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Analytic predictions of mean velocity profile (MVP) and streamwise (x) development of related integral quantities are presented
for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific
predictions include the relations for momentum Reynolds number (Reθ) with friction Reτ and streamwise Rex: Reθ ≈ 3.27Reτ,
and Rex/Reθ = 4.94

[
(lnReθ + 1.88)2 + 1

]
; the streamwise development of the friction velocity uτ: Ue/uτ ≈ 2.22lnRex + 2.86 −

3.83ln(lnRex), and of the boundary layer thickness δe: x/δe ≈ 7.27lnRex−5.18−12.52ln(lnRex), which are fully validated by recent
reliable data.
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1 Introduction

Planar turbulent boundary layer (channel and TBL) is a
canonical wall-bounded flow of significant theoretical and
practical interests [1]. It is widely seen in the atmospheric
flows near the ground, or the flows over the surface of a ves-
sel, or the wings of an aircraft, etc. [2], and has attracted con-
stant efforts [3-7]. Common to all these flows is a thin-layer
close to the wall - named turbulent boundary layer [8] - where
most of flow momentums and energies are dissipated by vis-
cous drag and turbulent fluctuations. The latter two effects
have been studied since Reynolds [9], with the usage of the
ensemble averaged Navier-Stokes equation

ν∂yU − 〈u′v′〉 = τ, (1)

where U is the streamwise mean velocity, u′ and v′ are
streamwise and normal fluctuating velocity, respectively, ν
the molecular viscosity and τ the total stress representing the
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driving force (defined later). This equation is unclosed in
the presence of fluctuating velocities, and the long-standing
question is how to predict U for all Reynolds numbers, and
then the streamwise development of other relevant quantities
(including the friction coefficient) [1]. Until today, it is still a
vivid challenge to theorists [10], despite over a century’s ef-
fort since the seminar work of Prandtl in 1904 proposing the
concept of the boundary layer [8].

In modern analysis, the difficulty of the problem is particu-
larly attributed to the interplay of two different characteristic
scales [11]. Denote S = ∂yU, the mean shear, W = − 〈u′v′〉
the turbulent Reynolds shear stress. When the leading bal-
ance of eq. (1) is between νS and τ, which occurs in the
inner flow region close to the wall, the friction velocity (uτ)
and viscous length (�ν = ν/uτ) define the correct scales ex-
hibiting data collapse of U at different Re’s, known as the law
of wall. However, for outer flow (�ν � y � δe, δe the bound-
ary layer thickness commonly set as δ99) where νS � W,
choosing uτ or Ue (freestream velocity) as the velocity scale
would respectively lead to log law [12] or power law [13,14]
description of U in an intermediate overlap region for asymp-
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totically large Re’s. The debate between the two proposals
continues to attract attention [10], for both allow a satisfac-
tory description of data in their restricted flow regions. On
the other hand, more empirical approaches [15,16] introduce
composite formulas describing the mean velocity for the en-
tire domain, but with many free parameters of pure fitting.
In short, analytic approach with clear physical picture and
testable assumptions is missing, leaving important questions
as the universality of Karman constant, and effects of geom-
etry (internal versus external flows) unaddressed.

Here, we propose a symmetry-based approach yielding a
closure solution for the mean momentum and kinetic energy
equations. Our analysis begins with a symmetry analysis of
a characteristic length of energy containing eddy, which en-
ables a prediction of its functional form. It also quantifies the
geometry difference between channel and TBL, through dif-
ferent approximations of kinetic energy equation as well as
the total stress, thus going beyond a recent theory of channel
by L’vov et al. [17] (here referred to as LPR). The predicted
mean velocity covers the entire outer flow domain; and in
the case of TBL, the streamwise developments of a series of
global quantities, i.e. friction coefficient, shape factor, bound-
ary layer and momentum thicknesses, are predicted, agree-
ing well with data. Compared to previous Pades approxi-
mations [16] (here referred to as MCN) and multilayer mod-
els [15], the current theory involves only three parameters for
TBL (and for channel), which are Re-independent; in partic-
ular, the Karman constant κ ≈ 0.45 is remarkably universal
in channel and TBL (also applied to pipes [18]). The result
resolves the “log-law and power-law” debate on the scaling
of mean velocity, in favor of the log law, but with corrections
beyond the leading order in 1/ lnReτ.

2 Theory

For the flow over a flat plate (0 � x � ∞ and y = 0), the
Navier-Stokes-Prandtl equations read

∂xU + ∂yV = 0, (2)

U∂xU + V∂yU + ∂xP = ν∂y∂yU − ∂y 〈u′v′〉 , (3)

where V the mean vertical velocity (zero in channel) and ∂xP
the mean pressure gradient (zero in TBL). Integrating eq. (3)
in y yields eq. (1), where for channel τ = u2

τr
′ (r′ = r/δe

and r = δe − y; δe the half height of a channel), and for TBL
τ = u2

τ +
∫ y

0
(U∂xU + V∂y′U)dy′. Substituting eq. (2) into eq.

(3) and integrating the latter from 0 to δe, one obtains the von
Karman’s integral momentum equation for TBL

dθ/dx = u2
τ/U

2
e = Cf /2, (4)

where θ =
∫ δe
0

U/Ue(1 − U/Ue)dy is the momentum thick-
ness, and Cf = 2u2

τ/U
2
e is the friction coefficient (here we set

zero S and W for y � δe). Moreover, the turbulent kinetic
energy is described by the mean kinetic energy equation, i.e.

SW + Π = ε, (5)

where P = SW is the production; Π represents the spatial
energy transfer (including diffusion, convection and fluctua-
tion transport); ε is the viscous dissipation. Note that eqs. (1)
and (5) describe the two fundamental processes in the flow,
i.e. momentum and energy transports, respectively; and eq.
(4) characterizes the streamwise scaling of friction coefficient
for TBL. We now construct a closure solution as below.

Note that according to eq. (5), ε should be determined by
S and W, and a characteristic length � describing the effects
of spatial energy transfer Π. Thus, a dimensional argument
yields ε(S ,W, �) = W (1+ n

2 )S (1−n)�(−n) or

� = W ( 1
n+

1
2 )S ( 1

n−1)ε(−
1
n ), (6)

where n is an arbitrary real number. Note that as n → ∞,
the dissipation drops out, and the resulting length becomes
the classical mixing length of Prandtl [8]: �∞ =

√
W/S . Fur-

thermore, for a channel flow, S ∝ r due to the central mirror
symmetry, and eq. (1) can be approximated to W ≈ τ ∝ r.
Meanwhile, ε tends to ε0 > 0 as r → 0. Thus, eq. (6) yields
� ∝ r

2
n− 1

2 , where only n = 4 results in a finite nonzero value
�0 at r = 0. Hence a unique characteristic length �ε is defined
as:

�ε = W
3
4 S

−3
4 ε

−1
4 = ν3/4T ε

−1
4 , (7)

where νT = W/S is the eddy viscosity. Note that, the ratio be-
tween �ε and any other length of different n’s in eq. (6) is ex-
actly related to the dissipation production ratio, Θ ≡ ε/(SW),
namely �n/�ε = Θ

1
4− 1

n , Interestingly, when Θ ≈ 1 corre-
sponding to the well-known quasi-balance regime (QBR), all
lengths reduce to a single one, namely �ε.

Near the centerline of a channel (where we call the core
layer),Θ ∝ r−2, and all lengths are different. A simple match-
ing argument can derive an expression forΘ, valid from QBR
to central core. Assume Θ ≈ c/r′2 as r′ → 0, where c is a
dimensionless coefficient. To matchΘ→ 1 as r′ → 1, a com-
posite expression is Θ = 1+ c/r′2 − c, which can be rewritten
as:

Θ(r′) = [1 + (rc/r
′)2]/(1 + r2

c ), (8)

where rc =
√

c/(1 − c) indicates the thickness of the core
layer (given later). A variant of eq. (8) is for the spatial en-
ergy transfer in eq. (5), that is Π = P(Θ − 1) ∝ (1 − r′2).
The parabolic form stems from the simplest expansion at
r = 0 in the presence of the central mirror symmetry, namely,
∂rΠ = 0. Hence, eq. (8) is a reasonable approximation,
which solves eq. (5).

Interestingly, �ε can be contrasted to the Kolmogorov dis-
sipation length η = ν3/4/ε1/4. In the classical Kolmogorov
argument about η, ε is the rate of energy cascade in the in-
ertial range, while ν is the molecular viscosity, transferring
the kinetic energy to heat. So, Kolmogorov’s η can be in-
terpreted as a length where the balance between the inertial
energy cascade and molecular dissipation takes place. We
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thus interpret �ε also as a length of the balance between ε and
νT . But here, the role of νT is reversed: instead of dissipating
energy (out) to heat, it really pulls the energy in since S and
W (and its product) generate turbulent fluctuations (and so-
called production). In other words, �ε is interpreted to be the
integral eddy size where the eddy “viscosity” produces the ki-
netic energy through the mean shear, and where this energy is
transferred out to smaller scales through the energy cascade.
Note that this length recovers the crucial scaling function in
the LPR model [17] without involving any wall function.

For TBL, �ε = ν
3/4
T ε

− 1
4 can be defined in the same way. It

is important to emphasize that this extension is highly non-
trivial, since it has never been realized that there exists a crit-
ical point near the edge of the boundary layer, which plays
a similar role as the centerline of a channel (i.e. r = 0). For
TBL, this is the point where the QBR ends and where �ε takes
a maximum, suggesting the integral eddy grows to the maxi-
mum size. The existence of this point brings in a crucial new
physics which simplifies the matter and yields an analytic ex-
pression presented below. Note that eq. (8) also applies to
TBL, where r′ = δe − y the distance to the boundary layer
edge, and rc = 0 (hence Θ ≡ 1).

Now, we develop a symmetry argument to derive the func-
tional form of �ε and τ. It consists in postulating a scaling
form originated from a dilation invariance in the direction
normal to the wall. The key element is the dilation center,
or the fixed point for dilation transformation group, which is
located at r = 0 for �ε where �ε = �max

ε = �0, and at y = 0
for τ where τ = τmax = τw. In both cases, we assume that the
dilation invariant form is d�ε/dr ∝ rα and dτ/dy ∝ yβ, since
d�ε/dr = 0 at r′ = 0 and dτ/dy = 0 at y = 0.

For �ε, the boundary condition at the wall, i.e. �ε = 0 at
r′ = 1, yields a defect power law form: �ε/�0 = 1 − r′m,
with m = α+1 a free parameter characterizing the scaling for
the bulk flow. This dilation center at r = 0 may seem to be
natural for channel, but highly non-trivial for TBL, for which
the boundary layer edge (δe) has never been realized to play
a similar role before. Note that this assumption was validated
by DNS data with m = 4 for planar turbulent boundary lay-
ers [19, 20], enabling a simple analytic theory for TBL since
Prandtl [8]. A further argument supporting the similarity is
that �ε reaches the maximum in both channel and TBL, sig-
nifying that the eddies are self-organized in both flows in the
same manner around this center (r = 0). In order words, the
defect power law of �ε characterizes the similarity form of the
same ensemble of eddies in both outer flows (i.e. channel and
TBL), which are probably the detached eddies as postulated
by Perry [21]. Further study will confirm whether they have
the same statistics, just like the wall-attached eddies showing
self-similarity in the near-wall region [22].

Note also that the defect law has a right asymptotic close
to the wall (r′ → 1): 1 − r′4 ≈ 4y/δe and �ε ≈ 4y(�0/δe),
which is consistent with the recent studies that the scale of
large eddies is proportional to the wall distance [22]. Denot-

ing 4�0/δe = κ (so that �ε ≈ κy when r′ → 1), the form of �ε
is finally

�ε/δe = κ(1 − r′4)/4. (9)

We emphasize that eq. (9) applies to both channel and TBL
under the same planar wall condition.

Similarly, for τ, we obtain

τ/τw = 1 − (y/δe)γ = 1 − (1 − r′)γ, (10)

where γ = 1 + β is also an exponent to be determined. For
channel, we have an exact result: τ = τwr′, hence eq. (10)
is rigorous with γ = 1. For TBL, it has been noticed that
γ � 1 [23]. Here, we argue that γ > 1, as it would sig-
nify a larger magnitude of the Reynolds stress (since W ≈ τ),
hence also a larger turbulent production (SW) as observed by
Jimenez et al. [24]. Inspecting DNS data [25], we propose
an empirical γ = 3/2 for TBL, which keeps invariant for all
Re’s.

Substituting Θ = ε/(SW) into eq. (7) yields S =√
W/(�εΘ1/4). Integrating S in r and using W ≈ τ, one has

Ue − U =
∫ r

0
S dr̂ ≈

∫ r

0

√
τ

�εΘ1/4
dr̂. (11)

Substituting eqs. (8), (9) and (10) into eq. (11) yields

(Ue − U)/uτ ≈ 1
κ

∫ r′

0
f (r̂)dr̂, (12)

where

f (r̂) =
4
√

1 − (1 − r̂)γ(1 + rc
2)

1/4

[1 + (rc/r̂)2]1/4(1 − r̂4)
.

Denoting G(r′) =
∫ r′

0
f (r̂)dr̂, eq. (12) yields G = κUd/uτ

where Ud = Ue − U. This linear relation is indeed validated
with high accuracy (Figure1(a)), where rc = 0 and γ = 3/2
(empirical) for TBL, while rc = 0.37 (empirical) with γ ≡ 1
for channel. Note that κ = 0.45 (empirical) is universal in
both flows, as indicated by the linear slope. Also included
are κ = 0.40 and 0.38, showing notable departure away from
data.

Note that eq. (12) immediately yields a prediction of the
mean velocity: U+ = U/uτ = U+e − G/κ. Comparisons with
data (with known empirical U+e ) show impressive agreement,
as seen in Figure 1. The relative errors are bounded within
1%-2%, at the same level as the data uncertainty. The current
description is as simple as the LPR (for channel) and much
simpler than the MCN (for TBL involving over ten free pa-
rameters), but with comparable if not better accuracy. Note
also that the good description extends up to y+b = uτyb/ν ≈ 50
(the buffer layer thickness), which corresponds to the break-
down of the quasi-balance condition near the wall, an impor-
tant topic discussed in detail in ref. [19].
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Figure 1 (Color online) (a) Validation of eq. (12) by experimental Ud/uτ at large Re’s. Solid lines indicate the universal slope κ = 0.45, dotted line κ = 0.40
and dashed line κ = 0.38; (b) predictions (lines) of MVP for channel. Inset shows the relative errors 100 × (UExp/UTheory − 1), where red solids are current
predictions bounded within 1% (dashed lines), and blue opens are the LPR model [17]; (c) predictions (lines) of MVP for TBL. Red solids in the inset are
current predictions within 2% (dashed lines), and blue opens are the MCN model [16]. Profiles are vertically staggered for clarity. Channel: all data from
ref. [26]; TBL: Reτ = 4000, 5100, 7000 from ref. [27]; 10023 from ref. [23]; 23000 from ref. [28].

3 Predictions for turbulent boundary layer

The theory can predict streamwise development for relevant
integral quantities in TBL. Three mean quantities are esti-

mated as a preparation: Ue, U =
∫ 1

0
Udr (vertically averaged

mean velocity) and U2 =
∫ 1

0
U2dr (second moment of U),

which yields (see the Appendix)

U+e ≈ κ−1 lnReτ + Be ≈ ln Reτ/0.45 + 9.04,

U
+ ≈ U+e − c1 ≈ ln Reτ/0.45 + 5.77, (13)

U2
+
/U+e ≈ U

+ − c1 ≈ ln Reτ/0.45 + 2.50,

here, superscript + indicates normalization with uτ, and Be ≈
9.04 is a constant involving wall function calculation and

c1 = κ
−1 ∫ 1

0
G(r′)dr′ ≈ 3.27 is theoretically determined (see

the Appendix). Comparison of eq. (13) with data are illus-
trated in Figure 2(a) showing good agreement. Note that eq.
(13) implies that the familiar shape factor H ≡ 1, since the
displacement thickness is defined by δ∗ ≡ ∫ δe

0
(1 − U/Ue)dy,

thus H ≡ δ∗/θ = (U+e − U
+
)/(U

+ − U2
+
/U+e ) = c1/c1 ≡ 1.

The higher order correction to eq. (13) and H is discussed in
the Appendix.

A new prediction is the ratio between the momentum
thickness Re (Reθ = θUe/ν) and the friction velocity Re

(Reτ = δeuτ/ν) at the same x (distance to the leading edge
of a TBL). Substituting eq. (13) into eq. (14), we obtain

α ≡ Reθ/Reτ = U
+ − U2

+
/U+e ≈ c1 ≈ 3.27, (14)

as shown in Figure 2(b). We can then connect Reθ (and Reτ)
with the streamwise Re (Rex = Uex/ν), using eq. (14). Note
that eq. (4) indicates dRex/dReθ = dx/dθ = U+2e , which, by
noting U+e ≈ κ−1 ln(Reθ/α) + Be and integrating in Reθ (or
U+e ) (dropping a higher order term in 1/ln(Reθ)), leads to

Rex/Reθ ≈(U+e − 1/κ)2 + κ−2

≈κ−2[(ln(Reθ/α) + κBe − 1)2 + 1]

≈4.94[(lnReθ + 1.88)2 + 1]. (15)

Compared to the MCN formula [16]: Rex/Reθ =

6.7817ln2Reθ+3.6241 lnReθ+44.2971+50.5521/ lnReθ+ ...,
eq. (15) is much simpler (Figure 2(c)), and the coefficients
are completely determined by three parameters (κ, α and Be).

Perhaps the most interesting prediction is the streamwise
development of uτ. According to eq. (13), lnReτ = κUe/uτ −
κBe. Since Reθ = αReτ = α exp(κUe/uτ − κBe), eq. (15) thus
further yields a useful relation

Rex ≈ (α/κ2) exp(κUe/uτ − κBe)[(κUe/uτ − 1)2 + 1]. (16)
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Figure 3 (Color online) (a) Friction velocity as a function of Rex compared to the predictions in eq. (17) (arrows depict the order of Reτ); (b) the ratio of x/δe
as a function of Rex. Data are the same as in Figure 2.

Taking the logarithm of eq. (16), one has

Ue/uτ ≈κ−1 lnRex + Be − κ−1 ln(α/κ2) + O(ln(lnRex))

≈ lnRex/0.45 + 2.86 − 3.83 ln(lnRex), (17)

where the coefficient (−3.83) for ln(lnRex) term is obtained
by an exact solution of eq. (16): Ue/uτ ≈ 42 at Rex = 1010.
Figure 3(a) shows eq. (17) compared with data; the agree-
ment is very satisfactory, notably better than the White’s [31]
fitting formula Ue/uτ = ln(0.06Rex)/0.477 at moderate Rex.

The streamwise growth of the boundary layer thickness
is derived similarly. From eq. (14), δe/θ = U+e /α ≈
0.68 lnReτ + 2.76. Furthermore, using eqs. (15) and (17),
we obtain

x/δe =αRex/(U
+
e Reθ) ≈ α[U+e − 2/κ + 2/(κ2U+e )]

≈7.27 lnRex − 5.18 − 12.52 ln(lnRex), (18)

by neglecting the highest order term (2/(κ2U+e )). This full
analytic prediction is made for the first time, after Blasius’s
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similar result (x/δe ≈ 0.2Re1/2
x ) for a laminar boundary layer.

The agreement between data and eq. (18) is generally good,
within uncertainty in the definition of the leading edge of a
TBL due to the tripping force which introduces different vir-
tual origins (shifting the location of x = 0) among different
data sets in the calculation of Rex. However, this uncertainty
(due to the tripping force) becomes small at high Re, and thus,
the present comparison is still meaningful. Note that we have,
for the first time, made a concise prediction of the stream-
wise development of the turbulent boundary layer thickness,
in parallel to Blasius’s

√
Rex prediction of the laminar bound-

ary layer over a century ago.
Finally, the scaling of the vertical velocity at the bound-

ary layer edge (Ve) can also be predicted. Since Ve =

− ∫ δe
0
∂xUdy = Ue(dδ∗/dx) from eq. (2), and δ∗ = δe(1 −

U
+
/U+e ) = c1δe/U+e from eq. (13), one has (using eqs. (17)

and (18))

Ve/Ue = dδ∗/dx ∝ 1/ ln2 Rex, (19)

in contrast to Ve/Ue ∝ Re−1/2x in a laminar boundary layer.

4 Summary

In summary, a complete analytic theory for streamwise devel-
opment of mean quantities (uτ, δe, θ . . .) in TBL is presented,
validated by reliable data. The unified description of channel
and TBL relies on the crucial assumption about the dilation
center r = 0 located at the centerline of the channel and the
edge of the boundary layer, which derives the same defect law
for the length �ε. In this description, only three parameters
are introduced, in which κ = 0.45 and m = 4 are universal,
while a core layer thickness rc = 0.37 for channel and a frac-
tional exponent γ = 3/2 for TBL, respectively. To recover the
streamwise scaling, an additional fitting parameter Be = 9.04
is introduced. They are still few compared to the most recent
theoretical models such as refs. [15, 16]. The most important
of all is that our symmetry-inspired formula applies to circu-
lar pipes, rough walls, compressible TBLs, Rayleigh-Bernard
convection, etc., to be communicated soon.
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Appendix

Note that U+e − U
+
=
∫ 1

0
U+d dr′. Assuming eq. (12) ex-

tends to the wall, the near-wall contribution up to the buffer
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layer is estimated to be O(lnReτ/Reτ) and is neglected; we

thus have
∫ 1

0
U+d dr′ ≈ c1 where c1 = κ

−1 ∫ 1

0
G(r′)dr′, with

G(r′) =
∫ r′

0
f (r̂)dr̂ in eq. (12). We further rewrite G(r′) =∫ r′

0
(1 − r̂)−1dr̂ +

∫ r′

0
g(r̂)dr̂, where g(r̂) = f (r̂) − (1 − r̂)−1 is a

smooth function bounded in the domain 0 � r̂ � 1, to remove
a singularity f (r̂) ∝ (1 − r̂)−1 at r̂ = 1 and to obtain a finite g.

Since
∫ 1

0

∫ r′

0
(1 − r̂)−1dr̂dr′ = 1,

∫ 1

0

∫ r′

0
g(r̂)dr̂dr′ ≈ 0.47 (nu-

merical integration), we thus have c1 = κ
−1(1 + 0.47) ≈ 3.27.

Similarly,
∫ 1

0
U+2d dr = U+2e +U2

+ − 2U+e U
+ ≈ c2 where c2 =

κ−2
∫ 1

0
G2(r′)dr′ ≈ 19.55. It leads to U2

+
/U+e ≈ 2U

+ − U+e +

c2/U+e ≈ U
+ − c1 + c2/U+e , and H = c1/(c1 − c2/U+e ) > 1 for

finite Re (H ≈ 1.26 at Reτ = 104). Finally, let us calculate Be.
As eq. (12) extends to y+b (buffer layer thickness), then U+e =

U+b + κ
−1 ∫ 1−y+b /Reτ

0
f (r̂)dr̂, which yields U+e = lnReτ/κ + Be,

where Be = (U+b −κ−1 ln y+b )+κ−1
∫ 1−y+b /Reτ
0

g(r̂)dr̂, determined
by y+b and U+b (its precise values will be discussed elsewhere).
Here, we let Be = 9.04 to fit all data in Figure 2, which is the
only fitting parameter to yield eq. (13).


