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Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep
space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with
near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved
separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth
and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical
difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To
maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct
methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including
both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to
other missions and more precise dynamic model.
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1 Introduction

Small bodies in the Solar System have gained a great deal of
attention for several decades. Investigation of them can not
only help to discover the formation of the Solar System, but
also for economical purposes [1]. Compared with small ob-
jects in other regions, near-Earth asteroid (NEA) exploration
is a relatively easy mission because less fuel and period are
needed to rendezvous with the selected target. They are also
the nearest threat to the Earth, the most hopeful candidates to
be captured [2] and best destination for sampling.

The problem of the 6th Competition of Trajectory Opti-
mization of China (CTOC) is a low-Earth Orbit (LEO) to
NEA sample return mission. The spacecraft has to start from

*Corresponding author (email: jiangfh@tsinghua.edu.cn)

a LEO to rendezvous with an asteroid and bring maximum
mass of sample back to near-Earth region. The possibility
of using current technology to bring sampling or even cap-
ture NEA have already been discussed. NASA has proposed
the Asteroid Redirection Mission (ARM) aiming to capture a
NEA to an stable orbit around the Moon [3]. Methods to cap-
ture NEAs to near-Earth region in the Sun-Earth restricted
three-body problem model have been investigated in litera-
ture [4,5].

1.1 Low-thrust trajectory optimization

Compared with traditional high-thrust chemical propulsion,
low-thrust electric propulsion has much higher specific im-
pulse and it’s suited for long-time deep-space mission. Due
to its higher specific impulse, electric propulsion is more effi-
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cient. The launch of NASA’s Deep Space I [6] demonstrated
the first use of ion propulsion in interplanetary mission. And
later missions such as SMART-I [7], Hayabusa [8], DAWN
[9] also take advantage of low-thrust propulsion to increase
the payload mass and reduce the fuel cost. Long thrusting
time is necessary to get enough velocity increment as the
thrust is very low. Because of the continuous and durable
low thrust, it’s rather difficult to find the optimal trajectory
for a mission with low-thrust electric propulsion. Lots of re-
search has been conducted to design the optimal low-thrust
trajectory.

Methods for optimizing low-thrust trajectories are typ-
ically categorized as direct methods [10–12] and indirect
methods [13–16], the combinations of which are termed hy-
brid methods [17,18]. Direct methods convert optimal con-
trol problem into a nonlinear programming problem (NLP)
through parameterization. Usually numerous variables are
needed, which increase the amount of computational effort.
Indirect methods take effort of calculus of variation and con-
vert the optimal control problem into a two-point boundary
value problem (TPBVP). The variables to be solved are initial
costate variables and they are hard to guess because of their
lack of physical meanings. The solution to the TPBVP is very
difficult to obtain because of the narrow convergence domain.
Hybrid methods combine the advantage of both direct and in-
direct methods. The thrust structure is usually presupposed,
and the optimal control is determined by the optimality con-
dition of indirect methods. Instead of building a TPBVP, the
problem is transformed into a NLP.

Hull [19] summarized four types of direct methods on in-
terplanetary low-thrust trajectory optimization. Typical direct
methods include collocation methods [10], differential inclu-
sion [20], Gauss pseudo-spectral method [21] and genetic al-
gorithms [22,23].

The Pontryagins minimum principle (PMP) indicates that,
the fuel-optimal control is bang-bang control. It’s difficult to
solve such problem if the switching rules are not given in ad-
vance, due to narrow convergence domain, discontinuous in-
tegrated functions and singularity of Jacobian matrix [16,24].
To overcome the difficulty, methods such as assigning the
switching structure a priori [24,25], using fuel consuming
model which leads to continuous control [26], and reducing
the dimension of the problem [27] are proposed. These meth-
ods are inefficient and have the possibility of missing the opti-
mal solution if the wrong switching structure is assigned. Re-
cently, the homotopic approaches have been applied to solve
bang-bang control problems [15,16,28,29]. The principle of
a homotopic approach is to solve a difficult problem by start-
ing from the solution of a related but easier problem. A per-
turbation of energy form is added to the performance index,
which leads to continuous control and larger convergence do-
main. By gradually reducing the energy form and taking the
obtained solution as an initial guess for next iteration, fuel-
optimal control can be approached.

Generally speaking, direct methods have a larger conver-

gence domain and it’s very convenient to impose constraints
such as gravity assist when direct methods are used. The ini-
tial guess is also easier to give according to its physical mean-
ing. Although the precision of some methods are worse than
indirect methods and the results of direct methods are often
suboptimal. Indirect methods are more likely to result in a
global optimum if a good initial guess is given and the con-
vergence process is very quick. Hybrid methods have both
the advantages and disadvantages of direct and indirect meth-
ods. In this paper, both direct and indirect methods with ho-
motopic approaches are investigated according to their own
practical properties.

1.2 Gravity assist

Gravity assist is essential to deep-space mission design be-
cause proper use of gravity assists can significantly reduce
the fuel consumption and thus increase the mass of paylaod.
For a mission which is started from LEO and only low-thrust
electric propulsion can be used to escape the Earth, Moon
gravity assists are often used to reduce the fuel consump-
tion and increase the escaping velocity. Moon gravity assist
have been widely used in mission design [30,31]. For space-
crafts departing the Earth-Moon system, Moon gravity as-
sists can significantly increase the hyperbolic escape energy
(C3 = v2 − 2μEarth/r in km2/s2) with an acceptable time in-
crement. Although the increment in C3 may vary in different
cases, two gravity assists with the help of resonant orbits al-
ways have a much higher C3 increment than a single gravity
assist if properly designed.

Not only for escaping, Moon gravity assist can also be
used to brake the spacecraft for capturing [32]. The design
of Moon gravity assist strategies both in simple and precise
dynamic model are proposed in this paper.

Gravity assist is often modeled as an instant impulse [33]
in preliminary design. That is to say, the time for the space-
craft to enter and leave the gravity assist celestial body is ne-
glected and the position before and after gravity assist is the
same with that of the gravity assist celestial body and the rel-
ative speed, which is called hyperbolic escape speed, note as
v∞, turns an angle which is determined by the magnitude of
relative speed, minimum flyby altitude and gravitational pa-
rameter of the celestial body. The magnitude of hyperbolic
escape speed stays the same after gravity assist, while the
turn angle θ is relative to gravity assist radius rp and escape
speed v∞, with the relation

sin
θ

2
=

1

1 + v2∞rp/μa
. (1)

After gravity assist, the spacecraft may be guided into a
resonant orbit whose period with the gravity assist celestial
body is a ratio of integers, note as m : n. In this situation, an-
other opportunity of gravity assist occurs after m revolutions
of the celestial body. This procedure can be continued until
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a certain terminal condition is satisfied. Multiple gravity as-
sists can change the energy of the spacecraft gradually and no
other maneuvers are needed with the help of resonant orbits.

2 Problem statement

The background of the 6th CTOC is asteroid sample return
mission. The launch window is from Modified Julian Dates
(MJD) 59215 (January 1, 2021) to MJD 62867 (December
31, 2030). The spacecraft starts from a circular LEO with the
altitude of 200 km and arbitrary inclination between 20◦ and
90◦. Then after escaping from the Earth it should rendezvous
with an asteroid that belongs to the 792 candidates specified
by the organizer. After staying for at least 30 d, it should
bring maximum sample back to the Earth from the asteroid.
The final state is considered feasible if it satisfies

rsc = 6578 km, vsc � 11 km/s, (2)

where rsc is the spacecraft’s distance from the Earth, vsc the
relative speed, and the mission time is 10 years at most. And
for the convenience of computing, the direction of the coordi-
nates of Earth Central Inertial Frame (ECI) is manually cho-
sen to be the same with that of Heliocentric Ecliptic Inertial
Reference Frame (HEIRF).

The gravity of Earth, Moon and Sun are all considered in
the entire mission and the gravity of asteroid is neglected.
The distance from the spacecraft to the Moon should not be
less than 1838 km. And the motion of the Sun and Moon
relative to the Earth, the asteroid relative to the Sun are all
considered in two-body model. The dynamic function of the
spacecraft in ECI is given by the organizer

r̈ = −μE

r3
r − μM

⎛
⎜⎜⎜⎜⎝

rM

r3
M

+
r − rM

‖r − rM‖3
⎞
⎟⎟⎟⎟⎠

− μS

⎛
⎜⎜⎜⎜⎝

rS

r3
S

+
r − rS

‖r − rS‖3
⎞
⎟⎟⎟⎟⎠ +

T
msc
,

0 � T =
√

(T 2
x + T 2

y + T 2
z ) = 10 N,

ṁsc = − T
Ispg0

,

(3)

where μE, μM, μS are the gravitational constant of the Earth,
Moon and Sun, r, rM, rS the position vector from the Earth
to the spacecraft, Moon and Sun, Isp the specific impulse, g0

the gravitational acceleration at sea level, msc the mass of the
spacecraft, T the thrust vector and T its magnitude. This dy-
namic function is correct on condition that both the gravity of
the Sun and Moon are considered for the motion of the Earth,
which is in conflict with the presupposed two-body model, al-
though the difference is rather small. Because the data check
program provided by the organizer is based on this dynamic
model, the dynamic function of the spacecraft in HEIRF is
derived by substituting rEx = rSx − rSE, where x donates the
four bodies in this problem, into eq. (3). The dynamic func-
tion in HEIRF is obtained

r̈ = r̈SE + r̈EC

= r̈SE − μE

r3
EC

rEC − μM

⎛
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rEM

r3
EM

+
rEC − rEM

‖rEC − rEM‖3
⎞
⎟⎟⎟⎟⎠

− μS

⎛
⎜⎜⎜⎜⎝

rES

r3
ES

+
rEC − rES

‖rEC − rES‖3
⎞
⎟⎟⎟⎟⎠ +

T
msc

=
T

msc
− μS

rSC

r3
SC

− μE
rSC − rSE

‖rSC − rSE‖3

− μM

⎛
⎜⎜⎜⎜⎝

rEM

r3
EM

+
rSC − rSE − rEM

‖rSC − rSE − rEM‖3
⎞
⎟⎟⎟⎟⎠ , (4)

where rxy denotes the position vector from body x to body y
and S, E, M, C denotes the Sun, Earth, Moon, spacecraft.

As for the parameters of low-thrust propulsion, its specific
impulse is 3000 s and the maximum thrust magnitude is 10 N.
The initial mass of the spacecraft is 2000 kg of which 1500 kg
is fuel. The performance index of the mission is to maximize
the mass of sample from the asteroid.

Maximize : J = msample. (5)

In the problem statement above, some techniques are be-
yond current aerospace techniques and are promising to be
implemented in the near future. Some parameters such as the
magnitude of thrust seems unrealistic. However, it doesn’t
matter to investigate this problem for possible mission design
in the future.

3 Problem analysis

Although some techniques have been proposed to reduce the
difficulty of low-thrust trajectory optimization problem when
indirect methods are used [15,16], a mission with many revo-
lutions and multiple gravity assists is still hard to design and
optimize if only indirect methods are used, as the large num-
ber of revolutions and the long mission time significantly in-
crease the sensitivity of the problem. For complex missions,
different methods are required for different segments. And in
this paper both direct and indirect methods are used to solve
different problems in different segments of the mission that
we are investigating.

To escape from the Earth starting from LEO only us-
ing low-thrust propulsion, a good way is to raise the al-
titude of apogee gradually without greatly raising the alti-
tude of perigee at the same time, which is similar to tradi-
tional Hohmann transfers and this strategy results in a high-
eccentricity orbit. The engine is turned on only when the
spacecraft is near its perigee and because of the low thrust
we can only get finite velocity increment for every revolution
so large number of revolutions are required. As the apogee
increase slowly, total mission time is long. The gravity of the
Moon and the Sun have significant influence on the motion
of the spacecraft, which aggravates the sensitivity of equa-
tions of motion. When the sensitivity increases, trajectory
optimization becomes more difficult to solve.

Because the number of revolutions is large and the mission
time is long, numerical integration is inefficient. To speed up
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the calculation of the problem, a parallel computing method
which is easy to accomplish is used. A multiple shooting
method is proposed to decrease the sensitivity of the prob-
lem, which is especially suited for parallel computing.

After escaping from and before reentering the Earth-Moon
system, the problem is considered with the Sun as the dom-
inating gravity source, and indirect methods are used to op-
timize the trajectory to maximize the mass collected. Ho-
motopic methods are applied to overcome the difficulty of
bang-bang control.

To simplify the problem, the mission is divided into 5
steps.

(1) LEO Escape. From LEO, apply thrust when the space-
craft is near its perigee to raise the altitude of apogee gradu-
ally until the spacecraft is able to coast into the Moon’s sphere
of influence (SOI).

(2) Moon Gravity Assist. Use two Moon gravity assists to
help the spacecraft to reach the velocity to be able to escape
from the Earth’s SOI.

(3) Fly to Asteroid. The spacecraft flies to the target aster-
oid with low-thrust propulsion.

(4) Fly Back to the Earth. After sampling, the spacecraft
flies back to Earth’s SOI.

(5) Capture. Brake the spacecraft with the help of Moon
gravity assist to meet the final condition.

The mission is divided into 5 steps because of the complex-
ity of the problem. It is almost impossible to optimize these
sub-problems simultaneously. The large number of revolu-
tions in step 1 and gravity assists in step 2 and 5 significantly
increase the sensitivity of the problem. The dominating grav-
ity sources among these sub-problems are different and it is
essential to design them in different coordinates to reduce the
difficulty for every step.

Another reason is that the total time of mission is 10 years,
while the maximum thrust magnitude is 10 N, so the maxi-
mum time of full thrust can be obtained

t =
mfuelIspg0

Tmax
, (6)

where Tmax is the maximum thrust magnitude and mfuel the
mass of fuel. Results from eq. (6) show that the total time of
full thrust is 51.08 d, which is only 1.4% of the total admis-
sible mission time. If initial costate variables are not guessed
properly, the mass of spacecraft will be exhausted rapidly.
Numerical singularity occurs when the mass of the spacecraft
is near 0 and calculation process has to be terminated, which
reduces efficiency seriously.

However, when dividing the mission into 5 sub-problems,
the moments for some important events should be chosen
carefully to guarantee optimality, such as arriving at the as-
teroid, leaving the asteroid. They are determined by global
searching method. This method is implemented when search-
ing for the best asteroid among all candidates and it is applied
to make the result closer to the optimal trajectory.

Experience shows that fuel-optimal problem with long
mission time and relatively high thrust can hardly be solved
using direct shooting method. However, the problem can be
solved if lower thrust magnitude is used. But PMP [34] shows
that fuel-optimal control is bang-bang control. That is to say,
the optimal thrust is either full or null. Considering two fuel-
optimal mission whose difference is only the maximum thrust
magnitude, noted as T1 and T2. Suppose T1 < T2 and note
that the permission control set for each mission are U1 and
U2. Because the admissible control set with lower maximum
thrust magnitude is a proper subset of the admissible control
set with higher maximum thrust magnitude, that is U1 ⊆ U2,
the performance index of the former is definitely worse than
the latter.

It’s proven that the control law obtained with lower thrust
is not optimal, so another approach using direct methods
whose control law can ensure that the magnitude of thrust
is always the maximum magnitude is proposed. And homo-
topic approach is also proposed to gradually approximate the
maximum thrust magnitude from a lower thrust magnitude.

In step 3 and step 4, the spacecraft has to fly to a selected
asteroid and fly back after sampling. The most important
thing is to find the proper asteroid among all the candidates.
It is obvious that asteroids whose difference in semi-major
axis, eccentricity and inclination with the Earth is too large
and can be ignored directly and the total number of asteroids
to be compared can be reduced.

In preliminary design, the time to leave the Earth, to ren-
dezvous with the asteroid, to leave the asteroid and to use
Moon gravity to brake the spacecraft should be determined.
And some approximate methods are necessary for quick cal-
culation without great loss of accuracy. For the motion of the
spacecraft when flying to the asteroid and flying back to the
Earth, two-body model is used to estimate the largest mass
that can be collected. The cost of escaping from the Earth-
Moon system is chosen to be the same with the cost to accel-
erate the spacecraft so that it can coast to the Moon’s SOI and
Moon gravity assist are enough to help the spacecraft to es-
cape from the Earth-Moon system. Lambert problem solver
is used to calculate the total velocity increment magnitude
needed for the spacecraft to leave the Earth-Moon system to
rendezvous with selected asteroid and leave the asteroid to fly
back to the Earth-Moon system. After discretizing the launch
window, the time cost to fly to the asteroid, the time to leave
the asteroid and the time cost to fly back to Moon, grid search
is implemented. Two Lambert problems are solved for every
node to estimate the mass that can be collected, and the aster-
oid with the best performance index is selected as the target
asteroid.

The initial and final position and velocity are chosen to be
the same with those of the Earth. Denote Δv1 and Δv2 as the
sum of two velocity increments determined from each Lam-
bert problem. And denote m0 as the mass of the spacecraft
when leaving from Earth, M the collected mass and md the
dry mass of spacecraft. The relationship between the col-
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lected mass and total sum of velocity increment is

(

m0 exp

(

− Δv1

Ispg0

)

+ M

)

exp

(

− Δv2

Ispg0

)

= M + md. (7)

And the largest mass that can be collected is

M =

exp

(

−Δv1 + Δv2

Ispg0

)

m0 − md

1 − exp

(

− Δv2

Ispg0

) . (8)

For every possible transfer, the largest mass that can be
collected is estimated through eq. (8). For every asteroid, the
possible moments corresponding with the largest sampling
mass is selected as the best choice, so does the target aster-
oid. In this way, the best target asteroid and proper moments
can be determined.

In fact, due to Moon gravity assist in step 2, the spacecraft
will have certain velocity relative to the Moon and it can be
used to reduce the fuel consumption to rendezvous with tar-
get asteroid. In step 5, the spacecraft will have a relative ve-
locity with the Moon for gravity assist. So reducing the first
and second impulse magnitude of their respective Lambert
problems is acceptable. A better approximation is obtained
through this way. The result is listed in Table 1.

The classical orbital elements (COE) of the chosen aster-
oid at epoch 56400 (MJD) are listed in Table 2.

4 Design of all steps

4.1 Design step 1: LEO escape

In this step, thrust is low and many revolutions are required
for the spacecraft to get enough velocity to be able to fly to

Table 1 Search result

Leave Arrive Leave Arrive

earth asteroid asteroid earth

Epoch (MJD) 62322 63011 63441 65609

Table 2 Classical orbital elements of target asteroid at epoch 56400 (MJD)

Orbit elements Values a)

a (AU) 1.1442

e 0.0968

i (◦) 1.695

Ω (◦) 120.816

ω (◦) 145.382

M (◦) 50.255

a) a is the semi-major axis; AU: the astronomical unit (149597870.66
km); e : the eccentricity; i : the inclination; Ω : the ascending node longi-
tude; ω: the argument of perigee and M the mean anomaly

the Moon’s SOI. To reduce the fuel consumption, thrust is
only applied when the spacecraft is near its perigee. But when
the eccentricity of spacecraft’s orbit is small, applying thrust
in whole arc is also acceptable to reduce the time to escape.
Due to the difficulty of the investigated problem, a nominal
trajectory is generated as initial guess, and direct optimiza-
tion methods are used for better convergence performance.

For simplification, thrust direction is assumed to be always
the same with the direction of current velocity when gener-
ating nominal trajectory. For the first 10 circles, thrust is ap-
plied for the whole arc. And for the next 257 circles, thrust
is applied only near its perigee and the thrust is applied when
the true anomaly is within [−3π/8, 3π/8]. Smaller restrained
true anomaly interval may result in better fuel consumption
performance but more mission time will be used. A balance
between mission time and fuel consumption should be con-
sidered.

For effective computation, modified set (P, ex, ey, hx, hy, L)
of Gauss coordinates is used to control the angle of thrust arc.
Compared with COE, there is no singularity for circular or-
bits and zero inclination orbits. The set is defined as follows
[35]:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ex = e cos (Ω + ω) , ey = e sin (Ω + ω) ,

hx = tan (i/2) cosΩ, hy = tan (i/2) sinΩ,

L = Ω + ω + ν,

(9)

where P is the semi-latus rectum of the osculating ellipse and
ν the true anomaly. The position r and velocity v of the space-
craft in the Cartesian coordinates whose origin is chosen to be
the central body are given by

r =
P

CW

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 + h2

x − h2
y

)
cos L + 2hxhy sin L

(
1 − h2

x + h2
y

)
sin L + 2hxhy cos L

2Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

v =
1
C

√
μ0

P

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2hxhy (ex + cos L) −
(
1 + h2

x − h2
y

) (
ey + sin L

)

(
1 − h2

x + h2
y

)
(ex + cos L) − 2hxhy

(
ey + sin L

)

2
(
hx (ex + cos L) + hy

(
ey + sin L

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where μ0 is the gravitational constant of central body and

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

W = 1 + ex cos L + ey sin L,
Z = hx sin L − hy cos L,

C = 1 + h2
x + h2

y.
(12)

Denote x = (P, ex, ey, hx, hy, L) and m the mass of spacecraft.
For convenience, the actual thrust vector is defined by

{
T = uTmaxα,

0 � u � 1.
(13)
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where u is a dimensionless variable representing the thrust
magnitude and α the direction of thrust vector. The equations
of motion is

ẋ = f 0 (x) + f (x)
uTmaxα + Fper

m
,

ṁ = −uTmax

Ispg0
,

(14)

where Fper the perturbation and vector field is

f 0 =

√
μ0

P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

W2/P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

f =

√

P
μ0

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2P/W 0
sin L cos L + (ex + cos L) /W −Zey/W
− cos L sin L +

(
ey + sin L

)
/W Zex/W

0 0
C

2W
cos L

0 0
C

2W
sin L

0 0 Z/W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Eq. (14) is the derivate of x with respect to time t. Convert it
to L for the convenience of determining the start and end of
thrust arc, for P, ex, ey, hx, hy,m

dx
dL
=

dx
dt
/

dL
dt
, (16)

and for time t
dt
dL
= 1/

dL
dt
. (17)

Combining eq. (14) to eq. (17), derivative of new state pa-
rameter x′ = (P, ex, ey, hx, hy, t,m) with respect to L is ob-
tained. And according to the equations of motion described in
ECI provided by the organizer, the perturbation of the Moon
and Sun is

Fper = − μMm

⎛
⎜⎜⎜⎜⎝

rM

r3
M

+
r − rM

‖r − rM‖3
⎞
⎟⎟⎟⎟⎠

− μSm

⎛
⎜⎜⎜⎜⎝

rS

r3
S

+
r − rS

‖r − rS‖3
⎞
⎟⎟⎟⎟⎠ , (18)

r in eq. (18) is usually described in ECI, so is Fper, while
Fper in eq. (32) is described in local-vertical-local-horizontal
(LVLH) frame, in which the x axis points radially away from
the center body to spacecraft, the y axis points in the in-track
direction with increasing true anomaly, and the z axis points
in the cross-track direction. The rotational matrix from LVLH
to ECI is

M =
[

r
‖r‖

(r × v) × r
‖(r × v) × r‖

r × v
‖r × v‖

]

. (19)

Perturbation in LVLH is obtained from M and Fper by

F′per = MTFper. (20)

Now numerical integration of the dynamic equations is
conducted. Except for the first full-thrust circles, thrust is
applied only when −3/8π � ν � 3/8π, so thrust is applied
when −3/8π � L − (Ω + ω) � 3/8π. To obtain a nominal
trajectory, first select the starting time and initial COE of the
spacecraft’s orbit on LEO, and then integrate in precise dy-
namic model with the methods mentioned previously. The
terminal condition of this step is that the height of the apogee
of spacecraft’s orbit is equal to the distance between the Earth
and Moon so that the spacecraft may coast into Moon’s SOI
and Moon gravity assist may happen. The termination of nu-
merical integration is implemented using the ode45 subrou-
tine provided by MATLAB.

After integration, the time when the spacecraft coasts to
its apogee using simple two-body model is also calculated.
Using this arrival time, the phase of the Moon can be deter-
mined and the solution is accepted only when the phase of the
Moon is near the spacecraft’s phase at the arrival time. Other-
wise, a new start time should be used. The proper start time is
obtained by trial and error, and certain error of constraint vio-
lation is acceptable because further local optimization will be
used to eliminate it. The nominal trajectory is shown in Fig-
ure 1. As Figure 1 shows, the first 10 circles of the nominal
trajectory is full-thrust arc and for the next 257 circles, thrust
is only imposed when the spacecraft is near its perigee.

After obtaining initial guess, local optimization method is
used to not only reduce the fuel cost but also eliminate the
violation of constraints of initial guess. Local optimization
means that the final solution is not far from initial guess and
in order to get better performance index, many initial guesses
should be used and the best one is chosen.

The performance index to be minimized is the fuel con-
sumption and the parameters to be optimized are the cumu-
lative longitude (L) of the start and end of coast arc and the
direction of thrust for every thrust arc. To parameterize the
direction of thrust vector, a polynomial of certain order can
be used. In fact, in order to reduce the difficulty of the calcu-
lation of analytic partial derivatives of constraint function
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Figure 1 (Color online) Nominal trajectory for step 1.
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and cost function with respect to each variable, the order is
chosen to be zero, which means the angle between the direc-
tion of thrust and velocity vectors is manually chosen to be
constant for every single thrust arc.

Because the number of revolutions is large, multiple shoot-
ing method is used to reduce the sensitivity of this prob-
lem. The variables to be optimized are the states (x′) of the
start point of thrust arc, cumulative longitude of start and end
point, denoted by L0 and L f , and two angles to describe the
direction of thrust vector, denoted by α and β. For the i-th
revolution, integrating with full thrust from Li

0 to Li
f and from

Li
f to Li+1

0 with no thrust, the final state of this revolution xi
t

is obtained and the constraint

xi
t = xi+1

0 , (21)

where xi+1
0 is the state of the start point of (i+1)th revolution,

should be imposed to ensure the continuity of trajectory. For
the last thrust arc, after getting the final state of the end point
of thrust arc, another constraint is imposed to ensure Moon
gravity assist. With two-body model we can get the state at
the apogee of spacecraft’s orbit. The position of moon can be
calculated following previously mentioned two-body model.
The constraint is imposed as:

rapo = rmoon, (22)

where rapo is the position of spacecraft at its perigee, rmoon

the position of Moon when spacecraft reaches its perigee.
For multiple shooting method, every revolution is calcu-

lated independently, because they are determined only by the
parameters of their own. Parallel computation can be im-
plemented, which can significantly accelerate the computing
speed.

All the partial derivatives of all constraints and perfor-
mance index with respect to all variables are computed an-
alytically (not by finite difference). The method is to numer-
ically integrate the variation equations. The calculation of
analytic derivatives is difficult and their computation needs a
lot of effort and code. But we find that analytic derivatives
are crucial to fast execution and robust convergence.

Combining nominal trajectory as initial guess, multiple
shooting to reduce sensitivity, parallel computation to accel-
erate computing speed and analytic partial derivatives, the
problem can be solved directly using nonlinear optimization
software SNOPT [36]. The local optimal trajectory for the
last 257 circles is shown in Figure 2. Because the solution
is local optimal, the final trajectory is not far from its initial
guess, which also indicates that the initial guess for nominal
trajectory is suboptimal. The states at the start and end time
of this step is listed in Table 3.

4.2 Design for step 2: Moon gravity assist

In this section, multiple Moon gravity assists with the help of
resonant orbit is investigated. After the first Moon gravity
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Figure 2 (Color online) Optimal trajectory for step 1.

Table 3 Result for step 1

Start End

Epoch 62136 62267

P (km) 6578 22041

ex 0 −0.880

ey 0 0.345

hx 0.175 0.345

hy −0.0216 0.153

L −54.974 1617.7

m (kg) 2000 1769

assist, the spacecraft is guided into an orbit whose period is
exactly half of Moon’s period. After two revolutions of the
spacecraft’s orbit, the Moon exactly completes one revolu-
tion and another gravity assist can be conducted. As shown
in Figure 3, Moon gravity assist is equivalent to an impulse
by which the spacecraft’s relative speed to the Moon turns an
angle. The maximum angle can be calculated through eq. (1).

It can be easily seen from Figure 3 that two gravity assist
can greatly change the velocity of the spacecraft.

Equations of motion in precise dynamic model is different
from this simplified model and some special methods should
be used to optimize trajectories with multiple Moon gravity
assist.

4.2.1 Optimal control to nonlinear programming

Because fuel-optimal control is bang-bang control, which
means that u can only be 0 or 1, the expected optimal tra-
jectory can be parted into coast arc and full-thrust arc. A way

vmoon

scv++

scv+

scv


∞v++

∞v+

∞v


2δ 1δ

Figure 3 Two moon gravity assists.
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to optimize the trajectory is to presuppose the number of full-
thrust arcs and use polynomial interpolation to express thrust
direction. Described in spherical coordinates, take θ and φ
as two parameters and the direction of thrust vector can be
written as:

α =
[
cos θ cosφ cos θ sin φ sin θ

]T . (23)

With certain order of polynomials to express θ and φ, the di-
rection of thrust vector can be calculated. Continuous angle
is approximated by limited number of parameters and it is the
essence of direct method of trajectory optimization to trans-
form optimal control problem into NLP. However, it is not
the coefficients of polynomial, but the value of θ and φ on n
Chebyshev nodes in the time interval of full-thrust arc are to
be optimized. With the value of θ and φ on these nodes, a
polynomial of n − 1 order is constructed. If we use coeffi-
cients of polynomials to describe the direction, it’s difficult
to impose constraints on the direction of thrust. Chebyshev
nodes in the interval [a, b] are [37]

xk =
1
2

(a + b) +
1
2

(b − a) cos

(
2k − 1

2n
π

)

, k = 1, ..., n. (24)

To use nonlinear programming to solve optimal trajectory,
we can first take m as the number of full-thrust arcs, and n
as the order of interpolation polynomials. Parameters to be
optimized for one arc are: start and end times, θ and φ on
every one of n + 1 Chebyshev nodes. Total number of pa-
rameters to be optimized is m(2n + 4). Because full thrust is
assumed, performance index can be expressed using the sum
of the length of every interval

min
m∑

i=1

(
ti

f − ti
0

)
, (25)

where ti
f and ti

0 are start and end times, respectively, of the ith
full-thrust arc.

For nonlinear programming problems, constraints should
be considered. Constraints for this problem are

(1) Start time of every interval is not more than the end
time, that is ti

0 � ti
f ;

(2) Start time of next interval is not less than the end time
of current interval, that is ti

f � ti+1
0 ;

(3) Constraints on initial and final position and velocity.
For gravity assist problem, special constraints are required.

For gravity assist problem in precise dynamic model, due to
the strong nonlinearity, the final state of spacecraft is very
sensitive to control parameters. Among iteration, it is rather
possible that the spacecraft is very close to the Moon, result-
ing in that dynamic function is extremely nonlinear and nu-
merical problems occur. Calculation has to be terminated. To
avoid possible numerical problems by imposing constraints
on minimum flyby altitude, the following method is used.

Denote rsc, vsc as the position and velocity when spacecraft
enters Moon’s SOI, and rmoon, vmoon the position and velocity

of Moon at the same time. The spacecraft’s relative position
and velocity to the Moon are

rrel = rsc − rmoon,

vrel = vsc − vmoon.
(26)

The COE of the spacecraft’s orbit relative to the Moon is ob-
tained with the relative position and velocity. In general, rela-
tive motion is hyperbola and for minimum flyby altitude hmin,
constraint is

a(e − 1) � hmin + Rmoon, (27)

where hmin is the minimum flyby altitude and Rmoon the ra-
dius of moon. Denoting rball as the radius of Moon’s SOI,
constraint on the position between spacecraft and the Moon

‖rrel‖ = rball (28)

should also be imposed.

4.2.2 Results and analysis

Based on the method mentioned above, trajectory optimiza-
tion with multiple gravity assists is transformed into NLP
which is solved by SNOPT. The order of polynomial is set
to be 2 and three full-thrust arcs, which are assumed that the
first two are previous to the first Moon gravity assist and the
third is between the first and second Moon gravity assist, are
presupposed. The optimal trajectory is shown in Figures 4
and 5. The initial and terminal state of the spacecraft in ECI
is shown in Table 4.

It can be found from Figure 4 that in precise dynamic
model, the optimal trajectory is not far from preliminarily
designed trajectory. After the first Moon gravity assist, the
spacecraft coasts in an orbit whose period is about half of the
Moon’s. The second Moon gravity assist takes place near the
first one, not exactly the same because of the influence of both
Moon and Sun’s gravity. The first flyby altitude is larger than
the second one, because the trajectory is not bent as much as
the second one, whose flyby altitude is nearly 200 km. And
it can be found from Table 4 that 5 kg fuel is used, which
accounts for an velocity increment of 97 m/s. In preliminary
design, no fuel cost is needed for resonant flybys if the space-
craft moves in a two-body model. In precise dynamic model,
because of the gravity of the Moon and Sun, small maneuvers
are required to guide the spacecraft into the desired resonant

Table 4 Results for step 2

Start End

Epoch 62267 62318

x (km) −1.11×104 −1.37×104

y (km) 2.48×103 1.45×106

z (km) 421.6 −3.65×105

vx (km/s) −2.38 −0.40

vy (km/s) −7.51 0.83

vz (km/s) −2.438 −0.064

m (kg) 1769 1763
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Figure 4 (Color online) Trajectory projected on xy plane with Moon grav-
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Figure 5 Spatial trajectory with Moon gravity assists.

orbit. The C3 at the start time and end time of this step is
−1.926 km2/s2 and 0.313 km2/s2. The time cost is 50.8 d,
which is the sum of the time needed to fly to the Moon, the
coast time in the resonant orbit, the time to fly out of Earth’s
SOI.

4.3 Design for step 3: Fly to asteroid

In this step, the spacecraft starts from Earth’s SOI and ren-
dezvous with the selected asteroid. The initial state is cho-
sen to be the same with the final state of step 2. The mis-
sion time and final state are determined from previous global
search. This step can be transformed into a fuel-optimal prob-
lem with both initial and final times and states fixed. Long
flying time and relatively high thrust magnitude may cause
numerical problem as stated before. Here, homotopic meth-
ods are used, after solving the same problem with a relatively
lower thrust magnitude, the magnitude of thrust is increased
gradually until the required magnitude is reached, with for-
mer solution as initial guess.

Due to the strong sensitivity of fuel-optimal problem. Ho-
motopic approach is implemented to deal with the difficulty
of traditional methods [15,16]. Traditional fuel-optimal prob-
lem leads to a bang-bang control law, the shooting function
may be discontinuous or non-differentiable at some points
[16]. This induces a very narrow convergence domain for
nonlinear equations solving methods. Homotopic approach
is used by adding a perturbed energy form in the perfor-
mance index. With the help of this perturbed energy form,
the control law of thrust magnitude may become continuous
and even derivable. The continuity of the control law is es-
sential to the efficiency and accuracy of numerical integration
method, which is used to build TPBVP. And the perturbed
energy form can reduce the numerical sensitivity of TPBVP,
which can help increase the radius of convergence domain.
To help guess the value of initial costate variables, normaliza-
tion of initial costate variables is implemented and a positive
numerical factor λ0 is added [15]. Note ε be the homotopic
parameter with domain [0, 1]. New performance index for
fuel-optimal problem is built as:

J = λ0c2

∫ t f

t0

{u − ε ln [u (1 − u)]} dt, (29)

where t0 and t f denote the initial and final times and are all
fixed for this problem and c2 = Tmax/(Ispg0).

4.3.1 Optimal control

In this step, the dominating gravity source is the Sun and
the problem is considered in HEIRF. All state variables are
nondimensionalized using AU as length unit and as for time
unit 1 year is normalized to 2π, for better convergence per-
formance.

From eq. (4) the form of the perturbation from Earth and
Moon is obtained as:

FEarth = −μE
rSC − rSE

‖rSC − rSE‖3
, (30)

FMoon = −μM

⎛
⎜⎜⎜⎜⎝

rEM

r3
EM

+
rSC − rSE − rEM

‖rSC − rSE − rEM‖3
⎞
⎟⎟⎟⎟⎠ . (31)

In order to decrease the sensitivity of TPBVP, modified set
of Gauss coordinates are used as primary variables here in-
stead of components of position and velocity vectors. The
new dynamic function is built as:

ẋ = f 0 (x) + f (x)
uTmaxα + Fper

m
,

Fper = FEarth + FMoon,

ṁ = −uTmax

Ispg0
.

(32)

First, by introducing Lagrange multiplier λ = (λx, λm), the
Hamiltonian is built as:

H = λx · ẋ + λmṁ + λ0c2 {u − ε ln [u (1 − u)]} . (33)
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Then, the optimal thrust direction and magnitude, which min-
imize the Hamiltonian, are determined by

α = − f T · λx
∥∥
∥ f T · λx

∥∥
∥
, (34)

u =
2ε

ρ + 2ε +
√
ρ2 + 4ε2

, (35)

where ρ is the switching function (SF) and is determined by

ρ = 1 − Ispg0 ‖λv‖
mλ0

− λm

λ0
. (36)

Control law determined in this way is approximating true
bang-bang control when ε reduces to 0 gradually and is
shown in Figure 6.

As Figure 6 shows, with the reduction of ε from 1 to 0,
bang-bang control is approximated gradually. The switching
of the sign of SF makes the control law switch between 0 and
1, which agrees with the optimal control without homotopic
form [15].

The costate differential equations that termed as Euler-
Lagrange equations.

λ̇x = −∂H
∂x
,

λ̇m = −∂H
∂m
.

(37)

Because the final mass is free, the final mass costate variable
should be zero

λm(t f ) = 0. (38)

The TPBVP consists of a set of equations of the form

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(
t f

)
− x f

λm

(
t f

)

λ2
0 + λ (t0) · λ (t0) − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (39)

To build the TPBVP, initial costate variables and λ0 are
guessed and integration of eqs. (32) and (37) from starting
time to ending time is conducted, with guessing initial costate
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Figure 6 (Color online) Relationship between ρ and u for different ε.

variables and already known state variables. ε is presupposed
initially and is changed with the process of approximating
bang-bang control. After integration, all the 8 equations can
be built using eq. (39). With 8 equations and 8 variables, sin-
gle shooting methods such as Powell’s or Newton’s can be
used to solve TPBVP.

4.3.2 Nonlinear equations solving

To solve the shooting function of TPBVP, MinPack-1 [38],
a package of FORTRAN subprograms for the numerical so-
lution of systems of nonlinear equations and nonlinear least-
squares problems, is used. In MinPack-1, a modification of
Powell’s hybrid algorithm [39] that is a combination of New-
ton’s method and the method of the gradient is implemented
to solve nonlinear equations. The algorithm implemented in
MinPack-1 is similar to the solver of MATLAB’s fsolve. For
the calculation of the Jacobian matrix of this problem, ei-
ther simply computing by a forward-difference approxima-
tion which is implemented by MinPack-1 itself or another
rather complicated but more accurate way through numerical
integration of the variational equations can be used.

4.3.3 Design for step 3

Design of this step is transformed into a TPBVP with the
methods above. Initial maximum magnitude of thrust is cho-
sen to be 0.4 N and ε is chosen to be 0.01. First, increase
the maximum magnitude of thrust to 10 N gradually and then
decrease ε to 0.0001 gradually, further decrease may cause
numerical difficulties but with little improvement in the fuel
consumption. The optimal trajectory is obtained as shown
in Figures 7 and 8. The history of u is shown in Figure 9.
The states at starting and terminating moments of this step is
shown in Table 5.

4.4 Design for step 5: Capture

Design for step 5 should be accomplished earlier than step 4
to provide final state and time for step 4. The final state of
step 4 is the same with the initial state for step 5 to guaran-
tee the continuity of trajectory. To use Moon gravity assist to
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Figure 7 (Color online) Spatial trajectory to asteroid.
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Figure 8 (Color online) Trajectory to asteroid projected on xy plane.

6.24 6.25 6.26 6.27 6.28 6.29 6.3
−0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Time (MJD)

u

×104

Figure 9 (Color online) Thrust sketches for step 3.

Table 5 Results for step 3

Start End

Epoch 62318 63011

P (AU) 0.966 1.13

ex 0.0181 –6.4×10−3

ey 0.044 –0.097

hx 8.28×10−4 –7.58×10−3

hy 1.34×10−3 0.0127

L 4.93 10.4

m (kg) 1763 1605

reduce the velocity of the spacecraft relative to the Earth, the
time and relative position and speed when entering Earth’s
SOI have to be determined to reduce the fuel consumption
for the spacecraft to leave from asteroid to Earth, the final
state eq. (2) should also be satisfied.

The position and velocity of spacecraft when entering the
Earth’s SOI is not easy to determine. By directly solving us-
ing optimal control theory for step 4 is almost impossible.
The time for every single calculation of step 4 is very long be-
cause the narrow convergence domain results in many trials
of initial costate variables, which is time consuming. Instead,
conic patch leading to Lambert problem is used to approxi-
mate the real trajectory.

When the spacecraft enters Earth’s SOI, Earth’s position
rearth and velocity vearth can be obtained through previously
mentioned two-body model. The position and velocity of the
spacecraft in HEIRF are

rsc = rearth + rrel,
vsc = vearth + vrel,

(40)

where rrel and vrel are spacecraft’s position and velocity rela-
tive to the Earth. When leaving from the asteroid, the space-
craft’s position is the same with asteroid’s position and is ob-
tained through previously mentioned two-body model. Ac-
cording to the position when the spacecraft leaves the asteroid
and enters the Earth’s SOI, Lambert solver is applied to deter-
mine the velocity of the spacecraft at corresponding position.
Denote v1 and v2 as the result of Lambert problem’s solution
velocities of leaving and arriving, tm the time when space-
craft enters Moon’s SOI and t f the final time of the mission,
t0 the time when spacecraft enters Earth’s SOI. Parameters to
be optimized are

x =
[
t0, r0, v0, tm, t f

]
, (41)

where r0 and v0 are spacecraft’s relative position and velocity
at t0. The performance index is

min (‖v1 − vast‖ + ‖v2 − vsc‖) , (42)

where vast is asteroid’s velocity vector when spacecraft
leaves. Constraints are: the flyby altitude is larger than the
minimum, the final condition expressed in eq. (2) should also
be satisfied. Nonlinear programming problem is established
and SNOPT is used to solve this problem. Trajectory finally
obtained is shown in Figure 10. The initial and terminal states
of this step are listed in Table 6. The C3 at the start and end of
this step is 1.942 km2/s2 and −0.5951 km2/s2, respectively.

4.5 Design for step 4: Fly back to the earth

The design of step 4 is very similar to step 2, except that
the maximum magnitude of thrust has no need to be changed
gradually because the mass of the spacecraft is large af-
ter sampling so that even using the maximum magnitude of
thrust, the condition that the mass of the spacecraft drops to
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Figure 10 (Color online) Capture trajectory.
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Table 6 Results for step 5

Start End

Epoch 65607 65618

x (km) −1.19×106 5747.6

y (km) −5.32×105 3199.1

z (km) 7.27×105 −30.43

vx (km/s) 1.28 −7.4

vy (km/s) 0.15 8.09

vz (km/s) −0.897 −0.118

near 0 and numerical difficulty occurs is not very likely to
happen.

For the problem discussed here, fuel should be exhausted
to ensure as large collected mass as possible. Supposing that
mt is the mass at the final time of this step, M is the collected
mass and md is the dry mass of spacecraft, it should be satis-
fied that

mt − M − md = 0. (43)

With one equality constraint, another costate variable χ is
introduced and the product of them is added to generalized
index. To maximize the mass of sample is equivalent to max-
imize the mass when the spacecraft leaves from the asteroid.
So the new performance index is

J = −λ0m(t0) + λ0c2

∫ t f

t0

{u − ε ln [u(1 − u)]} . (44)

With the introduction of one equality constraints, two
transversal conditions are introduced.

λm(t0) − λ0 + χ = 0,
−λm(t f ) − χ = 0, (45)

and χ can be eliminated so that

λm(t0) − λm(t f ) − λ0 = 0. (46)

There are 9 variables to be solved: costate variables at t0,
λ0 and the mass when the spacecraft leaves from the asteroid,
note as m(t0). States and costate variables at t f are obtained
through numerical integration from t0 to t f . The TPBVP is
built as:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(
t f

)
− x f

λm(t0) − λm

(
t f

)
− λ0

m(t0) − m(t f ) − mfuel
λ2

0 + λ (t0) · λ (t0) − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (47)

Using the same method for designing in step 3, start solv-
ing with ε = 0.01 and terminate when ε = 0.001 because
further reduction of ε is inefficient because of the strong non-
linearity and the improvement of m(t0) is small. The rela-
tionship between time and the magnitude of thrust is shown
in Figure 11. Bang-bang control is well approximated. The
optimal trajectory in HEIRF is shown in Figure 12 and the
trajectory in ECI is shown in Figures 13 and 14. The initial
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Figure 11 (Color online) Thrust sketches for step 4.
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Figure 13 (Color online) Spatial trajectory in ECI for step 4.
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Table 7 Results for step 4

Start End

Epoch 63441 65607

P (AU) 1.13 1.09

ex −6.4×10−3 0.02392

ey −0.0965 −0.0687

hx −7.58×10−3 −6.89×10−3

hy 0.0127 0.0132

L 3.81 36.4

m (kg) 4.62×104 4.51×104

and terminal state in HEIRF is listed in Table 7. The mass of
sample is 44619 kg.

5 Conclusion

This paper presents the method that proposed to solve the
problem of NEA sample return mission from LEO. To in-
crease the collected sample mass, practical methods includ-
ing multiple revolutions and Moon gravity assists are pro-
posed to reduce the fuel consumption to escape from the
Earth. Indirect methods are applied to optimize the trajectory
to the asteroid, which is selected by global search and the tra-
jectory from asteroid back to the Earth. Multiple Moon grav-
ity assists using resonant orbit is used to increase the velocity
when escaping from the Earth and another gravity assist can
be taken advantage of to significantly brake the spacecraft
when flying back to the Earth.

To reduce the numerical sensitivity of optimizing trajec-
tories with multiple revolutions, multiple shooting methods
with parallel computation is used for better convergence per-
formance and computing speed. To avoid the numerical diffi-
culty of indirect method for missions with long period and
relatively high thrust, methods such as directly optimizing
the moment when the low-thrust engine turns on and off, us-
ing polynomials to approximate the direction of thrust and
approximating the maximum thrust magnitude gradually are
proposed. Preliminary design and further optimization for
Moon gravity assists is also investigated. Homotopic meth-
ods are used to reduce the sensitivity of indirect methods
and the results show that the obtained solution is approxi-
mating bang-bang control. And these methods can be easily
extended to other missions under more precise dynamic mod-
els considering other perturbations.

However, there’s still a lot of work that can be done to im-
prove the results. Due to the strong nonlinearity between the
mass of sample and the magnitude of the velocity increment
that are cost to leave the asteroid and fly back to target des-
tination, the focus should be on this segment. The method
of using multiple Moon gravity assist in this segment are to
be investigated and it is likely that the mass of sample can
increase a lot in this way. Methods to avoid possible numeri-
cal difficulty and solve long-time mission with relatively high
thrust also need investigation. And the approach to optimize

trajectory with multiple revolutions are also worth research-
ing.
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