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The finite element method (FEM) is one of the most popular
and efficient methods for computational modeling in scien-
tific research and engineering [1-3]. To expand its application
to more complex problems, lots of new FEM-based methods
have been developed in recent decades. One major achieve-
ment is the significantly improvement on the flexibility of
FEM in dealing with geometrically and/or physically com-
plex problems by using new shape/interpolation functions.
The extended finite element method (XFEM) and isogeomet-
ric analysis (IGA) are two examples of such successful devel-
opments, and both methods have their own advantages com-
pared with the conventional FEM. In this paper, some recent
developments in these two methods are presented.

The XFEM is an efficient numerical method for solving
problems with discontinuities, such as strong discontinuity
like crack and weak discontinuity like interface. In the
XFEM, the element boundary does not need to coincide with
crack surface or material interface. As a result, structured
mesh can be used to model problems with complex crack
and interface, and remeshing is not necessary when the
discontinuity evolves.

The XFEM uses enriched shape functions with special
characteristics to bring in the discontinuous information in
the computational field. The map of XFEM and FEM is
sketched in Figure 1(a), where N is the shape function of
conventional FEM and ® is the enriched function, #° and
¢° are the standard and enriched nodal displacement vector
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in the elements, respectively. Recently, the XFEM was en-
hanced to simulate dynamic crack branching [4], fracture in
shell structures [5], and band structure of metamaterials with
complex microstructures [6], which are all top challenges in
computational fracture mechanics and composite modeling.
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Figure 1 (Color online) (a) Sketch map of the methods; (b) hydraulic frac-
ture network evolution morphology.
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One of the most successful applications of XFEM is the
efficient modeling of the fracture network in hydraulic frac-
turing, which is a key stimulating technology for production
improvement in the remarkable shale gas revolution. The for-
mation and growth of the fracture network is a complicated
process, involving rock deformation, crack propagation, and
fluid diffusion and flow. The XFEM formulation is advanced
to model this multi-physics coupling process. A deforma-
tion-flow-diffusion coupled XFEM computational model was
developed [7], and Figure 1(b) shows a numerical result of
the flow distribution and fracture network configuration un-
der fluid pressure driven.

The IGA employs basis function generated from non-uni-
form rational B-splines (NURBS), which is a standard tech-
nology used in computer aided design (CAD). The IGA com-
bines the geometric and analytical model, so that the complex
data interaction is avoided, and the mesh refinement is simpli-
fied. With the NURBS interpolation, the IGA is very suitable
to study high order problems of plates and shells. In addition,
it is widely used in the optimization, for which the control
points of NURBS are directly applied as the optimization ob-
jects. Recent advances in the IGA focus on the development
of structural [8-11] and dynamic problems [12].

A curved beam element based on the Timoshenko model
and NURBS interpolation was developed to analyze plane-
curved beams and arches [8]. Thai et al. [9] used the IGA
to model laminated composite and sandwich plates based on
their new proposed inverse tangent shear deformation the-
ory (ITSDT). An extended isogeometric element formulation
based on the Kirchhoff-Love theory was developed to ana-
lyze the through-the-thickness cracks in thin shell structures
[10]. In this approach, the XFEM was combined with the
IGA, therefore the method was named as XIGA. Key con-
cepts of the IGA and XIGA are illustrated in Figure 1(a) to-
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gether with the FEM and XFEM, where R is the NURBS basis
function.

Recently, Wang et al. [12] presented an ultra-accurate
isogeometric dynamic analysis. The key ingredient of their
methodology was the development of isogeometric higher
order mass matrix. The dynamic isogeometric analysis
demonstrated superiority systematically through frequency
spectra, free vibration as well as transient analysis.

In general, the XFEM is suitable for solving discontinuous
problems such as crack propagation; the IGA is good at mod-
eling structures with complex geometries and/or high order
deformation. Both methods are the successful expansions on
the concept of FEM.
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