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The running of the QCD coupling in the effective mass causes thermodynamic inconsistency problem in the conventional quasipar-
ticle model. We provide a novel treatment which removes the inconsistency by an effective bag constant. The chemical potential
dependence of the renormalization subtraction point is constrained by the Cauchy condition in the chemical potential space. The
stability and microscopic properties of strange quark matter are then studied within the completely self-consistent quasiparticle
model, and the obtained equation of state of quark matter is applied to the investigation of strange stars. It is found that our im-
proved model can describe well compact stars with mass about two times the solar mass, which indicates that such massive compact
stars could be strange stars.
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1 Introduction

Due to the non-perturbative nature of strong interactions at
low energy scales [1], understanding the cold and strongly
interacting quark matter from models inspired by quantum
chromodynamics (QCD) is one of the most interesting sub-
jects in modern nuclear physics [2]. It is generally believed
that some neutron stars are in part or as a whole composed of
deconfined matter, and thus provide a natural laboratory for
studying the properties of quark matter [3, 4]. Recent obser-
vations [5] showed that the binary millisecond pulsar J1614-
2230 has a mass of about 1.97 times the solar mass. The
authors concluded that only strongly interacting quark matter
can support such a large mass. Therefore, this precise mass
measurement gives strong constraints on the equation of state
(EOS) of quark matter.

*Corresponding author (email: gxpeng@ucas.ac.cn)

Strange quark matter (SQM), composed of deconfined up,
down, and strange quarks, was conjectured by Witten [6]
as the ground state of strong interactions. Soon Fahri and
Jaffe [7] studied the properties of SQM in the framework of
MIT bag model and found that SQM is absolutely stable for
a wide range parameters. If this is really the case, SQM can
be found inside compact objects [8-11], or in the form of
strangelets [12].

Bombaci [13] compared theoretical results with the
semiempirical mass-radius relation extracted for the X-ray
burst source 4U 1820-30, and found that the source could
be a kaon-condensed nucleon star or a strange star. Not long
ago, based on a variety of scintillation phenomena observed
from pulsars and quasars, the authors of ref. [14] proposed
that the pulsar scintillations may be caused by an ionization
agent constituted by positively charged lumps of SQM.

For strongly interacting quark matter, an important prob-
lem is how to describe the strong interactions between quarks
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appropriately. Because the fundamental theory of strong in-
teractions is not exactly solvable at present, one has to turn to
various phenomenological models characterizing the proper-
ties of QCD. Over the decades there have been many QCD
inspired effective models [15-21]. The simplest as well as
most popular used model is the MIT bag model [7]. This
model treats quarks as a free Fermi gas plus an additional bag
constant, sometimes with perturbative interactions included.
The advantage of the bag model is obvious: it has a simple
physical description of quark matter, and particularly useful
when we face with a complex quantum many-body system,
such as quark system.

However, quark masses vary with environment due to the
strong coupling between quarks. Therefore, Fowler et al. [22]
initially introduced a quark mass-density-dependent model
(QMDD), which mimicked the strong interactions between
quarks by the density dependence of quark masses. After-
wards, many further works have been done in this direction
[23-28]. The thermodynamics treatment of this kind mod-
els has caused a lot of puzzles, and it is now clear that the
quark chemical potential becomes effective if quark mass is
density dependent while the quark number density and the
system free energy density keep the same form of a free-gas
system [29, 30].

By considering quarks as quasiparticles with an effec-
tive mass, the quasiparticle model has been widely used to
study the properties of quark matter and quark-gluon plasma
[31-33]. Unlike the QMDD model, the quark masses are
not dependent on the density but on the chemical potential(s)
and/or temperature [34-38]. The chemical-potential depen-
dent quark masses are derived by an effective quark propa-
gator with one-loop self-energy computed within the hard-
dense-loop approximation [39, 40].

Because the quark masses are chemical potential and/or
temperature dependent, thermodynamics formulas need spe-
cial treatments. Originally quasiparticles were introduced as
propagating in a refractive medium [41]: the pressure was
written in an ideal gas form, while other quantities had extra
terms in order to meet thermodynamic consistency [42]. In
later calculations both the pressure and energy density have
been taken in the form of an ideal gas [43,44]. The, however,
caused a serious thermodynamic inconsistency problem, as
pointed out in ref. [45]. The inconsistency can be solved us-
ing different methods, among them the the Gorenstein and
Steffens’ approach [46] being the most popular. This ap-
proach was originally introduced for a gluon gas at finite tem-
perature, and it has been extended to the case of quark matter
with one chemical potential [47].

The effective mass in quasiparticle model depends not only
explicitly on chemical potential but also on the QCD running
coupling. The main purpose of the present paper is to include
both the explicit dependence on chemical potentials and the
running of the QCD coupling in a self-consistent way. It is
found that the relation between the renormalization subtrac-
tion point and chemical potentials should satisfy a Cauchy-

type equation. Accordingly, the SQM EOS becomes stiffer,
which makes the maximum mass of strange stars as large as
about two times the solar mass.

The organization of this paper is as follows. In sect. 2 ,
we study the thermodynamic self-consistency of the quasi-
particle model with medium effects and the running coupling
taken into account. Then, the improved model is used to
study the stability and macroscopic properties of SQM in
sect. 3. We apply the obtained new EOS to the investigation
of strange stars in sect. 4. Finally, conclusions and discus-
sions are given in the last sect. 5.

2 Thermodynamic self-consistency of the
quasiparticle model with medium effects

Medium effects play an important role in describing the prop-
erties of quark matter via the concept of effective masses. The
effective quark masses in the quasiparticle model are derived
in the zero momentum limit of the dispersion relation from an
effective quark propagator by resuming one-loop self-energy
diagrams in the hard-dense-loop approximation [39, 48]

mi =
mi0

2
+

√

m2
i0

4
+

2αs

3π
µ2

i , (1)

where mi, mi0 and µi are, respectively, the effective mass, cur-
rent mass and chemical potential of the corresponding quark
flavor with i going over the up (u), down (d), and strange (s)
quarks, while αs is the QCD running coupling [49].

In the present paper the current quark masses of light
quarks are assumed to be zero due to their small value com-
pared to that of strange quarks. Consequently, eq. (1) is re-
duced to the following simple form:

mu/d =

√

2αs

3π
µu/d. (2)

We would like to comment that the expressions for effec-
tive quark masses we use in the present paper should not be
taken in the limit of vanishing chemical potentials. There
are several reasons for this: first of all, if one takes for-
mally the zero µ limit then the QCD running coupling would
diverge, which clearly shows that the chemical potentials
should be no less than the QCD scale. Moreover, the effec-
tive quark masses have been computed by using a hard-dense-
loop ansatz to take into account the in-medium effects on the
self-energy. Therefore, there is no contradiction with effec-
tive chiral perturbation theories where one takes the contri-
bution of the chiral condensate to the in-medium mass which
vanishes at the chiral phase transition.

For a system consisting of up, down, strange quarks and
electrons, the contribution from the quasiparticle type i to the
thermodynamic potential at zero temperature is

Ωi =
di

2π2

∫ νi

0

(

√

k2 + m2
i − µi

)

k2dk
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=
di

24π2

[

µiνi
(

µ2
i −

5
2

m2
i

)

+
3
2

m4
i arcsh

( νi

mi

)

]

, (3)

where νi =
√

µ2
i − m2

i is the Fermi momentum of particle
type i, and di is the degeneracy factor with 2 for electrons and
6 for quarks.

In the framework of the quasiparticle model, the total ther-
modynamic potential density of SQM can then be written as:

Ω =
∑

i

Ωi(µi,mi) + B + B0, (4)

where B ≡ B(µu, µd, µs) is necessary to guarantee the ther-
modynamic consistency, and B0 refers to the bag constant
accounting for the vacuum energy.

For a quasiparticle Fermi system, the particle density of
the particle type i should have the same form of a free-particle
system with the current quark mass replaced by the effective
quasiparticle mass, namely

ni = −
∂Ωi

∂µi
=

di

6π2
(µ2

i − m2
i )3/2. (5)

If the QCD coupling αs is treated as a free parameter, the
effective mass of the quark flavor i depends merely on the
corresponding flavor quark’s chemical potential, i.e., mi =

mi(µi), then we obviously have

ni = −
∂Ωi

∂µi
−
∂Ωi

∂mi

∂mi

∂µi
−
∂B
∂µi
. (6)

Since both eqs. (5) and (6) correspond to the number den-
sity of quasiparticle type i, comparison of these two equations
naturally gives

∂B
∂µi
= −
∂Ωi

∂mi

∂mi

∂µi
(7)

or

B = −
∑

i

∫

∂Ωi

∂mi

∂mi

∂µi
dµi. (8)

This treatment has been adopted by Wen et al. in ref. [50],
and was previously done by Schertler et al. [48]. It can be
easily proved that this approach is thermodynamically self-
consistent when the QCD coupling is assumed to be a real
constant.

However the QCD coupling runs with the energy scale, the
evolution being given by the renormalization group equation

u
dαs(u)

du
= β(αs(u)) = −α2

s(u)
N−1
∑

j=0

β jα
j
s(u) (9)

with N corresponding to the number of loops in the beta func-
tion. The renormalization subtraction point u is chosen ac-
cording to the physical problem. In particle physics, it is
taken to be the momentum transfer. In the present case, it

should be a function of the chemical potentials µu, µd and µs.
We therefore have

αs = αs
(

u(µu, µd, µs)
)

. (10)

In the following, we show that the function u(µu, µd, µs) is
constrained by a consistency condition.

Taking into account eq. (4) and the chain rule for deriva-
tive, we have

ni = −
dΩ
dµi

∣

∣

∣

∣

∣

µ j,i

= −
∂Ωi

∂µi
−
∂Ωi

∂mi

∂mi

∂µi

−
∑

q

∂Ωq

∂mq

∂mq

∂αs

dαs

du
∂u
∂µi
−
∂B
∂µi

(11)

with q = u, d, s. Comparing the above equation with eq. (6)
we notice additional terms in the former, namely terms in-
volving derivative of the running coupling arising from chem-
ical potential dependence of the coupling via the renormaliza-
tion substraction.

Subtracting eq. (5) from eq. (11), we immediately have

∂B
∂µi
= −
∂Ωi

∂mi

∂mi

∂µi
−

∑

q

∂Ωq

∂mq

∂mq

∂αs

dαs

du
∂u
∂µi
, (12)

which means

dB = Fdµu + Mdµd + Jdµs, (13)

where F ≡ ∂B/∂µu, M ≡ ∂B/∂µd, J ≡ ∂B/∂µs, or, explicitly

F = −
∂Ωu

∂mu

∂mu

∂µu
−

∑

q

∂Ωq

∂mq

∂mq

∂αs

dαs

du
∂u
∂µu
, (14)

M = −
∂Ωd

∂md

∂md

∂µd
−

∑

q

∂Ωq

∂mq

∂mq

∂αs

dαs

du
∂u
∂µd
, (15)

and

J = −
∂Ωs

∂ms

∂ms

∂µs
−

∑

q

∂Ωq

∂mq

∂mq

∂αs

dαs

du
∂u
∂µs
. (16)

In this case, therefore, the additional term should be given
by a path integral as:

B =
∫ µ

µ0

dB =
∫ µ

µ0

(Fdµu + Mdµd + Jdµs), (17)

where µ0 = (0, 0, µs0) and µ = (µu, µd, µs) are the starting and
ending points for the integral respectively. µs0 is determined
by requiring the non-negative value of the Fermi momentum
of strange quarks, i.e., νs =

√

µ2
s − m2

s > 0, which leads to
µs0 = ms0/(1 − 2α0/(3π)) with α0 = α0(0, 0, µs0) being the
QCD running coupling at µu = µd = 0 and µs = µs0.
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Because the thermodynamic potential is a state function,
the integral in eq. (17) should be path independent. With this
aim, the following Cauchy conditions should be imposed:

∂F
∂µd
=
∂M
∂µu
,
∂J
∂µu
=
∂F
∂µs
,
∂J
∂µd
=
∂M
∂µs
. (18)

Obliviously, if the QCD coupling constant was assumed to
be a pure constant as in refs. [48, 50], the Cauchy conditions
in eq. (18) would be always satisfied. However, the QCD cou-
pling is running with the quark chemical potentials as shown
in eq. (10). We thus need to find the conditions which ensure
all the equalities in eq. (18).

The first order partial derivative of the quasiparticle con-
tribution to Ωi reads

∂Ωi

∂mi
=

dimi

4π2

[

µiνi − m2
i arcsh

( νi

mi

)

]

. (19)

After carrying out the calculation in eq. (18), the three
equalities can be simplified as follows:

∂nd

∂µu
=
∂nu

∂µd
,

∂ns

∂µu
=
∂nu

∂µs
,

∂ns

∂µd
=
∂nd

∂µs
. (20)

In fact, eq. (20) can also be derived from the fundamental
differential equation of thermodynamics, i.e., dΩ =

∑

i nidµi.
Finally the set of eq. (20) reduces to the following quasi-

linear differential equations:

µ3
u
∂u
∂µd
= µ3

d

∂u
∂µu
, (21a)

µ3
u
∂u
∂µs
=

msµ
2
s

√

µ2
s − m2

s
√

1 − 2αs
3π (ms −

ms0
2 )

∂u
∂µu
, (21b)

µ3
d

∂u
∂µs
=

msµ
2
s

√

µ2
s − m2

s
√

1 − 2αs
3π (ms −

ms0
2 )

∂u
∂µd
. (21c)

Now, let us focus on eq. (21a) first. Dimensional analysis
suggests the general solution of this equation to be f (ρ) with

ρ = 4

√

µ4
u + µ

4
d. This means that the solution of u is a compos-

ite function of µs and ρ. However, it is generally not possible
to write the solution explicitly. In this case, we assume the
solution of eqs. (21a)-(21c) is determined by the following
implicit function:

φ(u, ρ, µs) = 0. (22)

Taking the derivatives respectively with respect to µu and
µs on both sides of eq. (22), we get

∂u
∂µu
= −
µ3

u

ρ3

φρ

φu
,
∂u
∂µs
= −
φµs

φu
, (23)

where φρ, φu and φµs indicate the derivatives of φ with re-
spect to ρ, u and µs respectively. Substituting eq. (23) into
eq. (21b), then we get

ρ3φµs =
msµ

2
s

√

µ2
s − m2

s
√

1 − 2αs
3π (ms −

ms0
2 )
φρ. (24)

To find a practically usable solution of eq. (24), the sim-
plest choice is to take ∂φ/∂ρ = 4ρ3. In this case, we have

∂φ

∂µs
=

4msµ
2
s

√

µ2
s − m2

s
√

1 − 2αs
3π (ms −

ms0
2 )
. (25)

Consequently, we can write φ in the following form:

φ = ρ4 +

∫

φµs dµs − θ(u) = 0 (26)

with θ(u) being an arbitrary function of u. Here, in order
to satisfy the dimensional requirement and for simplicity, we
choose θ(u) = Nfu4/C4 with C being a constant model pa-
rameter which might be determined by the stability of SQM.

In conclusion, the solution of the Cauchy conditions in eq.
(18) is determined by the following equation:

φ = ρ4 + λ −
Nf

C4
u4 = 0. (27)

In the following α = αs/π. The integral in eq. (26) is given
by

λ =

∫

4msµ
2
s

√

µ2
s − m2

s
√

1 − 2
3α

(

ms −
ms0
2

)

dµs

=
4
b2

∫

(x + c1)2
√

x2 − c2
0dx. (28)

In the second equality, we have used the notations

b ≡
2
3
α, c0 ≡

bms0

2(1 − b)
, c1 ≡

ms0

2
2 − b
1 − b

, (29)

and changed integration variable substitution from µs to x by

x = ms − c1 =

√

m2
s0

4
+ bµ2

s +
ms0

2(b − 1)
, (30)

which makes the integration easier; we get

λ =
3x + 8c1

3b2
(x2 − c2

0)3/2 +
x

2b2

(

4c2
1 + c2

0

)

√

x2 − c2
0

−
c2

0

2b2
(4c2

1 + c2
0) ln

(

x +
√

x2 − c2
0

)

. (31)

Considering the symmetric case, i.e., ms → 0 in eq. (27),
we obtain a simple form for the renormalization subtraction
as:

u = C
4

√

µ4
u + µ

4
d + µ

4
s

Nf
, (32)

which is a good approximation for SQM at high density since
the current quark mass of a strange quark becomes negligible
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in that case. When considering merely two-flavor massless
quarks, eq. (32) becomes

u = C
4

√

µ4
u + µ

4
d

Nf
, (33)

which is valid for non-strange quark matter at zero tempera-
ture [51].

The partial derivative of λ with respect to the renormaliza-
tion substraction u is

∂λ

∂u
= −

























ms0

2b2

√

x2 − c2
0

(1 − b)2

(

6c0c1 + 2c0ms + 4c1ms

+
4
3

(x2 + 2c2
0) +

c0x(4c2
1 + c2

0)

2(x2 − c2
0)

−
c3

0

2

4c2
1 + c2

0

x2 − c2
0

1

x +
√

x2 − c2
0

+
4c0c1(c0 + c1) + 2c3

0
√

x2 − c2
0

ln
(

x +
√

x2 − c2
0

) )

−

4m2
sµ

2
s

√

x2 − c2
0

b2(2ms − ms0)
+

2
b
λ

























2
3π

dαs

du
. (34)

Also, one can easily get the partial derivatives of φ with re-
spect to µu and µd respectively, i.e.,

∂φ

∂µu
= 4µ3

u and
∂φ

∂µd
= 4µ3

d. (35)

As a result, the partial derivatives of the renormalization
substraction u with respect to the respective chemical poten-
tial µq (q = u, d, s) in eqs. (14)-(16) are

∂u
∂µq
=

∂φ/∂µq

4N f u3/C4 − ∂λ/∂u
. (36)

For the u dependence of the coupling, we adopt the follow-
ing analytic form [52]:

αs =
1
β0

[

1
ln(u2/Λ2)

+
Λ2

Λ2 − u2

]

(37)

with β0 = (33 − 2N f )/12π and Λ the QCD energy scale. In
the present paper, we take Λ = 147 MeV [49].

The derivative of the QCD coupling with respect to the
renomination substraction u on the right-hand side of eq. (34)
is

dαs

du
=

2
β0u

[

u2Λ2

(Λ2 − u2)2
−

1

ln2(u2/Λ2)

]

. (38)

Substituting eq. (34) into eq. (17), then the additional term
B can be derived by numerical integration. Furthermore, the
energy density and pressure of SQM can be obtained by

E = Ω +
∑

i

µini, P = −Ω. (39)

Now, a new treatment of the quasiparticle model has been
proposed. In this treatment, the thermodynamic inconsis-
tency problem is removed by an additional effective bag con-
stant.

3 Properties of strange quark matter

In the previous section, we have presented a completely self-
consistent quasiparticle model. In this section, we will use it
to study the stability window and bulk properties of SQM.

For SQM in beta equilibrium maintained by weak reac-
tions such as s, d ↔ u + e− + υe and s + u ↔ u + d, the
chemical potentials satisfy the conditions

µs = µd = µu + µe. (40)

In addition, the charge neutrality condition should be im-
posed to the bulk SQM, i.e.,

2
3

nu −
1
3

nd −
1
3

ns − ne = 0. (41)

At the same time, the baryon number density is given by

nb =
1
3

(nu + nd + ns). (42)

For a given nb, the chemical potentials µu, µd, µs and µe

can be obtained by numerically solving the coupled eqs. (27)
and (40)-(42). Accordingly, the chemical potential dependent
bag constant B can be derived by performing the integration
in eq. (17). Also, with the given expression of thermody-
namic potential density in eq. (4), the EOS of strange quark
matter can be calculated from eq. (39).

For any model-given energy density E and pressure P in
perfect chemical equilibrium, the following equality

△ = P − n2
b

d
dnb

(

E
nb

)

= 0 (43)

has to be fulfilled [30]. This means that the pressure must
be exactly zero at the extreme point of the energy per baryon
for any consistent model. In Figure 1, we show energy per
baryon as well as pressure versus baryon density for the
model with thermodynamic inconsistency and for our im-
proved model. The difference between these two models is
that the former one does not include the contribution from eq.
(17). In fact, the contribution term in eq. (17) is necessary for
maintaining thermodynamic consistency. It is obvious in our
treatment that the energy per baryon and pressure are located
at the same baryon density.

The important feature known as asymptotic freedom indi-
cates that the interactions between quarks become weaker at
shorter distance. Because of asymptotic freedom it is sup-
posed that quarks behave as almost free particles at high en-
ergy scales. The normalized pressure P/Pfree with different
parameter sets is shown in Figure 2, where the free quark gas
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Figure 1 Density behavior of the energy per baryon and pressure in the
models without (upper panel) and with (lower panel) the additional term.
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Figure 2 The pressure relative to the free strange quark gas pressure.

pressure is Pfree = −
∑

iΩi(µi,mi0). The curves show qualita-
tively similar behaviors that they all trend to the free strange
quark gas result at high baryon density.

We have to pay special attention to the stability of SQM
since it may be the true ground state of strong interactions.
It is a well-established fact that two-flavor quark matter is
less stable compared to the most stable 56Fe nucleus at zero
temperature [7]. For the 56Fe nucleus, its energy per nu-
cleon ǫ0(56Fe)≈ 930 MeV. Therefore, energy per baryon of
two-flavor quark matter should be greater than 930 MeV at
zero temperature so as not to contradict the standard nuclear
physics. Meanwhile, the energy per baryon of three-flavor
quark matter should be lower than 930 MeV so that SQM
can have a change to be absolutely stable:

E
nb

∣

∣

∣

∣

∣

ud
> ǫ0(56Fe) >

E
nb

∣

∣

∣

∣

∣

SQM
. (44)

If the energy per baryon of SQM satisfy

ǫ(n) >
E
nb

∣

∣

∣

∣

∣

SQM
> ǫ0(56Fe), (45)

SQM is metastable, where ǫ(n) ≈ 939 MeV is the rest mass of
a single nucleon. Otherwise, SQM is unstable. Only if SQM

is absolutely stable or metastable can it be the true ground
state of strong interactions as well as likely to exist in the
interior of compact stars.

From eqs. (44) and (45) we can numerically derive the
parameter range for SQM. In Figure 3, the stability window
of SQM is shown in the C-B0 plane. SQM is unstable in the
uppermost region since its energy per baryon is larger than
the rest mass of a single nucleon, whereas the lowest region
is forbidden. In the region bounded by dotted and solid lines,
SQM is absolutely stable.

To study the microscopic properties of SQM and struc-
ture of compact stars, we have selected several typical values
of the parameters in the absolutely stable parameter region,
i.e., (C, B0) =(1,50), (2,60), (3,70), where C is dimensionless
while B0 is in unit of MeV · fm−3. The selected parameter
pairs are labeled in Figure 3 with solid dots.

In Figure 4 we plot the energy per baryon versus baryon
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Figure 3 The stability window in the C-B0 plane for SQM at zero tempera-
ture. SQM is absolutely stable in the region bounded by the solid and dotted
lines.
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number density for several parameters sets. It is evident from
the figure that the minimum energy per baryon corresponds
to a vanishing pressure. Moreover, a further study shows that
larger value of C trends to have a lower value of the minimum
energy per baryon and the corresponding baryon number den-
sity becomes larger for the same value of the bag constant.

We define B∗ = B+B0 as the effective bag constant, which
is the sum of eq. (17) and the vacuum energy B0. In Figure
5, we plot the effective bag constant B∗ as a function of the
baryon number density with the parameter pairs selected in
Figure 3. It is obvious the effective bag constant decrease
monotonically with increasing density.

This is understandable. The additional function B, with
its expression derived by the requirement of thermodynamic
consistency, arises because quarks acquire effective masses
in a medium. The effective masses depend on the QCD run-
ning coupling that reflects interactions. The running bag con-
stant, therefore, reflect the interaction between the vacuum
and matter. At lower densities, the interaction strength is
larger due to confinement. With increasing densities, how-
ever, the interactions becomes weaker due to the asymptotic
freedom of the strong interaction, and the B value is accord-
ing smaller.

4 Mass-radius relation of strange stars

Compact stars provide natural laboratories to explore the
properties of quark matter and deconfinement phase transi-
tion at high baryon number density. The study of decon-
finement transition in compact stars is a hot topic in mod-
ern physics [53]. Because strange quark matter can be self-
bounded, some neutron stars might be composed entirely of
SQM, which would be named as strange stars.

The structure of strange stars depends crucially on the EOS
of quark matter. Recently, the mass measurement of compact
stars PSR J1614-2230 and PSR J0348-0432 gave the gravi-
tational mass 1.97 ± 0.04M⊙ [5] and 2.01 ± 0.04M⊙ [54] re-
spectively, where M⊙ is the solar mass. The observation data
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Figure 5 The density behavior of the effective bag constant B∗ in our model
with different values of C and B0.

offer tight constraints on the EOS of cold quark matter as well
as on the model parameters.

The equilibrium structure of a static spherically symmet-
ric strange star is determined by the Tolman-Oppenheimer-
Volkoff (TOV) equation

dP(r)
dr
= −

GmE
r2

(1 + P/E)(1 + 4πr3P/m)
1 − 2Gm/r

, (46)

and the subsidiary condition

dm(r)
dr
= 4πr2E, (47)

where G = 6.7× 10−45 MeV−2 is the gravitational constant, r
is the radial coordinate of the strange star and m is the gravi-
tational mass contained within the radius r.

The TOV equation can be solved numerically by integra-
tion from the center of the star up to the radius, the latter
being defined as the coordinate r = R at which the pressure
vanishes; the boundary conditions for the TOV equation are
thus

nb(r = 0) = nc, m(r = 0) = 0, P(r = R) = 0, (48)

where nc is the central baryon number density. The EOS of
quark matter in the preceding section is necessary for the
calculation. Then the radius R of the strange star is deter-
mined by the stability condition, i.e., the third equality in eq.
(48). One can also derive the gravitational mass of the star by
M = m(r = R). The detailed solving process can be found in
ref. [55].

In Figure 6, the mass-radius relation of strange stars is
shown for the selected parameters indicated in the legend.
We notice that all the curves show the same qualitative be-
havior: firstly the mass increases with the radius up to the
maximum mass Mmax, then it decreases and the star becomes
mechanically unstable [55]. In addition, it is found that the
maximum mass of strange stars decreases with the increasing
bag constant and the parameter C, in agreement with the idea
that quark matter with a stronger interaction can support a
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Figure 6 The mass-radius relation of strange stars for different parameter
sets of C and B0.
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heavier star compared with the relatively free quarks. For the
typical parameter pair (C, B0)= (1, 50 MeV/fm3), the maxi-
mum gravitational mass is very close to two times the solar
mass. This means that such massive stars could be strange
stars.

To study the density distribution within a strange star, we
display the density profiles in Figure 7 for several typical
parameter sets. The solid line in each panel represents the
highest acceptable central baryon number density that corre-
sponds to the maximum mass for a certain set of parameters.
We can see that all the curves decrease smoothly and mono-
tonically with increasing radius from the central outward un-
til the star surface.

5 Conclusions

The thermodynamic self-consistency plays a curial role in the
phenomenological models. In the present work, we particu-
larly focused on the thermodynamic consistency in the quasi-
particle model when the effective mass depends on both the
chemical potentials and the running QCD coupling.

Because the QCD coupling αs is a running coupling, in
order to take into account this QCD feature we assume a
quark chemical potential dependence of αs, and we fix this
dependence by a choice of a subtraction at the renormaliza-
tion point depending on the chemical potential. Then the rel-
evant functional form is constrained by the thermodynamic
self-consistency requirement. We found that the effective bag
constant decreases monotonously with increasing density.

Within the improved quasiparticle model, we have ex-
plored the stability and EOS of SQM in beta equilibrium at
zero temperature. We have found that SQM could be abso-
lutely stable in a reasonable parameter region. In addition, the
derived EOS of quark matter is applied to study the structure
of strange stars. We have shown that the recently discovered
massive compact stars [5,54] with mass around two times the
solar mass can be well described within our model if reason-
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Figure 7 Density profiles of strange stars for different sets of parame-
ters. The solid curve in each panel corresponds to the central density for the
strange star with maximum mass.

able parameter sets are adopted. In other words, our calcula-
tions implies that such massive stars could be strange stars.
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