pressure tensor and read

Λ = K∇ρ∇ρ − K(ρ∇2ρ + |∇ρ|2 /2)I − [ρT∇ρ · ∇(K/T )]I,

where I is the unit tensor, K the surface tension coefficient
and ζ the bulk viscosity. The model is consistent with the
thermodynamic relations proposed by Onuki [37].

The original GLS model utilizes the van der Waals equa-
tion of state,

Pvdw =
3ρT
3 − ρ −

9
8
ρ2

with fixed parameters. The density ratio R between the liq-
uid and vapor phases which can be stably simulated is gen-
erally less than 10 due to the numerical instability problem.
Since the Carnahan-Starling equation of state [38] modifies
the repulsive term of van der Waals equation of state so that
it presents a more accurate representation for hard sphere in-
teractions. The Carnahan-Starling equation of state reads

pcs = ρT
1 + η + η2 − η3

(1 − η)3
− aρ2, (19)

with η = bρ/4, where a and b are the attraction and repulsion
parameters. Subsequently, the total energy density becomes

eT = ρT − aρ2 + K |∇ρ|2 /2 + ρu2/2.

2.3.3 DBM for system under detonation

As for the discrete Boltzmann modeling and simulation of
combustion systems, the current studies can also be classi-
fied into two categories. Most of existing studies belong to
the first category where the LBM is used as a kind of alter-
native numerical scheme and are focused on cases with low
Mach number where the incompressible models work. The
first DBM for detonation system [39] appeared in 2013. It
is also the first study aiming to investigate both the HNE and
TNE in the combustion system via the discrete kinetic model-
ing. To model and simulate the non-equilibrium behaviors in
axial symmetric implosion and explosion processes, a DBM
for detonation system in polar-coordinates [40] was proposed
in 2014. A multiple-relaxation-time version of DBM for det-
onation system was developed and some fundamental issues

in formulating discrete kinetic models were reviewed in a re-
cent study [30]. A double-distribution-function DBM for det-
onation system is referred to ref. [41].

Up to now, from the view of mathematical modeling, the
only difference of the DBM from the traditional hydrody-
namic model is that the Navier-Stokes or Euler equations for
flow are replaced by the discrete Boltzmann equation(s). The
phenomenological equation describing the reaction process
is the same. But from the view of physical application, the
DBM is roughly equivalent to a hydrodynamic model sup-
plemented by a coarse-grained model of the TNE behaviors.
Being able to capture various non-equilibrium effects and be-
ing easy to parallelize are two features of the second kind of
DBM. The two points are also the physical gain and compu-
tational gain of DBM replacing the traditional hydrodynamic
model. Some more realistic DBMs for detonation systems
are in progress.

The hydrodynamic modeling and microscopic molecular
dynamics have seen great achievements in detonation simu-
lations. But for problems relevant to the mesoscopic scales,
where the hydrodynamic modeling is not enough to capture
the non-equilibrium behaviors and the molecular dynamics
simulation is not affordable, the modeling and simulation are
still open and challenging. Roughly speaking, there are two
research directions in accessing the mesoscopic behaviors.
One direction is to start from the continuous description at
macroscopic scale to kinetic descriptions at smaller scales,
the other direction is to start from the particle description at
microscopic scale to statistical descriptions at larger scales.
The idea of second kind of DBM belongs to that of the first
direction. It will contribute more to the studies on the non-
equilibrium behaviors in various complex fluids.

2.3.4 Two kinds of non-equilibrium effects

If choose the Navier-Stokes model as the macroscopic coun-
terpart, the DBM must be based on, at least, the following
seven kinetic moments:

Meq
0 =

∑
ki

f eq
ki = ρ, (20)

Meq
1 =

∑
ki

f eq
ki vki = ρu, (21)

Meq
2,0 =

∑
ki

1
2

f eq
ki vki · vki = ρ

(
T +

u2

2

)
, (22)

Meq
2 =

∑
ki

f eq
ki vkivki = ρ(T I + uu), (23)

Meq
3 =

∑
ki

f eq
ki vkivkivki = ρ[T (uαeβeγδβγ + eαuβeγδαγ

+ eαeβuγδαβ) + uuu], (24)

Meq
3,1 =

∑
ki

1
2

f eq
ki vki · vkivki = ρu

(
2T +

1
2

u · u
)

, (25)
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Meq
4,2 =

∑
ki

1
2

f eq
ki vki · vkivkivki = ρ

[ (
2T +

u · u
2

)
T I

+ uu
(
3T +

u · u
2

) ]
, (26)

where Meq
m,n stands for that the m-th order tensor is contracted

to a n-th order one. Among the seven kinetic moment rela-
tions, only for the first three, the local equilibrium distribution
function f eq

ki can be replaced by fki, which means that, when
the system approaches or deviates from the thermodynamic
equilibrium, the mass, momentum and energy are conserved.
Replacing f eq

ki by fki in eqs. (23)-(26) results in the imbalance
and the deviation described by

Δn = Mn( fki) − Meq
n ( f eq

ki ). (27)

The quantity Δn presents a simple, convenient and effective
measure to the departure of the system from the local ther-
modynamic equilibrium.

If the shocking is so strong that the material can be re-
garded as ideal gas, we can consider that the HNE and TNE
effects are only induced by gradients of macroscopic quanti-
ties, also referred to gradient force. When the inter-particle
interaction potential can not be completely ignored and the
system can be regarded as a multiphase flow system. The
force term in the DBM equation works as the second driv-
ing force. Especially, the right-hand side of eq. (13) can be
rewritten as:

RHS = −1
τ

[
fki − (1 + τθ) f eq

ki

]
= −1
τ

[
fki − f eq,NEW

ki

]
, (28)

where

θ = −[A + B · (vki − u) + (C +Cq)(vki − u)2]

and
f eq,NEW
ki = (1 + τθ) f eq

ki .

It can be considered as a new equilibrium state shifted by the
interparticle force. Consequently,

ΔF
n = Mn(τθ f eq

ki ) = Mn(τIki) (29)

describes the non-equilibrium effects induced by the interpar-
ticle force. What we measure from fki and f eq

ki ,

Δn = Mn( fki) − Meq
n ( f eq

ki ) = ΔF
n + Δ

G
n (30)

are the combined or the net non-equilibrium effects, where

ΔG
n = Mn( fki) − Meq

n ( f eq,NEW
ki ) (31)

are the non-equilibrium effects induced by the gradient force.
It is clear that, when the interparticle force disappears, the
net non-equilibrium effects are only from the gradient force,
i.e., Δn = Δ

G
n , corresponding to an ideal gas system. Note

that, the kinetic moment Mn contains the information of u,
so do the non-equilibrium quantity Δn. They describe both

the HNE and TNE effects. If we use the central kinetic mo-
ment M∗n( fki) =

∑
fki(vki − u)n, then Δ∗n does not contain

the effects of u, describes only the TNE effects. Because
M∗n( fki) is only the representation of the thermo-fluctuations
of molecules relative to u.

Compromise The physically concerned hydrodynamic
quantities are some kinetic moments of the distribution func-
tion, f . According to the Chapman-Enskog analysis, they can
finally be roughly calculated from some kinetic moments of
the local equilibrium distribution function, f eq. The calcula-
tion of any non-conserved quantity triggers the requirement
of higher-order kinetic moments of f eq. When construct the
discrete Boltzmann model, we must ensure the required ki-
netic moments of f eq, originally in integral form, can be cal-
culated in discrete summation form.

All descriptions on the TNE based on finite number of ki-
netic moments are coarse-grained. The more accurate the
TNE is to be described, the more kinetic moments are re-
quired. The more the required kinetic moments, the higher
the computational cost. In practical applications, we have to
make compromise between what we want and what we can
afford.

3 Analysis schemes for complex fields and
structures

No matter which physical model and simulation tool are used,
after the simulation, how to analyze the data and pick out re-
liable information is of key importance. In our MD simula-
tion studies, two methods are used. (i) The atoms are distin-
guished by the Common Neighbor Analysis (CNA) method
[42-44]. In this method the signature of the local crystal
structure of an atom is identified by computing three charac-
teristic numbers for each of the n neighbor bonds of the cen-
tral atom; (ii) the Burgers vectors of the evolved dislocations
in the MD simulations are calculated using our home-built
code. In this code, dislocation lines and their directions are
first identified. Then, surrounding the dislocation lines, ap-
propriate Burgers circuits that cross stacking-fault planes or
perfect crystal are selected, and the atom-to-atom sequences
corresponding to the circuits are determined. Finally, after a
summation over vectors of the Thompson’s tetrahedron and
its mirrors that are most closest to the atom-to-atom vectors,
the Burgers vectors of the dislocations are obtained.

For complex system in the mesoscopic and macroscopic
scales, nearly all the analysis methods are some sort of statis-
tics. The most commonly used ones are the mean values of
physical variables and their corresponding fluctuations. The
rheological description provides helpful measurements like
the spatial correlation, temporal correlation, spatial-temporal
correlation, structure factor, characteristic length, etc [45-47].
In our studies the morphological description is introduced to
describe the complex fields in heterogeneous materials under
shock [48, 49]. Several new schemes, including the turbu-
lence mixing, volume dissipation, entropy increment, cluster
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identification, tracking of characteristic structures were de-
signed [50-52].

3.1 For fields and structures based on ordered points

To analyze fields and structures based on ordered points, a
variety of schemes can be used. For example, (i) common
schemes of statistical physics, (ii) rheological descriptions,
(iii) morphological characterization, etc. Scheme examples
for (i) are referred to the mean value and fluctuations, tur-
bulence dissipation, volume dissipation, entropy production.
Scheme examples for (ii) are referred to spatial correlation,
temporal correlation and spatial-temporal correlation, struc-
ture factor, characteristic length and time scales. Scheme
examples for (iii) are referred to the Minkowskii function-
als [53]. All of them are some kinds of statistics.

Here we concentrate only on the set of statistics known
as Minkowski functionals [53]. A physical field can be de-
scribed by Θ(x), where x is the position, Θ a physical vari-
able. The physical variable Θ can be a scalar state variable
like temperature T , density ρ and pressure P. It can also be
the size of velocity v, velocity component in one degree of
freedom, as well as some specific stress component, etc.

According to a general theorem of integral geometry, all
properties of a D-dimensional convex set (or more generally,
a finite union of convex sets) satisfying the morphological
properties (translational invariance and additivity), are con-
tained in D + 1 numerical values [48, 54]. The points with
Θ(x) � Θth compose the two- or three-dimensional con-
vex set and its morphological properties can be completely
described by three or four functionals, where Θth is some
threshold value. In the case of two or three dimensions, the
Minkowski functionals have intuitive geometric interpreta-
tions. For the two-dimensional case, the three Minkowski
functionals correspond geometrically to the total fractional
area A, the total boundary length L, and the Euler character-
istic χ which is equivalent to the topological genus. In prac-
tical application, the Minkowski functions can be made di-
mensionless. Such a morphological description has been suc-
cessfully applied in describing patterns in reaction-diffusion
system [54], phase separation [55-57] and complex fields in
porous materials under shock [48], etc.

For the two-dimensional square lattice, a lattice node pos-
sesses four vertices. A region with connected lattice nodes
with Θ(x) � Θth or connected lattice nodes with Θ(x) < Θth

is defined as a white or black domain, in the language of mor-
phological description. Two neighboring white and black do-
mains present a clear interface or boundary. When the thresh-
old Θth is increased from the lowest to the highest values of
Θ in the system, the white area A will decrease from 1 to 0;
the boundary length L first increases from 0, then arrives at a
maximum value, and finally decreases to 0 again. There are
several ways to define the Euler characteristic χ. Two sim-
plest ones are as below:

χ = NW − NB, (32)

or

χ =
NW − NB

N
, (33)

where NW (NB) is the number of connected white (black) do-
mains, N is the total number of lattice nodes withΘ(x) < Θth.
The only difference of the two definitions is that the first
keeps χ an integer. In contrast to the other two Minkowski
functionals, white area A and boundary length L, what the
Euler characteristic χ describes is the connectivity of the do-
mains in the lattice. It describes the pattern or structure in a
purely topological way, i.e., without referring to any kind of
metric. It is clear that it is negative (positive) if many discon-
nected black (white) regions dominate the pattern or struc-
ture. The smaller the Euler characteristic χ, the higher the
connectivity of the structure with Θ(x) � Θth or Θ(x) < Θth.
Specifically, for the first definition, the integer χ = −1 in the
case with only black drop in a large white lattice, and χ = +1
vice versa, since the surrounding white (black) region does
conventionally not count. In our work, only the second defini-
tion is used. What the ratio, κ = (NW−NB)/(NL), describes is
the mean curvature of the boundary line separating black and
white domains. Even though the Euler characteristic χ has
a global meaning, it can be calculated in a local way via the
additivity relation [54]. When the number of white regimes
dominates, χ > 0; else, χ < 0. Figure 1 shows an example of
two-dimensional patterns, where the z-axis corresponds to a
physical quantity Θ under consideration, x- and y-axes show
the two-dimensional coordinates. Figure 2 shows the white
and back domains and schematic morphological characteri-
zations.

The morphological characterizations of some physical
fields, for example, the temperature field and density field,
can be used to study the effects of material properties such as
the porosity and effects of shocking strengths, etc. They can
also be extended to investigate possible correlations and sim-
ilarities occurred in various shocking processes. Because all
the morphological properties of a pattern in D-dimensional
space are contained in the D + 1 morphological quantities,
one can consider the morphological properties of the pattern
in a D + 1-dimensional space opened by the D + 1 morpho-

Figure 1 (Color online) An example of two-dimensional patterns, where
the z-axis corresponds to a physical quantity under consideration, x- and y-
axes show the two-dimensional coordinates.
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Figure 2 (Color online) Schematics of morphological characterizations.
From (a) to (f) one can find that the white area A decreases and the topology
of the patten changes with increasing the threshold value Θth. (g) shows the
schematic curve for A versus Θth. (h) shows schematically the variation of
boundary length L with Θth.

logical quantities. In this D + 1-dimensional space one point
corresponds to all the morphological behaviors of a pattern.
The distance d between two points in this space presents a
coarse-grained description of the difference of the two pat-
terns. The shorter the distance d, the higher the similarity be-
tween the morphological properties of the two corresponding
patterns. So, we can define a new quantity named structure
similarity as S = 1/d. (See Figure 3 for a schematic.) If the
two patterns evolve with time, then we can go a further step
to define a dynamical similarity for the two pattern evolution
processes from time t1 to t2,

S D =

∫ t2

t1

d (t) dt/ (t2 − t1) .

Specifically, for patterns in the two-dimensional space, the
difference of the morphological properties of pattern 1 and
pattern 2 can be coarsely described by

d =
√

(A2 − A1)2 + (L2 − L1)2 + (χ2 − χ1)2,

where the subscript is the index of the pattern. (See Figure 4
for a schematic.)

Figure 3 (Color online) Morphological properties of two patterns in the
space opened by the morphological quantities.

Figure 4 (Color online) Evolution of the morphological properties with
time.

3.2 For fields and structures based on disordered points

Structure analysis is the core issue in studies on material sim-
ulation and material dynamics. The micro-structures in metal
material may be composed of defect atoms deviating from the
crystal lattices. In principle, the defect atoms can be identi-
fied by analyzing the regularity of their neighboring atoms.
The distribution of the defect atoms in space is generally dis-
ordered. It is necessary to find an efficient algorithm for iden-
tifying and analyzing these structures. These complex algo-
rithms include various searching schemes. In scheme design
and in coding, based on the defect atoms, the identification of
high dimension structures like dislocations, grain boundaries
and voids requires to construct the so-called line, surface and
body. A General Index of Spatial Objects (GISO) was de-
signed in our group in the past years. In this section we in-
troduce the GISO software and its applications in structure
analysis on various micro-structures [51, 52].

3.2.1 Outline of GISO

Complex computations of relation between particles are in-
evitable in any elaborate defect identification methods. The
computation time will dramatically increase with growing the
system size in traditional methods. Without indexing the spa-
tial objects, the computation quantity for searching object is
generally very large. If a system contains N objects, the com-
putation complexity related to two objects is N2 and that re-
lated to three bodies is N3. In the case where the total number
of objects is more than 104, the computation complexity will
not be acceptable. In such a case, schemes for effective stor-
age and fast search of objects are crucial. To obtain such a
scheme, it is necessary to design new data structure and in-
dexing algorithm which significantly reduce the computation
complexity. The computation complexity in defect identifi-
cation methods can be greatly reduced by using background
grid and linked list. The background grid index, together with
the linked list data structure, is suitable for managing uniform
distributed points. It has been extensively used in computa-
tion and analysis of many simulation results. Complex struc-
ture in non-uniform system refers not only to points, but also
to lines, surfaces and bodies. Their distributions in space are



A. G. Xu, et al. Sci. China-Phys. Mech. Astron. May (2016) Vol. 59 No. 5 650501-11

usually non-uniform. The background grid index cannot sat-
isfy the needs for managing these objects, but a multi-level
division of space is much more effective. The Space Hier-
archy Tree (SHT) is a newly proposed data structure. It is
a powerful dynamical management framework for any com-
plex objects in any dimensional space. Based on the SHT,
index of objects with complex structure can be created. Cor-
responding fast searching schemes can also be designed to
satisfy various searching requirements.

SHT management structure The SHT data structure is
similar to octree in the three-dimensional space. Go a further
step, for a system in n-dimensional space, an n-dimensional
cube is designed to contain the system. It is a line segment
in one-dimensional space, a rectangle in two-dimensional
space, and a cube in three-dimensional space, and so on.
Divide each dimension of this tube into two parts. 2n sub-
cubes are formed, but only retain the cubes with objects in-
side. Continue to decompose each cube until the required
resolution is reached. Put the objects (points, lines, surfaces,
bodies) into the appropriate cubes according to their locations
and sizes (see Figure 5). Connect the retained cubes together
according to their belonging relationships. Thus, a “spatial
hierarchy tree” is constructed (see Figure 6).

In practical applications, the SHT is constructed dynam-
ically because the number of objects may be variable. The
dynamic management procedure of SHT consists of the fol-
lowing three basic operations: (i) establishment of a tree,

(a) (b)

Figure 5 (Color online) Scheme for management region of SHT of discrete
points. (a) Two-dimensional points; (b) three-dimensional points. (Adopted
with permission from ref. [51]. The grey-level version is published in ref.
[52].)

Figure 6 (Color online) Scheme for object management by SHT. The rect-
angle in each row stands for cube, horizontal grey arrow stands for object,
and vertical black arrow stands for the list which connects the sub-cubes
belonging to a same cube. (Adopted with permission from ref. [51].)

(ii) adding a new object to a tree, (iii) removing an object
from a tree. The regimes managed by SHT is dynamically
altered during these operations. In managing various objects
with drastically different sizes and extremely scattered distri-
butions, the SHT shows its effectiveness.

3.2.2 Fast searching algorithms based on SHT

One generally needs a fast search of objects satisfying certain
requirements in practical application. For an ergodic search,
the computational complexity is N. It is evidently not practi-
cal to treat with a huge number of objects. In such cases, one
needs to design fast searching algorithms. With the manage-
ment of SHT, fast searchers with computational complexity
ln N can be easily created. The basic idea is as follows: do
not search the objects directly, but rather check cubes and
skip those cubes without objects. In this way, the searching is
limited to a substantially smaller range. According to the re-
quirements of applications, two fast searching algorithms are
proposed. The first is referred to as conditional search, and
the second is referred to as minimum search. The conditional
search is to search for objects meeting certain conditions. For
example, to find objects in a given area. The minimum search
is to search for objects whose function values are minimum.
For example, to find the nearest object to a fixed point.

Conditional search The basic idea is as follows: From
the largest cube to the smallest, hierarchically check whether
or not a cube contains objects meeting given conditions. If
not, skip the cube (including all sub-cubes of it and corre-
sponding objects).

In the searching process, only two operations are relevant
to space dimension and type of object. The two operation are
as follows: (i) to check whether or not an object is the needed
one, or (ii) to check whether or not an cube is a candidate.
Thus, the algorithm can be built in the abstract level. The
conditional search is implemented via providing a conditional
function and an identification function. The conditional func-
tion is used to check whether or not an object is needed. As-
suming condition(o) is the conditional function, the argument
o is object and the function value is a bool number. The iden-
tification function is used to assess whether or not a cube is
a candidate. Assuming maycontain(b) is identification func-
tion, the argument b is cube and the function value is also a
bool number. After defining the above two functions, condi-
tional searching meeting any given conditions can be easily
implemented.

Minimum search One often needs to find objects satis-
fying some given extreme condition in programming related
to spatial objects. For example, to find a point with the largest
z component from a set of three-dimensional points, or to
search a point with the nearest distance to a given point, or
to search a sphere closest to a plane, etc. Such searches can
be classified to the minimum searching problem. For spatial
objects, each one can be assigned a function value related to
its location and size in such a way that the minimum search
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becomes to find the object with the minimum function value.
Corresponding fast searching scheme can be designed

based on the SHT. The basic idea is as follows: Design a
function to assess the range of the function values of all pos-
sible objects in a cube which has certain position and size.
Via comparing the ranges of the function value of different
cubes, some cubes can be excluded. For example, Σ is a set
of discrete points in a region, one needs to search the nearest
points to a given point, A. The fast searching is not to calcu-
late the distance between each point in Σ and the point A, but
assess the range of distance between ‘cubes’ and point A to
exclude unnecessary searching of cubes (including the point
in them and their sub-cubes) with longer distance.

In minimum search, except for calculating the function
value of an object and the range of a cube, other operations
have nothing to do with space dimension and type of object,
so that the algorithm can also be built in abstract level. Sim-
ilar to case of conditional search, the minimum search is im-
plemented via providing a value-finding function and range-
evaluation function. The value-finding function is to calcu-
late the function value of an object. Assuming value(o) is
value-finding function, the argument o is an object and the
function value is a real number. The range-evaluation func-
tion is used to compute the range of a cube. Assuming M(b)
is the upper limit and m(b) is the lower limit of the range,
the argument of function is cube b and the function value is a
real number. After defining the above two functions, various
minimum searches can be easily implemented.

3.2.3 Applications of GISO

We first illustrate the algorithm of rolling-ball method to con-
struct spatial surface. For other applications of GISO, only
the basic ideas are briefly reviewed.

Rolling-ball method for finding interfaces On a regu-
lar grid, the most common method to find interface of physi-
cal domain is to use the contour of the corresponding physical
field. This method works well for the case where the discrete
points closed to interface are uniformly distributed. When
the distribution of discrete points is very complex, it is diffi-
cult to preserve the smoothness of the constructed interface.
Consequently, the calculated interface will be significantly
different from the actual one. A better means is to use the
rolling-ball method. The basic idea of rolling-ball method is
as follows: Roll a ball with fixed size over the discrete points;
each rolling goes through three points, and these points con-
stitute a surface element of interface. After the rolling-ball
goes through the overall region, the physical interface is con-
structed.

In the rolling-ball method, the initial localization needs
two searching schemes, and the rolling process needs the
other two searching schemes. The four searching schemes
are as follows.

(I) Minimum searcher MS1: Given a triangle face ABC
and one of its edge AB, search in point tree for the first point

met by the rolling-ball above triangle ABC, where the radius
of rolling-ball is r and the rotation axis is AB. To construct
the value-finding function, we first calculate the initial cen-
ter ro of the rolling-ball and the directions of local coordinate
axes x̂, ŷ, ẑ according to the following equations:

r2 = (rO − rA)2 ,

r2 = (rO − rB)2 ,

r2 = (rO − rC)2 ,

and

x̂ =
Pxy · (rO − rA)∣∣∣Pxy · (rO − rA)

∣∣∣ ,
ŷ = ẑ × x̂,

ẑ =
rB − rA

|rB − rA| ,
where the subscript “o” indicate “old” and

Pxy = I − ẑ ẑ.

After the rotation, calculate the new center rn of the rolling
ball and the corresponding local coordinates, x, y, z, accord-
ing to the following relations:

r2 = (rn − rA)2,

r2 = (rn − rB)2,

r2 = (rn − rP)2,

and

x = x̂ · (rn − rA) ,

y = ŷ · (rn − rA) ,

z = ẑ · (rn − rA) ,

where the subscript “n” means “new”. Calculate the rotation
angle, i.e. the value of value-finding function.

value(P) = arctan 2(y, x).

Figure 7 shows the scheme for the rotation of triangle ABC.
The procedure for constructing range-evaluation function is
as follows: calculate the position rT of the tangent point T of
rolling-ball and the circumsphere of the cube b. The needed
relations are as below:

r2 = |rT − rA |2 = |rT − rB|2,

|rT − cb| = r +
√

3db.

rT has two roots, rML and rmL. The corresponding tangent
points are ML and mL. The range-evaluation functions are as
follows:

M (b) ={
value (ML) , if above equations have real solutions
∞, else,
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m (b) ={
value (mL) , if above equations have real solutions
∞, else.

Figure 8 shows the cross section picture for two different
cases. In each case, the circumspheres of cube b and the
rolling-ball are tangent to each other. Here, the back circle
is for the circumsphere of cube b. The blue, green and red
circles are for rolling-balls. ML and mL are for correspond-
ing tangent points. The rotation angle of rolling-ball takes
its smallest value when the tangent point is ML. It takes its
maximum when the tangent point is mL.

(II) Minimum searcher MS2: Given a point r0, search for
its nearest point P in point tree. The value-finding function is

value(P) = |rP − r0| ,
where rP is coordinate of point P. The range-evaluation func-
tions are

M(b) = |cb − r0| +
√

3db,

m(b) = max(|cb − r0| −
√

3db, 0).

Figure 7 (Color online) Scheme for the rotation of triangle ABC. (Adopted
with permission from ref. [51].)

Figure 8 (Color online) Scheme for the two tangent cases between the
rolling-ball and the circumsphere of cube b. (Adopted with permission from
ref. [51].)

(III) Minimum searcher MS3: Given a point and a rotation
axis, search for the first point met by the rolling-ball with
fixed size in point tree. The algorithm is nearly the same as
for MS1. We do not repeat here.

(IV) Conditional searcher CS1: Given two points, P1 and
P2, search for segment BD, whose vertexes are P1 and P2, in
segment tree. The conditional function is as follows:

maycontain(b) =
{

true, P1, P2 ∈ S ,
false, else.

The circumsphere S of cube b is used for identification. The
identification function is as follows:

s =

∣∣∣∣∣∣∣∣
∑

i∈neighbour

(ri − r0)

∣∣∣∣∣∣∣∣ .

The rolling-ball algorithm is as follows: (I) Initialization:
Generate a point tree, tp, from given discrete points. Set the
radius of rolling-ball as r and the center as P0. Using the
searcher MS2 to search for the nearest point P1 of P0 in tree
tp. Use searcher MS3 to search for a point P2 which is the
first point met by the rolling-ball rotating around x axis in
tree tp. Use searcher MS3 to search for a point P3 which is
the first point met by the rolling-ball rotating around the di-
rection of segment P1P2 in tree tp. Generate a triangle from
P1, P2 and P3. Construct a triangle tree tt and a segment tree
tb. Put the triangle P1P2P3 into tp and put its three edges into
tb. (II) Interface construction: Check whether or not the tree
tb is null. If yes, exit. If not, cut down an edge AB of triangle
ABC. Use the searcher MS1 to search, in tree tb, for a point P
to make smallest the rotation angle of circumsphere of trian-
gle ABC. Here, AB is the rotation axis. Construct a triangle
BAP, and put it into the triangle tree tt. Use CS1 searcher to
search, in tree tb, for an segment L whose vertexes are point
B and P. If L exists, cut it down from tb, and then delete it. If
not, generate an segment PB and put it into tb. Perform the
same operations to points P and A. (III) Go back to step (II).
The surface composed of triangles contained in the tree tt is
just the physical interface that we need.

The interface of voids constructed from discrete points is
shown in Figure 9. The process of constructing interface of
voids from discrete points is shown in Figure 10.

(a) (b)

Figure 9 (Color online) Interface of voids constructed from discrete points.
(a) Discrete points; (b) constructed interface. (Adopted with permission from
ref. [51].)
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(a) (b) (c)

(d) (e) (f)

Figure 10 (Color online) Process of constructing interface of voids from
discrete points. (Adopted with permission from ref. [51].)

Delaunay division There have been a number of algo-
rithms to construct Delaunay triangles in two-dimensional
space and tetrahedrons in three-dimensional space. The com-
plexities of most algorithms come from the searching proce-
dures of disordered data. Here, we introduce an algorithm
based on the GISO. The algorithm is simple and intuitive.
It is convenient to extend to higher dimensional space. The
algorithm for constructing Delaunay division from discrete
points is as follows: Firstly, create a point tree tp, put all the
points into tp. The largest cube of the tp is centered at r0

and has the size a. Construct a largest tetrahedron T which
contains all the points in the local region. This tetrahedron
is just the most initial Delaunay tetrahedron. This tetrahe-
dron can be chosen as regular tetrahedron centered at r0 with
enough large size, e.g. 20a. This ensue that all the points in
the tree tp are within T . Create a tetrahedron tree tt, put the
first tetrahedron T into the tree tt. Secondly, add each point
to adjust the Delaunay division. Take off a point P from tp,
search the tetrahedrons in tt whose circumsphere contains P.
We use a set, Q, to denote all the tetrahedrons checked out in
above procedure. The tetrahedrons of Q forms a polyhedron.
Remove these tetrahedrons from tt. Construct new tetrahe-
drons by linking each triangle surface of the polyhedron and
point P. Put these new tetrahedrons into tt. Remove point P
from tp. Repeat the procedure until tp is null. Finally, search
for the tetrahedrons which share surface with T, and remove
them from tt. Then, the all the tetrahedron in the tt construct
the Delaunay division.

Figure 11 shows the steps for adding a two-dimensional
point and re-dividing the space, where the red point stands
for the newly added point P, the green triangles in Figure
11(a) are for the to-be-adjusted-triangles, the red segments
in Figure 11(b) are retained boundary segments, the blue seg-
ments in Figure 11(c) are segments connecting point P and
vertexes of boundary. In the three-dimensional case, we need
only to replace the triangle with a tetrahedron, replace the
line with a triangular face, and replace the triangle with a
tetrahedron. Figure 12 shows the Delaunay division con-
structed from randomly distributed discrete points in a three-
dimensional spherical region.

(a) (b) (c)

Figure 11 (Color online) Three steps to add a new point to a two-
dimensional Delaunay division. (a) Finding the triangles whose circumcircle
contains the newly added point P; (b) removing the internal lines of these tri-
angles, retaining the external ones; (c) connecting each left line with point P
to form new triangles. (Adopted with permission from ref. [51]. The grey-
level version is published in ref. [52].)

Figure 12 (Color online) Delaunay division constructed from randomly
distributed discrete points in a three-dimensional spherical region. (Adopted
with permission from ref. [51]. The grey-level version is published in ref.
[52].)

Cluster construction and analysis method For discrete
points, a cluster are defined as a group of points which have
short distance. The critical distance is denoted as d, which
is also the minimum distance between any two clusters. The
algorithm to construct a cluster is as follows: Firstly, con-
struct tetrahedron tree tt containing Delaunay tetrahedrons
using the Delaunay division algorithm. Search in tt for the
tetrahedron whose smallest edge is longer than d, and remove
them from tt. Divide the remaining tetrahedrons in tt into dif-
ferent sets according to their connectivities. Create a cluster
tree tcl to contain all the clusters. Secondly, create a tetrahe-
dron tree tc to contain all the tetrahedrons in the first cluster.
For convenience of description, tc is also referred to as a clus-
ter. Create a triangle tree ttr to contain the inner surfaces of
the clusters. Take off one tetrahedron T off tt, put T into tc,
put each of its four triangle surfaces into ttr. Take off trian-
gle tr from ttr, search in tt for the tetrahedron, say T1, whose
triangle surface coincides with tr. If find T1, remove it from
tt and put it into cluster tc. Put all the surfaces except tr into
ttr. Repeat the procedure until ttr is null. Up to this step, the
first cluster tc is completely constructed. Put the cluster tc
into cluster tree tcl. Then, construct a new cluster and put it
into tcl until ttr is null.

Figure 13 shows the clusters constructed with random
points in two-dimensional space.
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(a) (b)

Figure 13 (Color online) Cluster structure formed from 1000 random
discrete points in a two-dimensional square area [0,1]×[0,1]. (a) A clus-
ter; (b) the corresponding cluster boundary. (Adopted with permission from
ref. [51]. The grey-level version is published in ref. [52].)

Identification methods of defect atoms Here we intro-
duce three methods.

(1) Excess energy method
In this method, the defect atoms are defined as those whose

potential energies exceeds a critical value. This method re-
quests that the MD simulation outputs not only atom posi-
tions but also the inter-atomic potentials.

(2) Centro-Symmetry Parameter method
In Centro-Symmetry Parameter (CSP) method [58], the

geometrical symmetry of the collection of nearest atoms of
an atom is used to identify defect atoms. All atoms in the per-
fect crystal are in the geometrical center of its nearest atoms,
but the defect atoms are not. Therefore, an order parameter is
defined as follows:

s =

∣∣∣∣∣∣∣∣
∑

i∈neighbour

(ri − r0)

∣∣∣∣∣∣∣∣ .
Atoms whose order parameter s is greater than a critical value
sc are defect atoms.

(3) Bond-pair analysis method
The CSP and excess energy methods can be used to dis-

tinguish defect atoms, but can not be easily used to identify
types of the defects atoms. The bond-pair analysis (BPA) [59]
based on local topological connections can be used to iden-
tify more accurately the atom type. The idea of BPA is as
follows: The bond type is marked in terms of the connections
among all the atoms bonding with the two atoms. An atom
type is marked in terms of all the bonds of itself. Figure 14
shows the voids surfaces and dislocations identified by bond-
pair analysis.

Figure 14 (Color online) Voids surfaces and dislocations identified by
bond-pair analysis. (Adopted with permission from ref. [51].)

Packing-sculpting method for constructing object sur-
face In computational geometry, it is an important issue to
construct object surface from disorder points. The current
algorithms can be categorized into four groups [60]: space
partition method [61], distance function method [62], defor-
mation method [63], and growth method [64]. Space partition
is generally based on Delaunay division. The outer surface is
generated by removing some Delaunay mesh in the sculpting
method. The packing-sculpting method presented below is an
intuitive method. The out surface is constructed by dynami-
cally sculpting the packing convex hull. As for the packing,
the basic idea is as follows: Firstly, create a point tree tp, and
put all the points into the tree tp. Search in tp for the point P1
which has largest x-coordinate; remove P1 from tp. Define
a plane passing P1 perpendicular to x-axis; rotate the plane
around the axis which passes P1 and along the y direction;
search for the first point P2 it meets; remove it from tp. De-
fine a plane passing points P1 and P2; rotate the plane around
P1P2; search for the first point P3 it meets. Remove P3 from
tp. Create triangle P1P2P3 by linking P1, P2, P3. That is the
first triangle surface. Create a triangle tree tt, and put trian-
gle P1P2P3 into it. Create a boundary tree tb and put P1P2,
P2P3, P3P1 into it. Secondly, take one boundary edge AB
in tb, define a half plane which is on the same plane as the
triangle surface passing AB. This half plane includes the re-
gion opposite to the triangle. Rotate the half plane around
AB, search in tp for the point P it first meets. Create triangle
BAP and put it into tt. Find in tb for each edge, AB, PA and
BP. If find one, remove it from tb; if not, put its reverse edge,
BA, AP or PB, into tb. Repeat the procedure until tb is null.
In this way, all the packing surfaces are included in tp.

As for the sculpting, the basic idea is as follows: Define
a size s which represents the sculpting depth. Firstly, cre-
ate a triangle tree ts to contain triangle surface. Take a tri-
angle surface ABC from surface tree tt. Define a sphere B
which passes vertices A, B, C of triangle ABC and has a
large enough radius, e.g., 10100. Keep the sphere B pass-
ing the points, A, B and C, decrease the radius of B, search
in tp for the first point P that sphere B meets. If P can not
be found before the radius shrink to be less than s, it means
that the sculpting from triangle surface ABC can not be done
any more, remove ABC from tt and put it into ts. If P exists,
the sculpting from triangle surface ABC can be done, remove
ABC from tt. Find in tt for each Triangle surface, ABC, CBP,
BAP and ACP. If find one, remove it from tt; if not, put its
reverse triangle, BAC, CBP, ABP or CAP into tt. Repeat the
procedure until tt is null. In this way, all the surfaces are
included in ts.

The procedure of packing-sculpting algorithm is shown in
Figure 15.

Calculation of the Burgers vector of dislocation loop
Based on the Thompson’s tetrahedron, a Frank scheme is de-
veloped to calculate the Burgers vector of dislocations in a
fcc crystal during its plastic deformation. A Burgers circuit
is located firstly in a deformed crystal with a reference cir-
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cle surrounding one or more dislocations. The atom-to-atom
sequence, in a dislocation-free crystal, corresponding to the
Burgers circuit is determined from the edge vectors of the
Thompson’s tetrahedron and its mirrors, instead of a local
reference lattice. The Burgers vector can be calculated via
summing over the vectors connecting neighboring atoms in
the Burgers circuit. As long as the same dislocations are sur-
rounded, the final Burgers vector obtained by its Frank defi-
nition is accurate. The present method is validated in deter-
mining the Burgers vectors for the dissociation of a perfect
dislocation and for the complex reactions of the dislocations
from a nanovoid in a deformed crystal under a uniaxial tensile
loading [65] (see Figures 16 and 17).

(a) (b) (c)

(d) (e)

Figure 15 (Color online) The procedure of packing-sculpting algorithm.
(a) Discrete points; (b) the mid of packing procedure; (c) packing convex
hull; (d) sculpting procedure; (e) object surface. (Adopted with permission
from ref. [51].)

(a) (b)

Figure 16 (Color online) Burgers vectors for dislocations from a nanovoid
in a deformed crystal under a uniaxial tensile loading. (a) Front view; (b) per-
spective view. The colors are based on the distance to the void center. Specif-
ically, b1 = [0, 0, 0]; b2 = [1, 2,−1]/6; b3 = [−2,−1, 1]; b4 = [2, 1, 1]/6;
b5 = [−1,−2,−1]/6; b6 = [0, 0, 0]; b7 = [−1, 1,−2]/6; b8 = [−1, 1, 2]/6;
b9 = [1,−1, 2]/6; b10 = [1,−1,−2]/6; b11 = [−2,−1, 1]/6; b12 =

[1,−1,−2]/6; b13 = [−2,−1, 1]/6; b14 = [1,−1,−2]/6. (Adopted with per-
mission from ref. [65].)

Figure 17 Thompson’s tetrahedron and its mirrors. (Adopted with permis-
sion from ref. [51].)

4 Numerical experiments and observations

Our investigations can be roughly classified into three groups,
microscopic, mesoscopic and macroscopic scales. As for the
microscopic scale, what we probed are limited to the cases
which can be simulated by the MD simulations. As for the
mescoscopic scale, both the solid and fluid models are used.
Based on the solid model, what we probed are limited to the
cases with only one or a few cavities where the continuum
theory works and the MPM can be used. The fluid model
here is mainly referred to the DBM. By using the DBM, we
can study both the hydrodynamic non-equilibrium and ther-
modynamic non-equilibrium behaviors, especially around the
interfaces. Both the MPM and DBM are also applied to sim-
ulate behaviors in the macroscopic scale.

4.1 MPM investigations: Global behaviors

The global behaviors of shocked porous material based on
MPM simulations are referred to those averaged or statistical
behaviors [48-50, 66-68]. Here “global” is relative to “lo-
cal”. The latter is referred to the case with only a single or
a few cavities, while the former is referred to the case with
several thousands or more. In our numerical experiments the
porous material is fabricated by a solid material body with an
amount of cavities randomly embedded. The particle feature
of MPM makes easy the flexible setting of the initial con-
figuration. We denote the mean density of the porous body
as ρ and the density of the solid portion as ρ0. The poros-
ity is defined as Δ = 1 − δ, where δ = ρ/ρ0. The porosity
Δ is controlled by the total number Nvoid and mean size r of
voids embedded. In our numerical experiments, there are two
kinds of equivalent shock loading schemes, colliding with a
body with symmetric configuration or colliding with a rigid
wall in the same material. In the studies on global behaviors,
the shock is loaded via colliding with the rigid wall. In the
studies on local behaviors, the shock is loaded via colliding
with a body with symmetric configuration. The gravity ef-
fects are neglected. The rigid wall is located horizontally and
keeps static at the bottom where y = 0, the target porous body
is on the upper side of the rigid wall and moves towards the
rigid wall at a velocity with the size vinit. We start to count the
time when the porous body begins to touch the rigid wall. At
the left and right boundaries we use periodic boundary con-
ditions. This treatment means that the real system under con-
sideration is composed of many of the simulated ones aligned
periodically in the horizontal direction.

The sample material for MPM simulations in this paper
is fixed at the metal aluminum. The corresponding param-
eters are as follows: E = 69 MPa, ν = 0.33, ρ0 = 2700
kg/m3, σY0 = 120 MPa, Etan = 384 MPa, k = 237 W/(m·K),
c0 = 5.35 km/s, λ = 1.34, cv = 880 J/(kg·K) and γ0 = 1.96
when the pressure is below 270 GPa. The initial temperature
of the material is fixed at 300 K.
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4.1.1 Mean values and their fluctuations

In this part of the studies, the effects of porosity and shock
strength are the main concerns. For cases with the same
porosity, the effects of mean-cavity-size are further studied.
Main observations are as follows: the local volume dissipa-
tion and turbulence mixing are two important mechanisms
for transformation of kinetic energy to internal energy. In
the cases with very small porosities, the shocked portion may
arrive at a dynamical steady state; the cavities within the
downstream portion reflect back rarefactive waves and make
slight oscillations of mean density and pressure; in the cases
with the same porosity, a larger mean-cavity-size results in
a higher mean temperature. In the cases with high porosi-
ties, the hydrodynamic quantities vary with time during the
whole shock-loading procedure: after the initial period, the
mean density and pressure decrease, but the temperature in-
creases with a higher rate. The distributions of local pres-
sure, temperature, density and particle-velocity are generally
non-Gaussian and vary with time. The changing rates are
dependent on the shock strength, porosity value as well as
the mean-cavity-size. The porosity effects become more pro-
nounced with increasing shocking strength [50]. We show
some specific numerical results based on two-dimensional
simulations below.

The computational unit here is 2 mm in width, as shown
in Figure 18. Since mainly interested in the loading proce-
dure, the height of porous material is set a large enough value
so that the rarefactive waves reflected from the upper free
surfaces do not significantly influence the physical process
within the time scale under investigation.

Two snapshots are shown in Figure 18, where Figure 18(a)
shows the contour of pressure and (b) shows the contour of
temperature. Different from the cases with perfect solid ma-
terial, no stable shock wave exists in the porous materials.
When the initial shock wave arrives at the first cavity, rarefac-
tive wave is reflected back and propagates within the com-
pressed portion, which destroys the original possible equilib-
rium state there. The shock waves at the two sides continue
to propagate forward and meet again in front of the cavity.
The waves begin to become complex. When a compressive
wave meets a new cavity, similar behaviors occur. In this way,
the waves in the porous material become very complex. For
the convenience of description, the concept, shock wave, is
still used as a coarse-grained description. Correspondingly,
the values of physical quantities, such as the pressure, the
particle velocity, temperature, density, etc, are corresponding
mean values calculated in a regionΩ with y1 � y � y2.

Cases with low porosity Figure 19 shows the mean den-
sity, pressure, temperature and particle velocity versus time
for a case where Δ = 0.029 (δ = 1.03), r = 50 µm,
vinit = 1000 m/s and the height of the porous material is 5
mm. These values are dynamically measured in a bottom
and a top domains, respectively. For the bottom domain, we
choose y1 = 100 µm, and for the top domain, y2 takes the

y-coordinate of the highest material-particle. Three sets of
measured results are shown. The heights of the measured do-
main are chosen as h = 800, 400 and 100 µm, respectively.
The lines with solid symbols are for measured values from
the bottom domain, the lines with empty symbols show mea-
sured values from the top. Simulation results show that, for
the case of h = 800 µm, when the shock waves propagate
within the bottom domain Ωb, the measured mean density,
pressure and temperature increase nearly linearly with time,
up to about t = 150 ns. After that the temperature further to
increase with a much lower increasing rate. The three quan-
tities arrive at their first maximum values, 3.14 g/cm3, 16.7
GPa, and 432 K, at about t = 250 ns. At this time the shock
front has passed the downstream boundary of the measured
domain (See Figure 18). The concave regions in the ρ-,P-,T -
curves at about t = 450 ns shows an unloading phenomenon
of the compressive waves, i.e., rarefactive waves reflect back
from the cavities downstream neighboring to the measured
domain. The values of ρ and P increase and recover to their
(nearly) steady values after that, but the temperature further
to increase. The secondary loading-phenomenon is due to the
collisions of the upstream and downstream walls of cavities.
During the following period the density and pressure keep
nearly constants, while the temperature still increases very
slowly. The weak fluctuations in the density, pressure and
temperature curves after t = 650 ns result from the inputs
of compressive and rarefactive waves from the two bound-
aries at the opposite sides of the measured domain Ωb. The
visco-plastic work by these wave series makes the tempera-
ture increase slowly. From the lines with empty symbols we
can find that the shock waves arrive at the top free surface at
about t = 800 ns. After that, rarefactive waves come back into
the shocked material. Within the time interval shown in the
figure, for the cases with h = 800 and 400 µm, the density (or
pressure) recovers to a value slightly larger than its initial one,
but the temperature is about 60 K higher than its initial value
and still increases; for the case with h = 100 µm, evident
oscillations are found in the curve of density after t = 900
ns. To understand better this phenomena, we show in Figure
20 the top portion of the configuration with temperature con-
tour for the time t = 1.15 µs, from which we can find jetting
phenomena at the upper free surface. From the same data
used in Figure 18, we can obtain the mutual dependences of
these hydrodynamical quantities. The initial transient stage
and the final oscillatory steady state are clearly observable.
Due to existence of the randomly distributed voids, waves
with various wave vectors and frequencies propagate within
the shocked material. When the measured domain becomes
smaller, more detailed wave structures may be found. Figure
19 shows clearly this trend.

Figure 21 shows the standard deviations of the above
four quantities measured in the bottom domains versus time.
These quantities increase quickly with time at the initial
stage, then decrease, nearly exponentially, to their steady val-
ues. The standard deviation of uy is larger than that of ux,
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Figure 18 (Color online) Snapshots of the shocked porous metal. δ = 1.03,
Δ = 0.029, t=250 ns. (a) Contour of pressure; (b) contour of temperature.
The unit of length in this figure is 10 µm. From blue to red, the contour
value increases. The unit of contour is MPa in (a) and is K in (b). The initial
velocities of the flyer and target are ±vinit = ±1000 m/s in this case. (The
grey-scale version is published in ref. [50].)

Figure 19 (Color online) Variations of mean density, pressure, tempera-
ture and particle velocity with time. The height of the measured domain are
h = 800, 400 and 100 µm, respectively, as shown in the legends. “B” and
“T” in the legends means the measured domains are at the bottom and top
of the target body, respectively. The units of density, pressure, temperature,
particle velocity and time are g/cm3, GPa, K, m/s and ns, respectively. (The
grey-scale version is published in ref. [50].)

Figure 20 (Color online) Configuration with temperature contour at time
t=1.15 µs. Other parameters are referred to Figures 18 and 19. The unit of
temperature is K. (The grey-scale version is published in ref. [50].)

which means the system is out of the thermodynamic equilib-
rium and the internal energy in shocking degree of freedom
is larger than in the transverse degrees of freedom. The non-
zero values of these fluctuations confirm that the system is in
a nearly steady state with local dynamical oscillations.

Figure 21 (Color online) Standard deviations (Std) of the local quantities
averaged in various spatial scales. The heights of the measured domains are
shown in the legends where “B” means the measured domains are at the bot-
tom of the target body. The length and time units are µm and ns, respectively.
(The grey-scale version is published in ref. [50].)

For the case where a perfect crystal material is shocked,
the entropy production occurs only in the non-equilibrium
zone induced by the shock wave. In the case of porous ma-
terial, the high plastic distortion of the materials surrounding
the collapsed cavities contributes extra entropy production.
Therefore, we can roughly define a local rotation as:

Rot = |∇ × u|,
and a local divergence as:

Div = |∇ · u|.
Both the local rotation and divergence make significance
sense in describing the dynamic process of porous material
under shock. The local rotation, |∇ × u|, describes the circu-
lar flow and/or turbulence. The divergence, |∇ · u|, describes
the changing rate of volume. Both of them work as impor-
tant mechanisms of entropy production and temperature in-
crease in dynamic responses of porous material. The former
indicates the turbulence dissipation, and the latter indicates
the shock compression. Figure 22 shows their mean values
squared versus time. As a comparison, the behavior of strain
rate (“StrR” in the figure) ε̇ is also shown. All the three quan-
tities decrease, nearly exponentially, to their steady state val-
ues as shock waves pass the measured domain Ω. The am-
plitude of steady strain rate is very close to that of the ro-
tation. The amplitude of the divergence is a little larger for
this case. Cavity collapse and new cavitation by the rarefac-
tive waves are the main contributors to the local divergence.
Figure 23 shows a portion of the configuration with density
contour, pressure contour, temperature contour and velocity
field at time t = 750 ns, from which one can understand bet-
ter the fluctuations of the local density, pressure, temperature,
particle velocity and the finite values of the rotation and di-
vergence.



A. G. Xu, et al. Sci. China-Phys. Mech. Astron. May (2016) Vol. 59 No. 5 650501-19

Figure 22 (Color online) Variations of the mean values squared of local
rotation, divergence and strain rate with time. 〈...〉 in the legends denote the
mean value of the corresponding quantity and “B” means the measured do-
mains are at the bottom of the target body. The length and time units are µm
and ns, respectively. (The grey-scale version is published in ref. [50].)
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Figure 23 (Color online) Configurations with density contour (a), pressure
contour (b), temperature contour (c) and velocity field (d) at time t=750 ns.
The size of particle velocity is denoted by the length of arrow timed by 50.
The units are the same as in Figure 19. (The grey-scale version is published
in ref. [50].)

There is a void around the position (510 µm, 280 µm) in
this case. To check the effects of the void size, results for dif-
ferent void sizes are shown and compared. The mean density,
pressure and particle velocity in the steady state do not show
evident differences. But the temperature shows significant
dependence on the void size. Larger voids result in higher
mean temperature (See Figure 24). As for influences of void
size on the mean value squared of the local rotation and diver-
gence, the void size make effects only in the transient period.
See Figure 25, where the two cases correspond to different
mean-void-sizes but the same value of porosity, Δ = 0.029,
are shown.

Figure 24 (Color online) Effects of the mean void size on the mean tem-
perature. The mean void size r, position and height of the measured domain
are shown in the legend. “B” and “T” means the measured domains are at the
bottom and top of the target body, respectively. The length and time units are
µm and ns, respectively. (The grey-scale version is published in ref. [50].)

Figure 25 (Color online) Effects of mean void size on the mean values
squared of local rotation, divergence. The mean sizes of void are shown in
the legends. The length and time units are µm and ns, respectively. (The
grey-scale version is published in ref. [50].)

Cases with higher porosity For the cases with higher
porosity, we show the variations of mean density, pressure,
temperature and particle velocity with time for the case with
Δ = 0.286, δ = 1.4, r = 10 µm and vinit = 1000 m/s in Figure
26. Here only results averaged in the upper and bottom do-
mains with the same hight, h = 800 µm, are shown. Different
from the low-porosity case with δ = 1.03, the mean density
and pressure decrease with time, while the mean temperature
increase with a higher rate after the initial stage. This is due
to the rarefactive waves reflected back from the cavities in
the downstream region. The rarefactive waves make looser
the shocked material and result in a relatively higher local di-
vergence. Consequently, more kinetic energy into heat. At
the same time, a higher porosity means more cavities embed-
ded in the material, more jetting phenomena may occur under
shock. Both the jetting phenomena and the collisions of jet-
ted materials with the downstream walls of cavities result in
a significant increase of local temperature, local divergence
and local rotation. Figure 27 shows the mean values squared
of the local rotation, divergence and strain rate. During the
initial transient period, the turbulence dissipation is the main
mechanism for the temperature increase in this case. In the
later steady state, all the three kinds of dissipations make
nearly the same contributions.

To further clarify the inhomogeneity effects in the shocked
regime, in Figure 28, we show the distributions of density,
pressure, temperature and particle velocity at three times,



A. G. Xu, et al. Sci. China-Phys. Mech. Astron. May (2016) Vol. 59 No. 5 650501-20

Figure 26 (Color online) Variations of mean density, pressure, tempera-
ture and particle velocity with time. Here δ = 1.4, Δ = 0.286, vinit = 1000
m/s. The meanings of “B”, “T” and units are the same as in Figure 19. (The
grey-scale version is published in ref. [50].)

Figure 27 (Color online) Variations of the mean values squared of local
rotation, divergence and strain rate with time. The unit of time is ns. (The
grey-scale version is published in ref. [50].)

Figure 28 (Color online) Distribution of local density, pressure, tempera-
ture, particle velocity at various times. The units are the same as in Figure
19. (The grey-scale version is published in ref. [50].)

t = 1200, 1250 and 1300 ns. Their distributions generally de-
viate from the Gaussian distribution and vary with time. The
effects of initial impact velocity on the mean density, pressure
and temperature are shown in Figure 29. It is clear that the
decreasing rate of the mean density and the increasing rate of

mean temperature becomes larger as increasing the strength
of the initial shock.

When study the porosity effects, we fix the shock strength.
Figure 30 shows the mean density, and temperature versus
time for various porosities. Here initial velocity vinit = 1000
m/s. When the porosity is very small, the mean density de-
creases more quickly with increasing the porosity. But when
the porosity is high, the mean density show more complex
behaviors.

4.1.2 Morphological analysis

Morphological analysis describes the geometrical and topo-
logical properties of the fields of temperature, pressure, den-
sity, etc. Shock wave results in complicated series of com-
pressions and rarefactions in the porous material. In the case
of temperature field, A describes the fraction of high temper-
ature particles. Its increasing rate roughly gives the velocity
D of a compressive-wave series. The velocity D decreases
with increasing the threshold value Tth of temperature. The
fraction A increases, nearly parabolically, with time t during
the initial period. The A(t) curve shows more linearity in the
following three cases: (i) when the porosity Δ approaches
0, (ii) when the initial shock becomes much stronger, and
(iii) when the threshold value approaches the minimum value
of the temperature. The fraction A of high temperature par-
ticles may continue to increase even after the early com-
pressive waves have arrived at the downstream free surface

Figure 29 (Color online) Mean density and temperature versus time for
various shock strengths. The initial velocity vinit are shown in the legend.
The units are the same as in Figure 19. (The grey-scale version is published
in ref. [50].)
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and some rarefactive waves have come back into the material.
In the case of energetic material needing a higher temperature
for ignition, a higher porosity is preferred and the material
may be ignited after the precursory compressive waves have
scanned the entire material. In morphology analysis, the re-
sult dependence on experimental conditions is reflected sim-
ply by a few coefficients. Here we show some observations
for the temperature field [48].

Basic observations A set of snapshots for a shock pro-
cess are shown in Figure 31, where the contours are for the
temperature. From blue to red, the temperature increases.
The first two show the loading process. The last two are for
the unloading process of the compressive waves. As men-
tioned in previous part, rarefactive waves are reflected back
into the material when compressive waves reach the upper
free surface. Under the tensional action of rarefactive wave,
the height of the porous material increases with time. In fact,
a large number of local unloading phenomena have occurred
within the material before the compressive waves arrive at the
upper free surface. The details of wave series are very com-
plex, we use the Minkowski functionals to characterize the
physical fields inside the material.

In this review, the morphological analysis is mainly for
the temperature field. To use the Minkowski functionals, we
first choose a threshold temperature Tth and condense the
temperature field T (x) into high temperature regions (with
T (x) � Tth) and low temperature regions (with T (x) < Tth).
Figure 32 shows the several sets of Morphological analysis
for the shocking process shown in Figure 31. “DT” in the
legend means Tth − 300. The unit of temperature is K. The
time unit is ns. One can find that, when DT is very small, the
wave front is nearly a plane, which is similar to the case of
uniform solid material. When DT = 10 K, the total fractional
high temperature area A increases up to be nearly 1 at about
the time t = 1600 ns and keeps this saturation value until the
time t = 2600 ns, then shows a slight decreasing. This indi-

Figure 31 (Color online) Configurations with temperature contours.
Δ = 0.5 and vinit = 1000 m/s. From left to right, t=500, 1500, 2000, and
2500 ns, respectively. The length unit here is 10 µm. (Adopted with permis-
sion from ref. [48].)
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Figure 32 (Color online) Minkowski measures for the procedure shown in
Figure 31. The contour levels of the temperature increment are shown in the
legend. (Adopted with permission from ref. [48].)

cates that (i) the early compressive wave reaches the upper
free surface at about the time t = 1600 ns, (in fact before
that), (ii) nearly all material particles obtain a temperature
higher than 310 K during the following 1000 ns period. In the
unloading process a very small fraction of material particles
decrease their temperature to below 310 K due to the action
of rarefactive waves. The high temperature area A decreases
with increasing the temperature threshold. In the case where
DT = 100 K, at the time t = 1900 ns, the high temperature
area gets a (nearly) steady value 0.96, which indicates that 4%
of the material particles could not have a temperature higher
than 400 K in the whole process during shown period. When
the compressive wave arrives at a cavity, it is decomposed of
many components. The components in the solid portion prop-
agate forwards more quickly, while the portion facing cavity
may result in jet phenomenon. When jetted material particles
hit the downstream wall of the cavity, new compressive waves
occur. At the meanwhile, the cavity reflects rarefactive wave
back to the compressed regime. A large number of similar
processes occur inside the shocked porous material. Thus, the
shock loading process is manifested as successive actions of
many compressive and rarefactive waves. The effects of com-
pressive waves dominate during the shock-loading process.
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All the plastic deformations contribute to the temperature in-
crease. Similarly, one can interpret the curve for DT = 200
K. When DT increases from 200 K to 300 K, the curve of
high temperature area shows a significant variation. For the
case of DT = 400 K, the high temperature area reach 0.2 at
about t = 3000 ns, which indicates 80% of material particles
could not obtain a temperature higher than 700 K up to this
time. When DT = 500 K, the high temperature area keeps
nearly zero during the whole period shown here, which in-
dicates all the local temperature is lower than 800 K up to
t = 3000 ns. For cases with DT = 300, 330, 360 and 400 K,
after the initial slow increasing period, the high temperature
area shows a quick increasing period. The latter means that
a large number of high temperature regimes in the previously
compressed region coalesce during this period. After that the
increasing rate of A shows a slowing-down phenomenon. The
slope of the A(t) curve roughly indicates a mean propagation
speed of some components of the compressive waves. When
a velocity D of the profile front of high temperature domains
is mentioned, the corresponding temperature should also be
claimed. It is clear that D(Tth) decreases when Tth becomes
higher. The total fractional high temperature area A(t) shows
roughly a parabolic behavior during the initial period. When
DT approaches 0, the curve for high temperature area A(t)
goes back to be quasi-linear.

Now we analyze the second Minkowski measure, the
boundary length L. For the case of DT = 10 K, after the ini-
tial increase period, L keeps a small constant up to about the
time t = 2600 ns. The phenomenon that boundary length L
keeps constant while the high temperature area A increase in-
dicates also that the compressive wave is propagating towards
the upper free surface and the interface is nearly a plane. The
increasing of L after t = 2600 ns is companied by a de-
creasing of high temperature area A, which indicates some
small low temperature spots occur inside the background of
high temperature area. The curves for DT = 100 K and
DT = 200 K present similar information. They first in-
crease with time due to the creation of more spots with high
temperature, then decreases due to the coalesce of high tem-
perature areas, and finally increase, accompanied by a slight
decrease of the total fractional high temperature area. For
the case with DT = 300 K, during the period with 1500
ns < t < 2500 ns, the high temperature area A increases,
while the total fractional boundary length L is nearly a con-
stant. This phenomenon indicates that, during this period, the
compressive waves propagate forwards, more scattered high
temperature spots appear in the newly compressed regime; at
the same time, some previous scattered spots with high tem-
peratures coalesce. From the time 2500 ns to 3000 ns, the
fractional high temperature area A increases very slowly, but
the boundary length L decreases quickly. This phenomenon
indicates that the increasing of A is mainly due to coalesce of
previous scattered spots with high temperature. The curves
for DT = 330 K and DT = 360 K can be interpreted in a
similar means. For this shock strength, only very few ma-

terial particles can obtain a temperature higher than 700 K
before the time t = 2000 ns. Therefore, the boundary length
L for DT = 400 K has a meaningful increase only after the
time t = 2000 ns.

When the threshold value DT is small, the condition T >
Tth is satisfied in (nearly) all of the compressed region and
T < Tth is satisfied in the uncompressed part of the material.
The condensed temperature field appears as a highly con-
nected structure with (nearly) equal and very small amount
of high temperature and low temperature domains. So, the
Euler characteristic χ keeps nearly zero in the whole shock-
loading process and the mean curvature κ is also nearly zero.
The value of χ decreases to be evidently less than zero in the
unloading process, which means that the number of low tem-
perature domains increases. (See the χ(t) curves for cases of
DT = 10, DT = 100 and DT = 200 in Figure 32.) With
increasing the threshold value Tth, more domains changes
from high temperature to low temperature ones. The pattern
evolution in the shock-loading process shows the following
scenario: scattered high temperature domains appear grad-
ually with time in the background of low temperature do-
mains. Consequently, the Euler characteristic χ is positive
and increasing with time. (See the χ(t) curves for cases of
DT = 300, DT = 330 and DT = 360 in Figure 32.) When
the threshold value Tth is further increased up to 700 K, a
considerable fraction of material particles could not obtain a
temperature higher than Tth. The saturation phenomenon in
the χ curve during the period, 550 ns < t < 2100 ns, indicates
that the numbers of connected domains with high and low
temperatures vary with time in a similar way. The increase of
χ in the period, 2100 ns < t < 2500 ns, is due to that the rar-
efactive waves make mean-temperature decrease, some con-
nected high temperature domains are disconnected again. For
the case with DT = 500 K, the so-called low temperature do-
main occupies nearly all the shocked material. Consequently,
χ is nearly zero.

Effects of porosity To study the effects of porosity, a set
of snapshots for the case with a lower porosity are shown in
Figure 33. Here Δ = 0.286 and the other conditions are the
same as those in Figure 31. From left to right, the correspond-
ing times are t = 500, 1100, 1400 and 1700 ns, respectively.
It is easy to find that the propagation velocity of compressive
wave increases with decreasing the porosity. In this case, at
time t = 500 ns, the compressive wave arrives at the position
with y = 1750 µm; while in the case of Δ = 0.5, the com-
pressive wave arrives only at the position with y = 1000 µm.
In this case, the compressive wave has arrived the top free
surface and the rarefactive wave has been reflected back to
the porous material before t = 1400 ns; while in the case of
Δ = 0.5, the shock-loading procedure has not been finished
up to the time t = 1500 ns.

The porosity effects can be more quantitatively investi-
gated via the morphological analysis. In Figure 34 we show
a set of morphological analysis for the cases with various
porosities, Δ = 0.592, 0.5, 0.412, 0.286, 0.180, 0.130, 0.091
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Figure 33 (Color online) Configurations with temperature contours.
Δ = 0.286 and vinit = 1000 m/s. From left to right, t=500, 1100, 1400,
and 1700 ns, respectively. The length unit here is 10 µm. (Adopted with
permission from ref. [48].)
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Figure 34 (Color online) Minkowski measures for cases with various
porosities. Tth = 400 K. The values of δ are shown in the legend. (Adopted
with permission from ref. [48].)

(i.e. δ = 2.45, 2, 1.7, 1.4, 1.22, 1.15, 1.1), where Tth = 400
K. Via comparing the slopes of the A(t) curves for the shock
loading processes, it is clear that the velocity D of the profile

front of high temperature domains decreases with increasing
porosity. The largest value of boundary length Lmax increases
as Δ decreases. In the case of Δ = 0.091, the L obtains its
maximum value at about the time t = 1250 ns. This phe-
nomenon indicates that the highest temperature in shocked
porous material decreases when the porosity decreases. The
value of χ becomes more negative when Δ decreases from
0.592 to 0.091, which means the disconnected low tempera-
ture domains where T < 400 K dominate more the condensed
temperature field.

Via comparing results in Figures 35 and 36, we can have
some observation on the result dependence on the temper-
ature threshold Tth. Figures 35 and 36 show, respectively,
two sets of the Minkowski measures for the same porosi-
ties but two higher temperature thresholds, Tth = 500 K and
Tth = 600 K. They present some supplementary information
to that shown in Figure 34. For cases with Δ = 0.286, 0.180,
0.130 and 0.091, only 88%, 55%, 36% and 15% of the ma-
terial particles obtain a temperature higher than 500 K. For
cases with Δ = 0.286 and 0.180, and only 16% and 6% ob-
tain a temperature higher than 600 K in the shock-loading
process. When the temperature threshold Tth = 500 K, the
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Figure 35 (Color online) Minkowski measures for cases with various
porosities. Tth = 500 K. The values of δ are shown in the legend. (Adopted
with permission from ref. [48].)
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Figure 36 (Color online) Minkowski measures for cases with various
porosities. Tth = 600 K. The values of δ are shown in the legend. (Adopted
with permission from ref. [48].)

case of Δ = 0.130 shows the maximum boundary length and
the case of Δ = 0.091 shows the maximum Euler characteris-
tic. When the temperature threshold Tth = 600 K, the case of
Δ = 0.286 shows the maximum boundary length and maxi-
mum Euler characteristic, which means the high temperature
spots with T > 600 K are scatteredly distributed in the back-
ground of low temperature regime with T < 600 K.

Effects of shock strength When study the effects of
shock strength, we fix the value of porosity. A set of snap-
shots for the case with Δ = 0.286 and vinit = 500 m/s are
shown in Figure 37. From left to right, the corresponding
times are t = 500, 1500, 2000 and 2500 ns, respectively.
The first two are for the shock loading process and the lat-
ter two are for the shock unloading process. Compared with
the case shown in Figure 33, the velocity D of profile front of
high temperature domains and the highest temperature Tmax

decreased. The Minkowski meansures for the temperature
field in this process is shown in Figure 38. Such a shocking
process could not result in high temperature domains with
T = 500 K. High-temperature area continue to increase even
after some precursory compressive waves have scanned all
the material and some rarefactive waves have come back from
the upper free surface. Up to the time t = 3000 ns, the frac-
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Figure 37 (Color online) Configurations with temperature contours.
Δ = 0.286 and vinit = 500 m/s. From left to right, t = 500, 1500, 2000,
and 2500 ns, respectively. The length unit here is 10 µm. (Adopted with
permission from ref. [48].)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

W
hi

te
 A

re
a

time (x 50)

DT=10
DT=20
DT=50
DT=60
DT=80

DT=100
DT=200

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

 0  10  20  30  40  50  60

B
ou

nd
ar

y 
Le

ng
th

time (x 50)

−0.004

−0.002

 0

 0.002

 0.004

 0.006

 0.008

 0  10  20  30  40  50  60

E
ul

er
 C

ha
ra

ct
er

is
tic

time (x 50)

Figure 38 (Color online) Minkowski measures for the case of Δ = 0.286
and vinit = 500 m/s. The values of contour level are shown in the legend.
(Adopted with permission from ref. [48].)

tional high temperature area of with T > 400 K reaches
40%, the fractional area for T > 380 K reaches 74%, that
for T > 360 K reaches 91%. The temperature threshold
value with T = 380 K shows the largest boundary length at
about the time t = 1500 ns when the high temperature spots
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mainly distribute scatteredly in the low temperature back-
ground. Figures 39 and 40 show the morphological analysis
for cases with the same porosity but lower initial shocking
strengths. Figure 39 is for the case with vinit = 400 m/s. Fig-
ure 40 is for the case with vinit = 300 m/s. With the decrease
of initial shock strength, the highest temperature Tmax in the
system becomes lower; the total fractional high temperature
area A for low threshold value, for example DT = 10 K, in-
creases with time in a more linear way.

The comparison of Minkowski measures for cases with
different initial shocking strengths is shown in Figure 41,
where Δ = 0.286, DT = 50 K, vinit = 1000, 500, 400, 300,
and 200 m/s. The higher the initial shock strength, the larger
the slope of A(t) curve. The case with vinit = 400 m/s shows
the largest boundary length. For this case, scattered high tem-
perature spots dominate the condensed temperature field in
the shock-loading process, while scattered low temperature
spots dominate in the unloading process.

Dynamic similarities We present some results on dy-
namic similarities occurred in shocked porous material [66].
Figure 42 shows a set of morphological analysis for the case
with Δ = 0.09 and vinit = 800 m/s in the three-dimensional
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Figure 39 (Color online) Minkowski measures for the case of Δ = 0.286
and vinit = 400 m/s. The values of contour level are shown in the legend.
(Adopted with permission from ref. [48].)
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Figure 40 (Color online) Minkowski measures for the case of Δ = 0.286
and vinit = 300 m/s. The values of contour level are shown in the legend.
(Adopted with permission from ref. [48].)

space opened by the three Minkowski functions. That the
curves for DT = 5, 30 and 60 K are closer indicates that the
shape and connectivity of high temperature domains for these
cases show high similarities. We can check in which cases
the condensed temperature fields show similarities. Such in-
formation is generally helpful for classifying the shocking
dynamic processes, material selection and structured mate-
rial design. For fixed material components and structures, an
evolution process for a condensed temperature field is deter-
mined by the initial shock strength. We can label an evo-
lution process of a condensed temperature field by a pair of
quantities, (vinit, Tth). We further add a subscripts, “1” or
“2”, to index the evolution process. For cases with fixed
porosity, Δ = 0.09, we first choose an evolution process with
vinit1 = 800 m/s and Tth1 =408 K, as the reference, check its
process distance dP to the evolution process with vinit2 = 900
m/s and Tth2. It is easy to find that the distance dP takes its
minimum value when Tth2 = 442 K. In the same means, we
can know that the following evolution processes, “300 m/s,
315 K”, “400 m/s, 326 K”, “500 m/s, 340 K”, “600 m/s, 358
K”, “700 m/s, 381 K”, “1000 m/s, 489 K”, show also high
similarities to the reference process. If use the eight pairs of
vinit and Tth to plot a curve, then we obtain the one labeled by
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Figure 41 (Color online) Minkowski measures for cases with various shock
strengths. Δ = 0.286. The values of initial impacting speed vinit are shown
in the legend. (Adopted with permission from ref. [48].)
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Figure 42 (Color online) Minkowski description in the three-dimensional
space opened by A, L and χ.

“300:15” in Figure 43(c). The label “300:15” means pro-
cesses shown in this curve show high similarities to the case
where vinit1 = 300 m/s and DT = 15 K. If increases the
temperature threshold of the reference process, we can ob-
tain, in the same means, other curves shown in the figure.
Figures 43(a), (b) and (d) are for the cases with Δ = 0.03,
Δ = 0.18, Δ = 0.286, respectively. From Figure 43 one
can also find that, when the porosity is high, the value of√

Tth − 300 shows nearly linear dependence on the impact ve-
locity vinit. However, when the porosity is very small, the
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Figure 43 (Color online)
√

Tth − 300 versus vinit for similar processes.
From (a) to (d), the porosity is 0.03, 0.18, 0.09, 0.286, respectively.

increasing rate of
√

Tth − 300 with respect to vinit is larger.
The physical reasons are as below. The temperature increas-
ing is mainly due to the plastic work when the porosity is
high, while it is mainly from the shock compression when
the porosity is very small [66].

The shock strength, described by vinit, is fixed when we
study the dynamical similarity S P versus porosity Δ. In such
cases, an evolution process can be labeled by the pair of val-
ues, (Δ, Tth). We first consider the cases with Δ1 = 0.09 and
Δ2 = 0.01. The initial impact velocity is fixed at vinit = 800
m/s. Processes with Tth1 = 315, 320, 360, 390, · · · , 630
K, show high similarities to the processes with Tth2 = 346,
347, 350, 353, · · · , 481 K, respectively. If use the values of
(Tth1−300) forΔ1 = 0.09 as the x-coordinates and (Tth2−300)
for Δ2 = 0.01 as the y-coordinates, we obtain the curve la-
beled by “0.01” in Figure 44. Figure 44 shows also the cases
with Δ2 = 0.02, 0.029, 0.048, 0.09, 0.13, 0.329. An interest-
ing results is that all curves meet at a point which corresponds
to the temperature increment of uniform material under the
same shock strength.

We can get more observation along this line. Under
the same shock strength, the processes with (Δ2 = 0.01,
Tth2 − 300 = 144 K), (Δ2 = 0.02, Tth2 − 300 = 173 K),
(Δ2 = 0.029, Tth2 − 300 = 195 K), · · · , (Δ2 = 0.329,
Tth2 − 300 = 336 K) show high similarities to the process
with (Δ1 = 0.09, Tth1 − 300 = 270 K). If the relations be-
tween (Tth − 300) and Δ are shown in the log-log scale, we
obtain the one labeled by “270” in Figure 45. It is interesting
to find that the relation between (Tth − 300) and Δ follows a
power-law relationship for a wide range. There is a critical
value for the porosity beyond which the power-law relation
breaks. Figure 45 shows also the cases with DT = 240, 210,
180, 150 and 120 K.

In brief, the condensed temperature fields in shocked
porous materials may show high similarities when the shock
strength, porosity and temperature threshold are appropri-
ately chosen.
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4.2 MPM investigations: Local behaviors

In our MPM simulations, local behaviors are referred to the
dynamical behaviors occurred around a single cavity in the
material under shock loading or unloading process.

4.2.1 Shock loading

We set a single cavity in the simulated material. Due to the
periodic boundary conditions applied in the horizontal condi-
tions, what we considered corresponds to a very wide system
with a row of cavities in it. We study various cases where
the shock strength varies from strong to weak. In the cases
with strong shock, the jet creation and the distribution of the
“hot spots” are the main concern. When the cavity is close
to the free surface, the critical condition for observing jet-
ted material particles from the upper free surface is studied.
In the cases with weak shock, we investigate the effects of
cavity size, distance from the cavity center to the impacting

interface, the initial yield stress of the material, etc, on the
collapsing process [24].

The main studies here include two parts: (i) the depen-
dence of collapsing symmetry on the shock strength and other
interfaces, (ii) hydrodynamic and thermodynamic behaviors
ignored by the pure fluid models. In the case with weak
shock, an interesting observation is that the cavity may not
be collapsed completely and the cavity may collapse in a
nearly isotropic means. In the case with strong shock, the
jetting process is carefully studied. The specific collapsing
process significantly affects the distribution of “hot spots” in
the shocked material.

A snapshot for a case with high shock strength is shown in
Figure 46. The initial pressure loaded by the shock is about
30 GPa which is less than the critical value, 270 GPa. The
global scenario is follows: (i) When the shock wave arrives
at the upper-stream wall of the cavity, plastic deformation be-
gins to occur. The shock waves at the two sides of the cav-
ity propagate forwards to the free surface. The propagation
speed of compressive waves at the two sides is larger than
the deforming speed of the upper-stream wall of the cavity.
(ii) The cavity continues to collapse, a configuration with a
turned “C” occurs. A jet phenomenon occurs. “Hot spots”
occurs at the tip regime of the jet (See Figure 46(a)). (iii)
The propagation speed of jetted material increases with time.
Along the initial shocking direction, the tip of the jet catches
up, then exceeds the compressive waves at its two sides. (iv)
The jetted material particles hit the down-stream wall of the
cavity, leads to a pair of vortices rolling in opposite direc-
tions. The “hot spots” appear at the vortex centers (See Fig-
ure 46 (b)).

When the cavity is close to the upper free surface, if the
shocking is strong enough, the material particles jetted into
the cavity will break the down-stream wall of the cavity, and
consequently, some material particles will be jetted out of the
upper free surface. Such a behavior has been observed in
experiments and has long been concerned. A dynamical pro-
cess is shown in Figure 47, where the initial cavity is under
the free surface by a distance d = 4.5 µm and the initial radius
is r = 1.5 µm, vinit = 1120 m/s. The corresponding times for

t=5 nst=2 ns

(a) (b)

Figure 46 (Color online) Snapshots of collapse of a single cavity under
strong shocks, where vinit = 1500 m/s. From black to yellow the grey-level
in the figure shows the increase of local temperature denoted by the plastic
work during the deformation procedure. The spatial unit is µm. The unit of
work is mJ. (a) t=2 ns; (b) t=5 ns. (The gray-level version is published in
ref. [24].)
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Figures 47(a)-(f) are 1.2, 1.6, 1.8, 2.0, 2.2, and 12.0 ns, re-
spectively. Figure 47(a) shows a snapshot where the shock
wave has passed most part of the cavity. At this time the cav-
ity has been substantially deformed and some material parti-
cles have been projected into the cavity. When t = 1.6 ns,
the cavity has been nearly filled with the jetted material (See
Figure 47(b)). The compressive wave first arrives at the up-
per free surface and rarefactive waves are reflected back from
the two sides. The rarefactive waves reflected back into the
shocked material decrease the pressure and new cavitation
may occur around the region of the original cavity (See Fig-
ures 47(c) and (d).) Compared with those at the two sides,

material in the middle has a much higher pressure and has
much more kinetic energy. The newly created cavities co-
alescence and become a larger one with time (See Figure
47(e)). If the upper wall of the newly created cavity pos-
sesses enough kinetic energy, it will break (See Figure 47(f)).
The corresponding configurations with temperature is shown
in Figure 48. In Figure 48(a) the “hot spot” appears at the
tip of the material tongue. In Figures 48(b) and (c) the “hot
spot” occurs at regime hit by the material tongue. When new
cavities are created, “hot spots” occur at the inner wall of the
cavity, especially the upper and bottom walls (See Figures
48(d)-(f)). Whether or not there are material particles jetted

1.2 ns 1.8 ns1.6 ns

12.0 ns

2.2 ns2.0 ns

(a) (b) (c)

(d) (e) (f)

Figure 47 (Color online) Snapshots of collapse of a single cavity under a strong shock. For the pressure contour, from black to yellow the value increases.
The corresponding times at (a)-(f) are 1.2, 1.6, 1.8, 2.0, 2.2, 12 ns, respectively. The spatial unit is mm. The unit of pressure is MPa. (The gray-level version is
published in ref. [24].)

1.2 ns 1.8 ns1.6 ns

2.0 ns 2.2 ns
12.0 ns

(a) (b) (c)

(d) (e) (f)

Figure 48 (Color online) Configurations with local temperature denoted by the plastic work during the deformation. The unit of work is mJ. (a)-(f) here
correspond to (a)-(f) in Figure 2, respectively. (The gray-level version is published in ref. [24].)
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from the upper free surface depends on the initial shocking
strength and the width d. The critical initial velocity u in-
creases parabolically with d (See Figure 49).

With decreasing the shock strength, the collapsing process
becomes slower. When the initial impact velocity decreases
to about 200 m/s, the dynamical scenario has been signifi-
cantly different. It is interesting to find that the cavity can
not be fully collapsed, and the final configuration around the
cavity varies from (nearly) symmetric to asymmetric, or vice
verse, with changing the distance from the cavity center to
the impacting surface. Figure 50 shows an asymmetric dy-
namical scenario where the cavity collapsed less in shocking
direction. The behavior can be understood via “recovering”
or “magnifying” the system in such a way: The rigid walls at
the two sides and at the bottom of the system can be regarded
as “mirrors”. The extended system is symmetric about the
“mirrors”. The distance between two neighboring cavities
in the horizontal direction is dH ; and the distance between
the two cavities in the computed and the fictitious material
bodies, respectively, is dV . The cavities reflect rarefactive
waves when compressive waves come, which makes lower
the pressure in between two cavities. If the distance dV in
vertical direction is much less than dH in horizontal direction,
the rarefaction effects in between the two cavities in vertical
direction are more pronounced. Therefore, the pressure in
this region is lower than those in the surrounding regions. At
the same time, when the compressive waves arrive at the up-
per free surface, rarefactive waves will be reflected back and
propagate towards the cavity. This is a second reason why
the cavity collapses less in the vertical direction. Compared
with the rarefactive waves reflected from the fictitious cavity
below the bottom, the ones from the upper free surface make
effects in a much wider range, which is responsible for the
phenomenon that the collapsing of the lower part of the cav-
ity is more pronounced. Figure 51 shows such an case. The
highest temperature appears in the region below the cavity.

Figures 50(a) and 51(a) show that, although the rarefactive
waves lower the pressure in the influenced region, but may
increase the temperature. Because the rarefactive waves may
make plastic work.

The temperature in the “hot spot” continues to increase in
the process of collapsing. The lower part of the cavity will
collapse more pronouncedly if the distance between the cav-
ity and the lower impacting face is further decreased. Fig-
ure 52(a) shows the final steady state for such a case, where
the lower boundary of the cavity just locates at the impacting
face. In contrast, if the distance between the cavity and the
lower impacting face is increased, the collapsed cavity will
be more symmetric. Figure 52(b) shows such a case, where
the collapsing is nearly isotropic.

When study the effects of cavity size on the collapsing be-
haviors, the other conditions are kept unchanged. For the
checked cases, the collapsibility increases with decreasing
the initial cavity. The evolution of area of the cavity is shown
in Figure 53(a), where four different sizes are used. If define
the collapsibility as Φ = (A0 − A)/A0, then Φ decreases with
increasing the cavity radius, where A0 and A are the areas of
the cavity in the initial and final states (See Figure 53(b)). The
effects of material strength is also investigated via changing
the initial yield stress of the material and keeping unchanged
all other parameters. The corresponding collapsing processes

Figure 49 Critical impact velocity versus the thickness of the downstream
wall of the cavity. The symbols are simulation results and the solid line is
the fitting result. (Adopted with permission from ref. [24].)

(a) (b) (c)

(d) (e) (f)

Figure 50 Snapshots of collapse of a single cavity under a weak shock. From black to white the local pressure increases. The spatial unit is millimetre. The
unit of pressure is megapascal. (a) t=1.0 ns; (b) t=1.6 ns; (c) t=2.2 ns; (d) t=3.0 ns; (e) t=5.4 ns; (f) t=16.0 ns. (Adopted with permission from ref. [24].)
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(a) (b) (c)

(d) (e) (f)

Figure 51 Configurations with local temperature denoted by the plastic work during the deformation. From black to white the grey level in the figure shows
the increase of local temperature. The spatial unit is millimetre. The unit of work is millijoule. (a) t = 1.0 ns; (b) t = 1.6 ns; (c) t = 2.2 ns; (d) t = 3.0 ns; (e) t =
5.4 ns; (f) t = 16.0 ns. (Adopted with permission from ref. [24].)

(a) (b)

Figure 52 Transition of symmetry of collapsing. (a) Asymmetric in ver-
tical direction near the impacting face; (b) nearly symmetric collapse. The
gray level in the figure corresponds to the plastic work. The spatial unit in
the figure is millimetre. The unit of energy is millijoule. (Adopted with
permission from ref. [24].)

(a)

(b)

(c)

(d)

Figure 53 Effects of cavity size ((a) and (b)) and initial yield ((c) and (d))
to the collapsing procedure. (a) Area of cavity versus time for different ini-
tial radius. What shown in the legend are the initial radii, the unit is µm; (b)
collapsibility versus initial radius of cavity; (c) area of cavity versus time for
different initial yield stresses. What shown in the legend are the initial yield
stresses, the unit is megapascal; (d) collapsibility versus initial yield stress.
(Adopted with permission from ref. [24].)

are shown in Figure 53(c). The collapsibility decreases nearly
parabolically with increasing the initial yield (See Figure
53(d)).

4.2.2 Shock unloading

Response and failure of ductile materials under dynamic
loading are important and fundamental issues in the fields
of science and engineering. The process of material failure
is very complicated because various physical and mechanical
mechanisms, in a wide spatial-temporal scales, are involved
and coupled. The spallation and fragmentation of metal ma-
terials consist mainly of the following typical stages: nucle-
ation, growth and coalescence of microscopic voids and/or
larger scale cavities. The quasi-static growths of voids and
cavities have been extensively studied. However, the dynam-
ical growth is much more complex and far from being well
understood.

Early in 1972 Carroll and Holt [69] showed that the com-
pression effect on the cavity growth is not pronounced if the
material is not sensitive to the loading rate. The study was ex-
tended to the case of visco-plastic materials by Johnson [70]
in 1981. In 1987 Becker [71] numerically analyzed the in-
fluences of a nonuniform distribution of porosity on the flow
localization and failure in a porous material. In this study,
the void distribution and properties were obtained from mea-
surements on partially consolidated and sintered iron powder.
An elastic visco-plastic constitutive relation for porous plas-
tic solids was used. The model considers local material fail-
ure via considering the dependence of flow potential on void
volume fraction. The region modeled is a small portion of a
larger body under various stress conditions. Under imposed
periodic boundary conditions, both the plane strain and ax-
isymmetric deformations were investigated. It was found that
interactions between regimes with higher fractions of void
promote the plastic flow localization into a band. Local fail-
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ure occurs through void growth and coalescence within the
band. This study suggested a failure criterion based on a
critical void volume fraction. The latter is only weakly de-
pendent on the stress history. The critical void fraction is
dependent on the initial void distribution and material hard-
ening characteristics. In 1992 Ortiz and Molinari [72] inves-
tigated the influences of strain hardening and rate sensitivity
on the dynamic growth of a void in a plastic material. They
pointed out that the effects of inertia, hardening and loading
rate can significantly influence the void growth. The results
of Benson [73] in 1993 and those of Ramesh and Wright [74]
in 2003 indicate that the inertia effect is responsible for the
stable growth of cavity. In 1998, within the scope of the lo-
cal approach methodology, Pardoen et al. [75] investigated
the ductile fracture of round copper bars. They analyzed two
damage models and comparatively studied four coalescence
criteria. The two damage models are the Rice-Tracey model
and the Gurson-Leblond-Perrin model. The four coalescence
criteria are as follows: (i) a critical value of the damage pa-
rameter, (ii) the Brown and Embury criterion, (iii) the Thoma-
son criterion and (iv) a criterion based on the reaching of
the maximum von Mises equivalent stress in a Gurson type
simulation. Both the ellipsoidal void growth and void inter-
action were accounted for. In this study, as far as possible,
all the parameters of the models were identified from experi-
ments and physical observations. Via using specimens which
present a wide range of notch radii, the effect of stress triaxi-
ality was studied. Via comparing the behavior of the material
in the cold drawn state and in the annealed state, the effect of
strain-hardening was analyzed. In 2000 an extended model
for void growth and coalescence was proposed by Pardoen
et al. [76]. This model integrated two existing contributions.
The first is the Gologanu-Leblond-Devaux model extending
the Gurson model to void shape effects. The second is the
Thomason scheme for the onset of void coalescence. Each of
these was extended heuristically to describe the strain hard-
ening. To supplement the criterion for the onset of coales-
cence, a simple micro-mechanically based constitutive model
for the void coalescence stage was proposed. The fully en-
hanced Gurson model depends on both the flow properties of
the material and the dimensional ratios of the void-cell repre-
sentative volume element. The effect of void shape, relative
void spacing, strain hardening, and porosity are incorporated
into it. In 2001 an inelastic rate-dependent crystalline con-
stitutive formulation and specialized computational schemes
were developed by Orsini et al. [77]. They aim to obtain a de-
tailed understanding of the interrelated physical mechanisms
which can result in ductile material failure in rate-dependent
porous crystalline materials subjected to finite inelastic de-
formations. It was shown that ductile failure can occur either
due to void growth parallel to the stress axis or void inter-
action along bands. The former results in void coalescence
normal to the stress axis. The latter are characterized by in-
tense shear-strain localization and intersect the free surface at
regions of extensive specimen necking. In 2002, two mech-

anisms of ductile fracture, void by void growth and multiple
void interaction, were discussed by Tvergaard and Hutchin-
son [78]; the plastic flow in porous material was discussed by
Zohdi et al. [79].

In most of current studies on cavity/void growth, the main
concern is focused on its relevance on macroscopic behav-
iors [69-79]. The quantitative relations are determined via fit-
ting experimental results. So, those studies were not capable
of revealing or indicating the underlying idiographic physi-
cal and mechanical mechanisms of cavity/void growth. The
cavity coalescence is the final stage of spallation developed
from mesoscopic scale to macroscale [80]. But this stage is
also the least-known stage [81-88]. Continuous damage me-
chanic theory adopts fluid or solid model supplemented by
some damage modeling. The damage is generally accounted
for by an internal variable. The internal variable is generally
defined by the variation of some mechanical behavior. It is
not dynamically relevant to the particular structures.

Global scenario In our numerical experiments, the sim-
ulated aluminum material body is initially located within the
volume, [−20, 20] × [−20, 20] × [0, 50]. The length unit is
µm. A spherical cavity with radius r = 5 µm is located at
the position (0, 0, z) within the material body. A rigid wall
with z = 0 is connected with the aluminum material body.
The mesh size is 1 µm. The diameter of the material parti-
cle is 0.5 µm. Periodic boundary conditions are used in the
horizontal directions. Free boundary condition is used in the
upper surface. The rigid wall is assumed to be the same kind
of material with the material body [89]. The material body
starts to move upwards at the velocity vz0 at the time t = 0.
Thus, the tensional wave or rarefactive wave occurs at the in-
terface with z = 0. The rarefaction wave propagates upwards
within the material body.

A set of snapshots of configurations with vz field are shown
in Figure 54, where z = 10 µm, vz0 = 100 m/s. The contours
for vz = 0 are shown. The velocities at the nodes within the
cavity are equal zero because no material particles are located
within the cavity. Before the arrival of the global tensional
wave, the upper contour with vz = 0 within the body presents
the initial morphology of the cavity. The moving upwards
of the lower contour with vz = 0 shows the propagation of
tensional wave. The lower contour for vz = 0 is approaching
the lower boundary of the cavity at about t = 0.8 ns. Before
that time the velocities of particles below the cavity had be-
gun to decrease. It can also be found that, below the lower
vz = 0 contour, some material particles show negative ve-
locities. With propagating of the tensional wave, the lower
contour for vz = 0 begins to get connection with that cor-
responding to the cavity. When the tensional wave arrives
at the cavity, compression wave is reflected back. Under
the compression wave, more material particles obtain nega-
tive velocities, and their amplitudes continue to increase (See
Figures (b) and (c)). Compared with the propagation of ten-
sional wave surrounding the cavity, the cavity deformation is
a slower behavior. The surrounding tensional waves begin
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to converge after passing the cavity. Thus, higher negative
pressure occurs on the top of the cavity. Consequently, ma-
terial particles on the top of the cavity are accelerated by the
upward stresses. At about t = 3 ns some material particles

obtain velocities larger than 100 m/s (See Figure (d)).
Figure 55(a) shows the configuration with pressure and ve-

locity fields within the x = 0 plane, where t = 2 ns. Figure
55(c) shows that for t = 3 ns. From blue to red, the color cor-

(a) (b)

(c) (d)

Figure 54 (Color online) Configurations with vz field at four different times for the case with z = 10 µm and initial vz0 = 100 m/s. The contours for vz = 0
are shown in the plots. (a) t = 0.8 ns, (b) t = 1.2 ns, (c) t = 2.0 ns and (d) t = 3.0 ns. (Adopted with permission from ref. [89].)

(a) (b)

(c)
(d)

Figure 55 (Color online) Configurations with pressure and velocity fields in the plane with x = 0 (see (a) and (c)) and vz distribution in the tensile direction
(see (b) and (d)). t = 2 ns in (a) and (c). t = 3 ns in (b) and (d). (Adopted with permission from ref. [89].)
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responds to the increase of pressure. One can observe the de-
formation of the cavity under tensile loading. To study the be-
haviors in amplitudes of particle velocities, the distributions
of vz along the z-direction are shown in Figures 55(b) and
(d), respectively. When t = 2 ns, the maximum downward
particle velocity is about 230 m/s. When t = 3 ns, it is about
300 m/s. Figure 55(d) shows also that some material particles
have upward velocities larger than 100 m/s. The morphology
irregularities of the cavities shown in the figures result from
the following three reasons. (i) Due to the discreteness of the
material particles in the MPM, the initial cavity is not strictly
spherical. (ii) The mesh size is not negligible compared with
the dimension of the cavity. (iii) The compressive waves re-
flected back from the cavity result in the Richtmyer-Meshkov
(RM) instability, which is the main physical reason for the
initial irregularities of the deformed cavity. For the first two
points, it should be pointed out that, in practical simulations,
we have to make compromise between the size of simulated
material body, cavity size and the mesh unit. It should also
be commented that the cavities in practical materials are gen-
erally not strictly spherical, which is partly simulated by the
finite size effects of mesh and particles.

With the increasing of upward stress acting on particles on
the top region of the cavity, the accelerations and velocities
of particles increase. The global tensional wave arrives at the
upper free surface at bout t = 7.2 ns. The maximum value of
particle velocities on the top region of the cavity is about 430
m/s. There exists a region below the cavity within which the
particles have large downward velocities at this moment. The
largest value of downward velocity is about 325 m/s. There
exists a valley between the peak and the tensional wave front
in the curve of vz versus z. The smallest value of particle ve-
locities is about 6 m/s. When the tensional wave arrives at the
upper free surface, compression wave is reflected back into
the material. The material particles, in the region scanned by
the reflected compression wave, obtain downward accelera-
tions. Several characteristics are typical for the compression
wave. (i) The velocities of material particles, representing
the upper free surface, decrease. (ii) The valley continues to
move toward the upper free surface. (iii) The maximum ve-
locity between the valley and the cavity continues to increase.
At the same time, the region with maximum downward parti-
cle velocity moves toward the bottom. The simulation results
for the case with single cavity are also indicative for interac-
tion of neighboring cavities because periodic boundary con-
ditions are used in the horizontal directions. From the pres-
sure field, the negative pressures within regions among the
neighboring cavities are weaker. The contours for negative
pressure with small amplitudes are connected. The compres-
sion wave reflected back from the cavity becomes stronger
with the increasing of the strength of tensional wave. Con-
sequently, regions with local positive pressures occur among
the neighboring cavities. The occurrence of positive pres-
sures within the background regime, where material particles
are scanned by the global tensional wave, is a typical cavity

effect.
The deformation of the cavity is still controlled by the ten-

sile loading before the reflected compression wave arrives.
As an example, we analyze the pressure distributions at two
times, 9 and 11 ns. The configurations with pressure field at
the time 9 ns is shown in Figure 56, where the contour pres-
sures are −300, −350, −400, −450, −500 and −550 MPa,
respectively. Around the cavities, the contours for pressure
lower than −300 MPa are connected. The neighboring cavi-
ties interact via the connection of pressure contours. There is
still no positive pressure occur among the neighboring cavi-
ties when t = 9 ns. Figure 57 shows various pressure con-
tours, where t = 11 ns, and the contour pressures are 0, −50,
−100, −150, −200 and −250 MPa, respectively. Observa-
tions on pressure distribution around the cavity are as below.
(i) The pressure surrounding the cavity is zero. (ii) The cor-
responding contour moves away from the cavity and its sur-
face area becomes larger with the increasing of pressure. (iii)
Among cases shown in the figure, the contour for −150 MPa
has the maximum area. The contour area becomes smaller
if further increase the pressure value. Observations on pres-
sure distribution between the cavity and rigid wall are as be-
low. There are four regimes, around the cavity, where the
pressures are positive. The pressure contours for −100 MPa,
between the nearest cavities, are connected. The contours
for −150 MPa have a higher connectivity. All contours for
−200, −250 MPa, etc. are connected. The pressure distribu-
tion on the top of the cavity shows the following behaviors.
The highest pressure regime does not locate above the cavity
but above the middle of neighboring cavities. Because the
tensional wave propagates more quickly within the solid re-
gion, the wave firstly arrives at the upper free surface. The
weaker the negative pressure, the closer to the upper free sur-
face and the planar the corresponding pressure contour.

Morphology versus tensile strength The configura-
tions with temperature field are shown in Figure 58, where
t = 6 ns and the contour temperatures are 310, 320, 330
and 340 K, respectively. The thermal process is much slower
compared with the dynamical process. It is the plastic work
that determines the temperature and distribution of hot-spots.

All tensional waves arrive at the upper free surface at the
same time because they propagates in the same speed, sound
speed. The growth rate of the cavity gets larger with the in-
crease of tensile strength. The evolution of the cavity mor-
phology is shown in Figure 59. Figure 59(a) is for the cavity
volume versus time. The points show simulation results and
the lines are plotted to guide the eyes. The initial tensile ve-
locities, 100, 200, 400 and 1000, are shown in the legend,
where the unit is m/s. The inset shows an enlarged portion of
the curve for vz0 = 100 m/s. The growth of cavity can be de-
scribed by the following stages. (i) initial slow growth stage,
(ii) linear growth stage, which ends when the global rarefac-
tion wave arrives at the upper free surface, (iii) slower growth
stage, which ends when the reflected compression wave ar-
rives at the cavity, (iv) quicker growth stage, and (v) linear
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growth stage. The evolutions of the cavity dimensions in
Horizontal (H) and Vertical (V) directions are shown in Fig-
ure 59(b). The points show simulation results and the lines
are plotted to guide the eyes. An interesting phenomenon is
that the growth rate in horizontal direction is larger than that
in vertical direction. Such a phenomenon corresponds to the
“necking effect” in macroscopic scale. The growths of cavity
dimensions show also a linear stage. With the increase of the
strength of tensile loading, the growth rate becomes larger.
The initial linear growth rate of cavity volume versus initial
strength of tensile loading vz0 is shown in Figure 59(c). The
points show the slopes of fitting lines in Figure 59(a) for the
first linear growth stage, and the line are linear fitting results

for the points. Within the checked range, with increasing the
initial tensile velocity vz0, the volume growth rate increases
linearly. Figure 60(a) shows the density fields of the material
at the time 7.2 ns. Figure 60(b) is for the time, t = 12 ns. The
corresponding pressure fields are shown in Figures 60(c) and
60(d).

Energy transformation versus tensile strength During
the process of tensile loading, kinetic energy of the mate-
rial transforms gradually to elastic potential energy and plas-
tic work. For the case with uniform material, those ener-
gies distribute uniformly in planes parallel to the rigid wall.
The dynamical and thermodynamical process is in fact one-
dimensional, even though the material is three-dimensional.
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Figure 56 (Color online) Configurations with pressure field at the time 9 ns. The pressure contours in (a)-(f) correspond to −300, −350, −400, −450, −500,
and −550 MPa, respectively. (Adopted with permission from ref. [89].)
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Figure 57 (Color online) Configurations with pressure field at the time 11 ns. The pressure contours in (a)-(f) correspond to 0, −50, −100, −150, −200, and
−250 MPa, respectively. (Adopted with permission from ref. [89].)
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(a) (b)

(d)(c)

Figure 58 (Color online) Configurations with temperature field at the time 6 ns. The contours in (a)-(d) correspond to 310, 320, 330 and 340 K, respectively.
(Adopted with permission from ref. [89].)

Figure 59 (Color online) Evolution of the cavity morphology. (a) Cavity volume versus time. (b) Cavity dimensions in the Horizontal (H) and Vertical (V)
directions versus time. (c) The linear growth rate versus initial tensile velocity. The sizes of the initial tensile velocity vz0, 100, 200, 400 and 1000, are shown
in the legend of Figure (a). The unit is m/s. In Figures (a) and (b) the points are simulation results and the lines are plotted to guide the eyes. An enlarge portion
of the curve for vz0 = 100 is shown in the inset of Figure (a). In Figure (c) the points are for the slopes of fitting lines in Figure (a) for the first linear growth
stage, and the line are linear fitting result for the points. (Adopted with permission from ref. [89].)

The situation becomes much more complex when cavities ex-
ist. The configurations with temperature field are shown in
Figures 61(a) and 61(b). The times are the same as in Fig-
ure 60. Besides the cavity morphology, one can understand
better the energy transformation from kinetic to thermal. A
high temperature layer, surrounding the deformed cavity, ex-
ists. Because the plastic work by the stresses is pronounced

in that region. The configurations with vz field at the same
two times are shown in Figures 61(c) and (d), respectively.
With the reflecting back of compression wave from the upper
free surface, the range with high particle velocity decreases.

Figure 62 shows both the dependence of maximum upward
particle velocity, vz max, above the cavity on the initial tensile
velocity vz0 and the dependence of maximum downward par-
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(a) (b)

(c) (d)

Figure 60 (Color online) Configurations with density field ((a) and (b)) and configurations with pressure field ((c) and (d)) at two times, 7.2 and 12 ns. Only
the portion with −20 � x � 0 is shown in each plot. (Adopted with permission from ref. [89].)

(a) (b)

(c) (d)

Figure 61 (Color online) Configurations with temperature field ((a) and (b)) and configurations with vz field ((c) and (d)) at two times, 7.2 and 12 ns. Only
the portion with −20 � x � 0 is shown in each plot. (Adopted with permission from ref. [89].)

ticle velocity, vz min, below the cavity versus vz0. The points
show simulation results and the lines show fitting results.
Both vz max and |vz min| increase logarithmically with vz0.

4.3 DBM investigations

As mentioned above, many behaviors in heterogenous mate-
rials under strong shock can be described and investigated

by fluid models. At the same time, the non-equilibrium phase
transition kinetics studied by the liquid-vapor model can help
to understand the solid-solid phase transition in the metal
under shock from two sides, the morphological and non-
equilibrium behaviors. When such a flow system is in a unsta-
ble state, the free energy of the system is too high compared
with that in its ground or metastable state. The inter-particle
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Figure 62 (Color online) Maximum upward particle velocity and maximum
downward particle velocity versus initial tensile velocity vz0. The points are
simulation results and the lines are logarithmic fitting results. (Adopted with
permission from ref. [89].)

force will drive changes, and the gradient force induced by
gradients of macroscopic quantities will opposes them. From
the view of phase transition kinetics, for a system instanta-
neously quenched from a disordered state into a two-phase
coexistence one, the flows are generally known to undergo
two TNE stages, the early spinodal decomposition stage and
the later domain growth stage, before approaching the finial
totally separated equilibrium state. Previous studies were fo-
cused mainly on the domain growth law in the second stage,
which is partly due to the uncertainty in quantitative deter-
mining of transition time from the former to the latter stages.
This uncertainty is due to the existence of large variety of
complex spatial patterns, especially during the spinodal de-
composition stage. In a recent work [90], with the help of
morphological analysis, our group presented a geometrical
criterion for separating the two stages and some new insights
into the first stage have been obtained. But roughly speak-
ing, the spinodal decomposition stage has, far from, being
well-understood. At the same time, as a typical case of non-
equilibrium phase transition, the TNE behaviors during the
whole process are barely investigated.

The DBM is a kinetic method making it possible to inves-
tigate effectively the complex interplay between various non-
equilibrium behaviors. Based on the measured TNE quan-
tities, one can further define new quantities, like the TNE
strength, to roughly estimate the deviation from the corre-
sponding thermodynamic equilibrium. In a recent study [8],
it is found that the TNE strength attains its maximum at the
end of the spinodal decomposition stage. Consequently, the
TNE intensity presents a convenient physical criterion to sep-
arate the two stages of phase separation. The effects of latent
heat and surface tension on phase separation were also stud-
ied via the DBM simulation. Some specific results are as
below.

Figure 63 shows three sets of snapshots for the density
field in the phase separation process. The difference for the
three columns is the value of K. K is a coefficient describ-

ing the strength of interfacial energy. The interfacial ten-
sion strongly influences the pattern morphology, the evolu-
tion speed and the depth of phase separation. At the time
t = 0.045, numerous mini domains with large density ratio
occur for the case with small K = 10−5, which indicates that
the evolution has already entered the spinodal decomposition
stage. While for cases of larger K, at the time, the density
variance is small, and it decreases with the increasing of co-
efficient K. Nevertheless at the time t = 0.153, the mean
domain size and the phase separation depth are nearly the
same for the three cases; all of them proceed to the domain
growth stage. In the later times, it is observed that the larger
the coefficient K, the faster the phase separation, the bigger
the mean size, the fewer the domain number and the wider
the interface.

These observations can be quantitatively studied via the
time evolution of the characteristic domain size R(t). See
Figure 64(a). As a rough estimation of the phase separa-
tion process, the R(t) curves behave similarly and distinguish
approximately the phase separation process into two stages.
During the first stage, the characteristic domain size R(t) in-
creases and arrives at a platform which is marked by the green
arrow. It should be pointed out that, the marked point corre-
sponds to the end of the spinodal decomposition stage. The
plateau is dependent on the initial state described by the in-
tensity of random noise, the depth of temperature quench,
and also the interfacial tension. The larger the interfacial ten-
sion, the longer the duration tS D of the spinodal decomposi-
tion stage, and the larger the domain size RS D for the spinodal
decomposition stage.

During the phase separation process, the potential energy
transforms into the thermal energy and the interfacial energy.
The physical scenario is as below. Under the action of inter-
particle force, a liquid (vapor) embryo continuously gains
(loses) molecules due to the condensation (evaporation), then
the interface emerges and part of the potential energy trans-
forms into the interfacial energy. Since the interfacial energy
is proportional to K, an increasing K means an increasing in-
terfacial energy. Since the interfacial tension always resists
the appearance of new interface to minimize the interfacial
energy, an increasing K means an increasing tS D required for
completing such an energy conversion process. The larger
the interfacial tension, the longer it takes for sharp interfaces
to form.

In the second stage, under the action of interfacial tension,
small domains merge to minimize the interfacial energy. The
domain size R(t) continuously grows with time. The slope of
the R(t) curve presents a phase separation speed uDG for the
domain growth stage. It can be found that uDG increases with
increasing K. Thus, during the second stage, the phase sep-
aration process is significantly accelerated by the interfacial
tension. Specifically here, the curve of R(t) for K = 6 × 10−5

crosses with the other two at the time t = 0.153, then rises
quickly and exceeds the former two. When the coefficient K
varies from 10−5 to 3 × 10−4, the dependence of separation
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speed uS D on K can be fitted by

uDG = e + f K − (gK)2 + (hK)3, (34)

with e = 0.00764, f = 1.51 × 102, g = 8.06 × 102, h = 1.02

×103, as shown in the legend of Figure 64(a).
To numerically determine the duration tS D, we check

the evolution of the second Minkowski measure: boundary
length L(t) for the density field. The density threshold is cho-
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Figure 63 (Color online) Density patterns at three representative times during thermal phase separation processes, t = 0.045 (the first row), t = 0.153 (the
second row) and t = 4.0 (the third row). From left to right, the three columns correspond to cases with K = 10−5, 3× 10−5 and 6× 10−5, respectively. (Adopted
with permission from ref. [8].)

(a) (b)

(c) (d)

Figure 64 (Color online) (a) Evolutions of the characteristic domain sizes R for the procedures shown in Figure 63. (b) Evolutions of the boundary length
L and the xx component of some TNE manifestations for the phase separation process with K = 10−5. (c) Evolutions of the boundary lengths L (solid curves)
and the corresponding TNE intensities D (curves with solid symbols) for phase separation processes with various K. Here 1, 3, 6, ..., 18 labeled on the L-curves
indicate cases with K = 10−5, 3 × 10−5, 6 × 10−5, ..., 1.8 × 10−4, respectively. (d) Duration of the spinodal decomposition stage tS D and the maximum TNE
intensity Dmax as functions of K. (Adopted with permission from ref. [8].)
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sen as ρth = 1.70 in Figure 64(b). Because the density pat-
tern has the largest boundary length for this case. Some TNE
manifestations are exhibited in the same panel. One can find
that the peak of the L(t) curve exactly coincides with the
peaks or troughs of the TNE curves.

Since each component of Δ or Δ∗ describes the TNE from
its own aspect, a “TNE strength” can be defined as:

D =
√
Δ∗2

2
+ Δ∗2

3
+ Δ∗2

3,1
+ Δ∗2

4,2
(35)

to roughly and averagely estimate the deviation amplitude
from the thermodynamic equilibrium. One can also use√
Δ2

2
+ Δ2

3
+ Δ2

3,1
+ Δ2

4,2
(or its F, or G component). Before

using the concept, one needs first nondimensionalize the dis-
crete Boltzmann equation. Here, the discrete Boltzmann
equation is dimensionless, so do Δ and D. Thus, D = 0 in-
dicates that the system is in thermodynamic equilibrium, and
D > 0 indicates that the system is out of the thermodynamic
equilibrium. Figure 64(c) shows the evolutions of L(t) (solid
curves) and D(t) (curves with solid symbols), where D(t) is
calculated from Δ∗F ) for various K. The numbers, 1, 3, 6, ...,
18, labeled on the L(t)-curves indicate cases with K = 10−5,
3 × 10−5, 6 × 10−5,...,1.8 × 10−4, respectively. One can find
a perfect coincidence between the peaks of L(t) and D(t) in
pairs. Thus, the behavior of D(t) curve provides a conve-
nient and efficient physical means to discriminate the stages
of spinodal decomposition and domain growth. The left side
of the peak corresponds to the spinodal decomposition stage,
and the right side corresponds to the domain growth stage.
Compared to the morphological method, the extension of the
current approach to three dimensions is straightforward. Be-
cause the calculation of the interface area in three dimen-
sional case is much more complex in coding.

From Figure 64(c) one can observe that, when K varies in
the range [10−5, 3 × 10−4], the dependence of tS D on K can
be fitted by the following equation,

tS D = a + bK, (36)

with a = 0.066 and b = 1.51 × 103. The specific result is
shown in Figure 64(d). Go to a further step, because of the
length of interface, the depth of phase separation, as well as
the gradient force and inter-particle force obtain their peak
values at the end of the stage of spinodal decomposition, the
TNE effect is the strongest at this moment. The interfacial
tension effects are found to decrease the maximum of the
TNE strength Dmax. The relation follows roughly

Dmax = c + dK−0.5, (37)

with c = −0.073 and d = 3.30 × 10−3. See Figure 64(d).
From the physical side, the Knudsen number is usually used
to measure the TNE level. It is defined as the ratio be-
tween the molecular mean-free-path λ and a macroscopic
character length L. For a phase separation process, L can
be roughly taken the domain size RS D at the end of the spin-
odal decomposition stage. Thus, the mean Knudsen number

Kn = λ/2RS D. Since RS D increases with K, Kn and the TNE
strength decrease with K. This can also be understood as fol-
lows. A larger coefficient K broadens the interfacial width,
reduce the gradient force and refrain the TNE intensity. The
details of the DBM and more results are referred to ref. [8].

As for system under detonation by DBM, we just briefly
mention a few results. As an initial application, various non-
equilibrium behaviors around the detonation wave in one-
dimensional detonation process were preliminarily probed. It
is found that, at the von Neumann pressure peak, the system
is in a state being close the its local thermodynamic equi-
librium; in front of and behind the von Neumann pressure
peak, the system deviates from the thermodynamic equilib-
rium state in opposite directions. The following TNE behav-
iors, exchanges of internal kinetic energy between different
displacement degrees of freedom and between displacement
and internal degrees of freedom of molecules, have been ob-
served. It was found that the system viscosity (or heat con-
ductivity) decreases the local TNE, but increases the global
TNE around the detonation wave. Even locally, the sys-
tem viscosity (or heat conductivity) results in two compet-
ing trends, i.e. to increase and to decrease the TNE effects.
The physical reason is that the viscosity (or heat conductivity)
takes part in both the thermodynamic and hydrodynamic re-
sponses to the corresponding driving forces. The ideas to for-
mulate DBM with the smallest number of discrete velocities
and DBM with flexible discrete velocity model are presented
[5,6,30]. A double-distribution-function DBM for combus-
tion is referred to ref. [41].

4.4 MD investigations

MPM simulation is based on continuum assumption. The ma-
terial properties are described by constitutive equation. Con-
sequently, the minimum element of the material used in the
simulation should be larger than 1 µm. When some critical
phenomena, such as initiating of phase transition, localiza-
tion of plasticity, creation of damage and fracture, have to
be considered, the original continuum modeling and consti-
tutive equation do not work any more and need to be im-
proved based on more fundamental mechanisms in smaller
scales. The MD simulation can study the dynamic behav-
iors of microscopic structures in the scales of nanometer and
sub-nanoseconds. The bridge connecting the microscopic
MD simulation and the mesoscopic MPM simulation is still a
grand challenge in nowadays. We hope to incorporate the mi-
croscopic evolution mechanisms of these critical phenomena
into the larger-scale model via some coarse-grainning tech-
niques.

Our MD simulations can be classified into two groups.
The first group aims to study the creation mechanisms of
micro-structures like dislocation, void, cavity, and new phase
grain in metal materials [42, 91-93]. The second group aims
to study the evolution behaviors of these micro-structures
[43, 44, 94, 95].
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4.4.1 Creation mechanisms of micro-structures

Due to the fundamental importance for plastic deformation,
phase transition and dynamic fracture modelings, the dislo-
cation and void nucleation processes have attracted extensive
theoretical and experimental studies. But due to the complex-
ities, the physical picture on the self-organized atomic collec-
tive motions during dislocation creation, and the mechanisms
for the void nucleation, obscured by the extreme diversity,
in structural configurations surrounding the void nucleation
core, are still open problems and far from being well clari-
fied. Via MD simulations we investigated the origin of dis-
location creation and void nucleation in face-centered-cubic
(FCC) ductile metals under uniaxial high strain rate tensile

loading. The dislocation creation process can be described
by three distinguished stages (See Figure 65): In the first
stage, thermal fluctuations randomly activate Flattened octa-
hedral structures (FOSs) in the material. In the second stage,
double-layer defect clusters occur via self-organized stack-
ing of FOSs on the close-packed plane. In the third stage,
stacking faults appear and the Shockley partial dislocations
are created from the double-layer defect clusters by slip be-
tween the layers. The dislocation nucleation and slip dot not
release bulk stress (negative pressure), even though they can
release part of the shear stress. Plenty of energies accumu-
late in the system with the increase of the tensile strain. At
the weak points in material, some voids or cracks occur to
release the accumulated energy.

(a) (b)

(c) (d)

(e) (f)

Figure 65 (Color online) Molecular-dynamics simulation snapshots that provide a general three-stage physical picture for the generation of dislocations
and the corresponding non-zero Burgers vectors in FCC ductile metals under high-strain-rate uniaxial stretch. Panel (a) shows that FOSs (for a detailed view,
see the top right inset) are firstly activated in the metals by thermal fluctuations. Panel (b) shows that FOSs begin to stack on the close-packed plane to form
double-layer defect clusters (see the top left inset for closer view). This stacking process is shown in the top right inset. The Burgers vector for the double-layer
defect cluster structure is calculated to be zero, as shown in the bottom left inset. Panel (c) and panel (d) shows the transformation of the double-layer defect
clusters into stacking faults. Panel (e) gives a few non-zero Burgers vectors of the nucleated dislocations that surround the stacking faults. Panel (f) shows the
growth of stacking faults and dislocations. In panels (a)-(c)the coordination numbers of red and green atoms are 13 and 12, respectively, while in panels (d)-(f)
the CNA values of red and green atoms are 5 (dislocation atoms) and 2 (HCP atoms), respectively. (Adopted with permission from ref. [42].)
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The cavity creation process can be described by the fol-
lowing two stages. In the first stage, stacking faults, with dif-
ferent normal directions, evolve to intersect with each other.
They generate pillar-like vacancy strings located at the inter-
crossing lines (See Figure 66 and the inset inside). In the
second stage, these vacancy strings grow into voids via emit-
ting dislocations. The growth of the nucleated voids releases
stress, which suppresses the growth of neighboring vacancy
strings.

The above process of vacancy string creation could be re-
garded as two successive plastic deformations. The first de-
formation brings a stacking fault into the system (see the in-
set in Figure 66(c)), and the atoms have a displacement of the
corresponding Burgers vector along the plane. During the
second deformation process, the atoms further have a corre-
sponding displacement along the other plane, which results
in a volume variation (see the inset in Figure 66(d)). The

plastic deformation resulting from stacking faults can be de-
scribed by a distortion tensor β = δ(Σ)b =

∫ ∫∑ ds′δ(r′ − r)b,
where δ(Σ) is the surface Dirac function, Σ is stacking fault
plane, and b is the Burgers vector. The relative volume vari-
ation is δV/V = Tr (β). For the case of single stacking fault,
Tr (β) = δ(Σ) · b = 0, herefore, there is no density variation
in the system. For the case of two stacking faults intersecting
with each other, the distortion tensor is β = β1+β2 · (I + β1),
where β1 and β2 are the distortion tensors of the two stack-
ing faults, respectively. Therefore, the volume variation is
δV =

∫
dVTr (β1· β2) = (b2 · n1)(b1 · n2)L/|n1 × n2|, where n1

and n2 are normal directions of the stacking faults and L is the
length of the vacancy string. Here, we arrive at that the cross-
section area of vacancy string resulting from the intersection
of two different stacking faults is (b2 · n1)(b1 · n2)/|n1 × n2|,
and the direction of vacancy string is n1 × n2.

The dislocations generated from the double-layer defect

(a) (b)

(c) (d)

(e) (f)

Figure 66 (Color online) Incipient void nucleation phenomenon and its two-stage mechanism. Panels (a) and (b) shows the void nucleation phenomenon.
Panels (c)-(f) show the evolutionary process of these atoms in a picked slice, and therein the insets are the schematic diagrams of stacking faults creation and
vacancy string formation. Panel (c) shows that four stacking faults appearing as lines nucleate from double-layer defect clusters. Panel (d) shows that two
pillar-like vacancy strings are generated from the the intersections of stacking faults, see the upper and lower black circles. Panel (e) shows that the upper
vacancy string transforms into a void via emitting dislocations, while the lower one retains its size. Panel (f) shows that nucleated voids grow gradually and
neighboring vacancy strings disappear. (Adopted with permission from ref. [42].) )
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clusters are all Shockley partial dislocations. Since the cor-
responding Burgers vectors have been obtained, the initial
vacancy strings have a typical cross-section area,

√
2a2/36,

according to the above expression, where a is the lattice con-
stant. They have six possible types of distribution directions.
But only two types of voids are observed in Figure 66(a).
The corresponding directions are [011] and [01̄1] which are
perpendicular to the loading direction. The physical reasons
are as follows: The energy released via growth of a vacancy
string is

∫ ∫
ds · σ · δr, where δr is the growth displacement,

s the surface area of the vacancy string, and σ the applied
stress. In the numerical simulation, the applied stress is σxx.
Only when the vacancy string is perpendicular to [100], does
its growth release more energy and evolve into voids. The nu-
merical results shown in Figure 66(a) confirm this analysis.

With the development of the high-pressure technology,
structure phase transition in metal has attracted wide notice
and been one of the focuses in material physics. As for the
structure transition from bcc to hcp occurred in iron under a
pressure higher than 13 GPa, before our works, even though
the transition process has been roughly understood, how the
phase transition initiate and how the new phase grain nucleate
are still far from clear. The MD simulation shows that, simi-
larly to case of dislocation nucleation, the nucleation process
of new phase grain can also be described by three stages. In
the first stage, as shown in Figure 67, with the aid of thermal
fluctuations, some atoms deviate from their equilibrium posi-
tions to form FOSs with two different deformation directions
in the local region. In the second stage, as shown in Figures
68(a) and (b), the FOSs with different deformation directions
aggregate to form a thin stratified structure like twin-crystal

configuration. In the third stage, as shown in Figures 68(b)
and (c), the thin stratified structure undergoes a relative slip
to form the new hcp phase.

4.4.2 Evolution mechanisms of micro-structures

When model the damage and micro-fracture, the growth and
coalescence of voids have to be considered. We investigated
the dynamics of a pair of voids located along loading direc-
tion in crystal copper under uniaxial tension. Voids with dif-
ferent sizes grow and coalesce through dislocation nucleating
on void surfaces. In early elastic stage, voids grow along the
loading direction, then the vertical direction and finally form
octahedral-like structures in plastic stage. Critical yield stress
increases with decreasing of void size (See Figure 69). If
radius is large, dislocations nucleate and migrate symmetri-
cally. Voids elongate in loading direction, and evolution pro-
cess is similar. If radius is small,dislocations nucleate asym-
metrically and voids elongate along vertical direction. The
process of void growth may be characterized by elastic defor-
mation, independent growth, coalescence and steady growth
(See Figure 70).

The growth mechanism of new phase domain has not ob-
tain quantitative characterization. The main reason is due to
lacking technology to precisely determine the new phase do-
main. To calculate and analyze the morphology and growth
speed of the hcp phase domains, a central-moment method
and a rolling-ball algorithm were designed. To clarify our
derived growth law of the phase domains, a phase transition
model was proposed. Studies show that the new-phase evo-
lution process undergoes three distinguished stages with dif-
ferent time scales of the hcp phase fraction in the system.

(a) (b) (c)

Figure 67 (Color online) The nucleation and growth mechanisms of hcp domain by means of the formation of FOSs. Panel (a) shows the structure of formed
FOS. Panel (b) shows the nucleation of hcp domain. Panel (c) shows the growth of hcp domain. (Adopted with permission from ref. [43].)

(a) (b) (c)

Figure 68 (Color online) The relatively slip process between the atomic layers observed from the normal direction of phase plane. Panel (a) shows that some
FOSs simply aggregate into a thin stratified structure. Panel (b) shows that the atoms in the central region of the middle layer are transformed into hcp structure.
Panel (c) shows that the atoms in the central region of three layers are transformed into hcp structure. (Adopted with permission from ref. [43].)
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In the initial independent growth stage, the morphology of
domain is ellipsoid-like where the three principal axes are
approximately along [100], [011], and [011̄] directions. The
growth in the three directions shows different velocities. See
Figures 71(a) and (b). The growth velocity depends also on
the morphology of phase domain. The growth speed of a sin-
gle phase domain is supersonic. It is in a range 4 × 104 to
5 × 103 m/s. See Figures 71(c) and (d). The time evolu-

tions of the size, surface area, and volume of the single hcp
domain follow roughly L ∼ t0.5, A ∼ t1.0, V ∼ t1.5, respec-
tively. See Figure 72. The FOS is the primary structural unit
of the embryo nucleus and phase interface of hcp domains.
The interfacial energy is reduced via formation of FOSs. The
hcp phase domain grows up via forming new FOSs along the
phase boundary. The growth rate of single phase domain de-
pends on the loading means and its occurrence time.

Figure 69 Volumes and areas of voids with different size. (Adopted with permission from ref. [92].)

Figure 70 Growth and coalescence of voids with different size. (Adopted with permission from ref. [92].)



A. G. Xu, et al. Sci. China-Phys. Mech. Astron. May (2016) Vol. 59 No. 5 650501-44

(a) (b)

(c)
(d)

Figure 71 (Color online) Principal-axis lengths and growth speeds of two HCP phase domains which form at different times under the same shock velocity.
Panels (a) and (b) are the principal-axis lengths, while panels (c) and (d) are the growth speeds. The symbols are the MD simulated results and the lines are the
fitting results. (Adopted with permission from ref. [44].)

(a) (b)

(c) (d)

Figure 72 (Color online) Time evolutions of surface areas, volumes, and the corresponding atom numbers of the same two phase domains as those used in
Figure 71. The symbols are the MD simulated results and the lines are the fitting results. (Adopted with permission from ref. [44].)

4.4.3 From micro to meso scales: coarse-grained modeling

As an specific example of coarse-grain modeling from the
micro to mesoscales, based on the order parameter theory
of Ginzburg-Landau, we propose a phase transition model to
describe the shocking kinetic process in iron. To this aim,
we choose the slippage ξ of the lattice as the order param-
eter. It varies from ξ = 0 in bcc structure to ξ = 1 in hcp

structure, as schematically shown in Figure 73(a), where the
horizontal axis represents the distance away from the phase
interface. For the uniform bulk phase transition in metal
iron, to undergo transformation from bcc to hcp structure
via the lattice slippage, the system needs to overcome a po-
tential barrier [96], as schematically shown in Figure 73(b).
However, surely, what observed in experiments and simula-
tions are not uniform bulk structure transition, but complex
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processes with creation and growth of new phase domains.
Therefore, a solely uniform description is insufficient. The
phase domain effects must be reasonably included in a phase
transition model. In the stage of new phase domain nucle-
ation, within the local region with stress concentration, the
atoms overcome the potential barrier with the aid of collec-
tive thermal fluctuations. Simulation results have shown that,
in the growth stage of a phase domain, the growth speed is
supersonic, and the stress wave has no enough time to prop-
agate in the domain of hcp phase. It is mainly the interfacial
energy that drives the growth of a new phase domain. The po-
tential energy field of a slice in the simulated system is shown
in Figure 73(e), where the regions with red, blue, and other
colors represent the bcc, hcp, and interface structures, respec-
tively. The potential energy in the interfacial region is in be-
tween those for hcp and bcc phases, from which we obtain
the schematic shown in Figure 73(c). The interface energy is
negative, from which we obtain the schematic shown in Fig-
ure 73(d). It is the interfacial energy that reduces prominently
the potential barrier between two phases. Consequently, the
transition process becomes easier.

Based on this physical scenario, the relation between sys-
tem energy and order parameter can be roughly described by

F =
∫ [

f (ξ) − D
2

(ξ)2
]

d3r, (38)

where the first and second terms in the integrand are the bulk
free energy and interface energy of the system, respectively.
Specifically,

f (ξ) =
a
2
ξ2 − a + 1

3
ξ3 +

1
4
ξ4

is a bi-stable function with two stable points, ξ = 0 and ξ = 1.
Here, the dependence of bulk free energy on temperature and
pressure is described by the parameter a. Under low pressure,
a > 1/2, the bcc phase is stable, while under high pressure,
a < 1/2, the hcp phase is stable. The possible anisotropy
in the interface energy has been ignored for simplicity. The
evolution equation of the order parameter reads

∂tξ =
δF
δξ
= f ′(ξ) − D∇2ξ. (39)

For the steady growth of one-dimensional phase domain,

ξ = ξ(η) ≡ ξ(x − c0t).

It satisfies the following eigenvalue equation⎧⎪⎪⎨⎪⎪⎩
f ′(ξ) − D∂2

ηξ + c0∂ηξ = 0,
ξ |η→−∞= 0,
ξ |η→+∞= 1,

(40)

where c0 is the growth speed of the hcp phase domain. For the
convenience of describing the growth of a three-dimensional
phase domain, we adopt the local coordinate system, instead
of the Cartesian coordinates,

r = r0 + λn+ μt1 + νt2,

where r0 represents a point at the interface, and n, t1, t2 rep-
resent the normal and two principal tangential unit vectors of

the interface at position r0, respectively. The evolution equa-
tion of order parameter reads

∂tξ = f ′(ξ)−D(∂2
λ+∂

2
μ+∂

2
ν+(k1+k2)∂λ−k1∂μ−k2∂ν)ξ, (41)

where k1 and k2 are the curvatures along the two principal
tangential directions, respectively. According to the relation

ξ = ξ(η) ≡ ξ(λ − vt),

the above expression can be reduced to

f ′(ξ) − D∂2
ηξ + (−Dk + v)∂ηξ = 0 (42)

with the boundary conditions

ξ |η→−∞= 0, ξ |η→+∞= 1,

and k = k1 + k2. Comparing eqs. (40) and (42) giving the
growth speed of new phase domain evaluated by

v = c0 + Dk. (43)

For structure phase transition induced by shock wave, the
interface energy is related to the pressure surrounding the
phase domain. So, the parameter D is a function of pres-
sure. Simulated results and theoretical analysis show that the
growth speed is supersonic and the value of D is almost a
constant in the phase domain growth process. Therefore, eq.
(43) indicates that the growth speed of the phase domain is a
function of the local curvature. In the initial stage, the vol-
ume of phase domain is small, the local curvature is large,
and consequently the energy triggering phase transition is rel-
atively more concentrated, which is responsible for the rela-
tively quick growth. With the growth of the phase domain,
the interfacial area becomes larger, and the local curvature
decreases, which is responsible for the relatively slow growth.

For an ellipsoidal phase domain, the local curvature is non-
uniform on the surface of the phase domain. The portion with
a larger curvature grow more quickly. As a result, the phase
domain becomes more and more flat with time. Actually,
simulation results in Figure 74 confirm that various phase do-
mains evolve to be disc-like, spherical, columnar, elongated,
etc., in the later stage. Now, we can go a further step to give a
very simple but illustrative estimation on the dynamics of do-
main growth. For this purpose, we assume the phase domain
is spherical with radius R, the growth speed in eq. (43) gives

Ṙ = c0 + 2D/R.

Further assuming c0 → 0 gives

R(t) =
√

4Dt.

Our MD simulation results show that the linear length of an
ellipsoidal phase domain roughly follows L ∼ t0.465, which is
close to what this analytical expression indicates. The differ-
ence bettwen the curvatures of the sphere and the ellipsoid is
responsible for deviation of exponent 0.465 from 0.5.
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(a)

(b)

(c)

(d)

(e)

Figure 73 (Color online) The potential energy distribution and schematic diagram of phase transition. Panels (a)-(d) are the schematic diagram of phase
transition, where the horizontal axis represents the distance away from the phase interface. Panel (e) shows the potential energy distribution of a slice in shocked
iron. (Adopted with permission from ref. [44].)

(a) (b) (c) (d) (e)

(f) (g)

Figure 74 (Color online) Microstructure evolution in iron from BCC to HCP structure during the shock process. Panels (a)-(e) show the phase transition
mechanism, while panels (f) and (g) show the formed new phase domains in the shocked region. (Adopted with permission from ref. [44].)

A second example of mesoscopic modeling is used to
study the impulse propagation in granular chain. Solitary sig-
nal has been observed and well understood in a horizontal
granular chain without considering dissipation. But in verti-
cal chain under gravity, more complex and interesting phe-
nomena occur. Via MD-like simulations, signal is found to
change its speed and form with propagating depth. The grain
velocity and the propagation speed, amplitude and width of
the signal follow power laws in depth. Physically, this is
due to the power-law type changing of elastic properties in a
medium under gravity. The impulse propagation can be clas-
sified into two types in terms of the behavior of the power-law
exponents. The latter are further dependent on the strength
of the nonlinearity. The power-law exponents are invari-
ant with the strength of the impulse in the weakly nonlinear
regime, while they vary with the strength of the impulse in

the strongly nonlinear regime [97, 98]. For the case with im-
purities inside the vertical granular chain under gravity, dif-
ferent characteristics in the backscattered signal are found.
These characteristics are dependent on the presence of light
and heavy impurities inside the chain. Physically, that the
soliton can be confined in the region with light impurity but
can not in the region with heavy impurity is responsible for
this difference. This difference can be used, in nondestructive
inspection of impurities in granular medium, to discriminate
between light and heavy impurities. It may also be used in
design of grain layer protector from shocks [99, 100].

5 Conclusion and discussions

The macroscopic mechanical properties of a heterogeneous
material under shock rely not only on the loading/unloading
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process, but also on the stable or slowly-varying structures
within the material, such as dislocations in plastic deforma-
tion, new phase domains in phase transition, cavities and
shearing bands in the damaging or fracture process, non-
equilibrium vortices and jets behind the shock front, etc.
Those structures generally cover a wide range of spatiotem-
poral scales. To understand and model the macroscopic be-
haviors of a heterogeneous material, those mesoscopic struc-
tures and their evolution mechanisms, their energies and
means of dissipation, must be taken into account.

To access the complex structures and physical fields, var-
ious models and simulation schemes are needed. For such
typical multi-scale problems, there are mainly two comple-
mentary categories of studies. In the first category, the bridg-
ing of schemes in neighboring scales, for example, the con-
nection of molecular dynamics and finite element methods,
is the main concern. In the second category, the compli-
cated problem is first decomposed into different scales. One
constructs/chooses a model according to the scale and main
mechanisms working at that scale. Perform numerical simu-
lations using the relatively mature schemes. The physical in-
formation is transferred between neighboring scales in such
a way: The statistical information of results in smaller scale
contributes to establish the constitutive equation in larger one.
Except for the microscopic molecular dynamics model, both
the mesoscopic and macroscopic models can be further clas-
sified into two categories, solidic and fluidic models, respec-
tively. A cellular automata model for elastic solid material
was attempted in 2013 [101]. No matter which model and
simulation tool are used, what obtained are large quantity of
data. How to analyze the data and pick out reliable structural
information is the first issue to resolve. The solution to this
issue is the footstone of further studies.

The dynamical responses of heterogeneous materials are
studied from the sides of strength, inertia and dissipation.
To access the strength behaviors, the molecular dynamics
is used to simulate the evolutions of microscopic structures,
such as dislocations, phase domains, microscopic voids under
uniform deformation and shock loading; the material point
method is used to simulate the mesoscopic behaviors of cavi-
ties under shock loading and unloading. To access the inertia
and dissipation behaviors, the discrete Boltzmann method is
used to simulate the non-equilibrium phase transition kinetic
processes, and the material point method is used to simulate
porous media under shock.

It is found that, the creation and evolution of microscopic
structures in crystal are mainly determined by the properties
of local active regimes. For example, dislocations tend to oc-
cur in regimes with dense FOS structures; Microscopic voids
tend to occur in regimes where fault stacks cross; The FOS
structures near a phase domain make easier the phase tran-
sition. The morphology of mesoscopic cavities in the col-
lapsing process is determined by the complex interactions
between various wave series. For example, when the com-
pression is weak, the cavity may keep its spherical structure;

when the compression is strong, the regime around the cavity,
where the waves focus, may show a tip even jet. During the
phase transition process, the growth of the new phase domain
is determined by the competition of transition energy, surface
energy, and thermal energy. For example, during the spinn-
odal decomposition, more surfaces occur and consequently
the non-equilibrium effects resulted from the mass flux and
energy flux become more pronounced with time. This ob-
servation can be used as a new physical criterion to discrim-
inate the two stages, spinnodal decomposition and domain
growth, in the phase transition process. In porous materi-
als under shock, the vortices and jets resulted from all cav-
ities behind the shock front show some kinds of similarities
for various cavity sizes, shock strengths, etc. Therefore, the
global scenarios of porous materials under shock show some
structural and dynamical similarities. For example, the tem-
perature fields occurred in two separate shocking processes
with two sets of shocking strengths and porosities may show
similarities. The DBM results for phase separation are help-
ful for understanding the structural phase transition occurred
in metal under shock.

After all, physics is an experimental science. The simu-
lation results are to be checked, directly or indirectly, with
experiments, and are used to anticipate possible new results.
Due to the complexity of the problem, some phenomenolog-
ical or semi-phenomenological models have to be taken into
account when necessary.

Up to now, all the above observations are based on intu-
itive understanding on relevant structures. How to quantita-
tively bridge the structures and macroscopic dynamical prop-
erties of the material is still a challenging and open prob-
lem. This involves two important and complimentary issues,
coarse-grained modeling of mesoscopic structures and ho-
mogenization of complex heterogeneous systems. The for-
mer is relevant to parametrization of mesoscopic structures,
energy relations and dissipation mechanisms. The latter is
relevant to the averaging and transition between neighboring
scales. The two issues are currently demanding much more
corporations and efforts of scientists in related fields. The
field of heterogeneous materials under shock will see signifi-
cant development in the following years.
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