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This paper discusses the influence of the anisotropy parameters on elliptical-polarization of the inhomogenously refracted P-wave
induced at VTI-media interface. For this refracted P-wave, we have derived, the equations of the elliptical-polarization trajectory.
Following the elliptical-polarization trajectory, we calculated the effects of the rock anisotropic-parameters on the polarization
state, with a Poincaré-sphere-like representation, for several varying media parameters. It is noted that the size, shape and initial
phase angle of the elliptical-polarization trajectory are all depending the anisotropy media, as well as on the incident-angle. We
expect that the findings from this paper would be applied to practical applications of seismic exploration.
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1 Introduction

In general, the polarization property of acoustic wave is simi-
lar to that of optical and/or electromagnetic waves. An acous-
tic wave [1-8] bears many similarities to other popular waves,
such as optical wave [9], electromagnetic wave [10], thermal
wave [11], capillary wave [12], and charge-density wave [13].
Nevertheless, they also posses intrinsically subtle differences.
For example, optical or electromagnetic wave can propagate
either in a vacuum or in a medium, whereas acoustic wave
can propagate only in a medium; the optical/electromagnetic
wave can only be a shear (or quasi-shear) wave, while the
acoustic wave can be either shear (or quasi-shear) or longitu-
dinal (or quasi-longitudinal).

A significant application of the acoustic wave properties
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is the wave propagation inside the Earth’s crust. Studies of
the effects of rock anisotropy on acoustic wave propagation,
reflection, refraction, and polarization are critically impor-
tant for proper forward modelings of both seismology and
acoustic-logging, as well as interpretations of seismic explo-
ration and logging data. Up to this point, the reported stud-
ies and discussions on the polarization of the acoustic wave
have largely been limited to a homogenous wave [14-20].
Fa et al. [21] reported the effects of the rock anisotropy on
the polarization of elastic homogenous P-wave and SV-wave.
An anomalous incident-angle corresponding to an inhomoge-
nously refracted P-wave was also reported [22,23].

In this paper, we discuss the effects of the rock anisotropy
on the polarization states of an inhomogenously refracted
P-wave induced at the interface between anisotropic-rocks.
In the next Section, we review the theoretical background.
Sect. 3 provides the results of calculations. Discussion and
concluding remarks are given in sect. 4.
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2 Theory

2.1 Model for VTI-media interface

The rock as a propagation medium for acoustic wave with low
frequency is generally considered as transversely isotropic.
For a transversely isotropic medium with a vertical axis of
symmetry which is usually abbreviated as VTI medium, a
hexagonal solid state structure may be employed to describe
its property [18,19,24]. Conventionally, such a system is usu-
ally modeled by an elastic stiffness tensor [25]
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Ineq. (1), = Y+ 2C and the superscript n = {1,
2} is used to denote the incidence and refraction media, re-
spectively.

For the case that a harmonic P-wave propagates in x-z plane
and impinges on an interface between two VTI media (see
Figure 1), the particle displacements of the incidence P-wave
and the four induced waves can be written as:
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Figure 1 Polarization vector and wave-front normal for incident P-wave
and four induced waves at the interface between two VTI media. The solid-
lines with arrowhead indicate the phase velocity direction and the dashed-
lines with arrowhead show the polarization direction.
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In eqgs. (2)-(6), the superscript m = {0, 1, 2, 3, 4} denotes,
respectively, the incident P-wave, reflected P-wave, refracted
P-wave, reflected SV-wave and refracted SV-wave. 9 © is the
incident-angle. 9 ™79 is a reflection/refraction angle. ux(’”) and
u;"’) are polarization coefficients. R© = 1is the coefficient of
incident wave and R ™79 is a reflection/refraction coefficient,
whereas R"™ =| R™ | exp[ip™]-

For the incident P-wave and these four induced waves prop-
agating in x-z plane without external force, Christoffel equa-
tion can be simplified as:
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The subscripts {j, [} = {1, 2, 3, 4, 5, 6}. p” is the density
ofthe incidence/refraction media. y 1(”;” is the phase velocity of
the incident P-wave or each induced wave, which is described
by ref. [22]
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Invoking the normalization condition
ux('n)[ux(m)]* + uz(m)[uz(m)]* =1
with respect to egs. (8) and (9), it leads to
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The superscript ‘«” indicates a complex conjugate.
The modulus of the polarization coefficients can be given

by
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2.2 The elliptical-polarization trajectory for inhomoge-
nously refracted P-wave

Let’s discuss in detail the inhomogenously refracted P-wave,
which in general is an elliptical-polarization wave. For sim-
plification of the discussion, let’s consider two distinctive
incident-angle regions. We denote 9 as the critical inci-
dent-angle and ¢ @ as the anomalous incident-angle. We use
al(z) and az(z) to express the attenuation coefficients of the in-
homogenously refracted P-wave .

2.2.1 Right rotational elliptical-polarization

In the incident-angle region 9© ¢ (9®,90°) for a case

without an anomalous incident-angle, and in the region

00 c (02,0?) for a case where 9® exists, the particle

displacement components of the inhomogenously refracted

P-wave is given by refs. [22,23]
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Taking the real parts of egs. (16) and (17), we have
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W2 =R | uPexp[-a,”z]sin(wt — k Vxsind "+ ¢@).

(19)
Equivalently, they can be rewritten as:
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Combination of eqs. (20) and (21) leads to an elliptical
equation
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From egs. (18) and (19) we can obtain the angle between
the elliptical trajectory extremity and x-axis:
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Egs. (22) and (25) show that the inhomogenously refracted

P-wave is a right-rotational elliptical-polarized wave, i.e. it

rotates in counter clockwise direction with an elliptical tra-
jectory.

2.2.2  Left rotational elliptical-polarization

In the after anomalous incident-angle region for a case where

0 exists, the particle displacement components of the inho-

mogenously refracted P-wave are given by refs. [22,23]
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The instantaneous expressions of eqs. (26) and (27) are
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Similar to eq. (22), this leads to an elliptical-polarization
trajectory and the angle between the elliptical-polarization

extremity and x-axis as shown as:
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It is clear that the inhomogenously refracted P-wave is a

left-rotation elliptical-polarization wave, i.e. its elliptical-po-
larization trajectory rotates in the clockwise direction.

3 Calculation and discussion

We have performed calculations of the polarization states,
for two systems of VTI-media interface, based on the
well-known anisotropic parameters reported by Thomsen
[26], Vernik & Nur [27] and Wang [28], given in Tables 1 and
2. ™, 5*™ and y™ are the anisotropic parameters and the
superscription ‘*’ of the anisotropic parameter §* ™ does not
indicate the complex conjugate of the anisotropic parameter
0™and is used for consistency with prior work [26].

The anisotropic parameters are related to the elastic moduli
(see eq. (1)) by refs. [26,28]
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where ¢ and ™ are the vertical phase velocities of P-wave
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and SV-wave.

For the discussion purpose in the following sections, we
refer Model 1 as the case where there is no anomalous inci-
dent-angle 9 @ or the scattering in the region between the crit-
ical incident-angle and the anomalous incident-angle. Model
2 is the case with the scattering after the anomalous inci-
dent-angle. Specifically, for the studies related to the inter-
faces as given in Tables 1 and 2, Table 1 has a critical inci-
dent-angle 9® = 48.34° without an anomalous incident-an-
gle, while Table 2 provides a case of interface with a critical
incident-angle 9 ® = 32,10° and an anomalous incident-an-

gle 0¥ = 62.16° [23].
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Figure 2 (Color online) Relationship of R® versus 0¥ for interface be-
tween A-shale and T-sandstone. (a) Modulus; (b) phase angle.
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Figure3 (Color online) Relationship of R® versusd® for interface between
A-shale and O-shale. (a) Modulus; (b) phase angle.
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3.1 Refraction coefficients of the refracted P-wave

Before detailed discussion on the influence of anisotropic me-
dia parameters with respect to the polarization state, it is al-
ways important to know the magnitude and phase angle of the
refraction coefficients. Applying the algorithm as reported in
ref. [20], the P-wave to P-wave refraction coefficient R® ver-
sus incident-angle 9@ for the two interfaces described by
Tables 1 and 2 are calculated and presented in Figures 2 and 3.

The calculated results show that in the area of
09 ¢ (00(2), 90°) for these two VTI-media interfaces, the
modulus of R® decreases with increasing 9 and the
value of its phase angle ¢® increases with respect to the
incident-angle.

3.2 Effect of anisotropy on elliptical-polarization state

For an inhomogenously refracted P-wave, to analyze the
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anisotropic effect on the elliptical-polarization states, we
have performed calculations for each individual anisotropy
parameter, i.e. using each of the anisotropy parameters g,
6D, ¢@ and §*® as a variable, whereas keep other three
parameters constant. Each of the anisotropy parameters
is varied near the physically measured values as given in
Tables 1 and 2. The calculated polarization trajectories are
shown in Figures 4-6. In these figures, the two-dimension
maps at the top show the rotational direction of the ellipti-
cal-polarization trajectory.

The calculated results show that the anisotropy of the in-
cidence and refraction medium would influence not only the
size of the trajectory and initial phase of the elliptical-polar-
ization but also the shape of the trajectory.

For the interface between A-shale and T-sandstone and at
the incident-angle of 9© = 55.05° (Model 1), the effects of
¢ and ¢@ on the size, shape and initial phase angle of the

Table 1  Anisotropic parameters for interface between an anisotropic shale (A-shale) and Taylor sandstone (T-sandstone)
Medium a"™ (m/s) b (m/s) r®™ (g/em?) e arm g™
A-shale 2745 1508 2.340 0.103 -0.073 0.345
T-sandstone 3368 1829 2.500 0.110 -0.127 0.255
Table 2 Anisotropic parameters for interface between an anisotropic shale (A-shale) and oil-shale (O-shale)
Medium a®™ (m/s) b™ (m/s) r™ (g/em?) e® arm™ g®
A-shale 2745 1508 2.340 0.103 -0.073 0.345
O-shale 4231 2539 2.370 0.200 0.000 0.145
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Figure 4 (Color online) Effect of anisotropic parameters on the elliptical-polarization states for interface between A-shale and T-sandstone, where
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Figure 6 (Color online) Effect of anisotropy parameters on the elliptical-polarization trajectory for interface between A-shale and O-shale, where
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elliptical-polarization are greater than the effects of §* and and initial phase angle of the elliptical-polarization at
6*? on those of the elliptical-polarization. The inhomge- 0© = 34.58° <0® (Model 1) are much greater than the
nously refracted P-wave is a right-rotation elliptical-polariza- effects of these anisotropy parameters on those of the ellipti-
tion wave (see Figure 4). cal-polarization at 9 = 63.91° > 9® (Model 2), as shown

For the interface between A-shale and O-shale, the in Figures 5 and 6. At the incident-angle 9© = 34.58°, the
effects of ¢, 5, ¢@ and §*® on the size, shape inhomogenously refracted P-wave is a right-rotation ellipti-
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cal-polarization wave. At the incident-angle 9 = 63.91° it
is a left-rotation elliptical-polarization wave.

4 Concluding remarks

We have derived, for the inhomogenously refracted P-wave,
the equations of the elliptical-polarization trajectory based on
the interface between two VTI media. We have also per-
formed calculations of the polarization states with respect to
several varying medium parameters. The results of the calcu-
lation were presented in a Poincaré-sphere-like surface. It is
interesting to note that its size, shape and initial phase angle of
an elliptical-polarization trajectory are not only dependent on
the incident-angle, but also very much on the anisotropy the
media. For the case where there is no anomalous incident-an-
gle 9@, the initial phase angle ¢ of the elliptical-polarization
approaches —90° when 9© goes to 90°. For the case where
anomalous incident-angle does exist, J approaches to —90°
when 9 goes to §¥. Meanwhile, in the incident-angle re-
gion §© ¢ (0?,90°), the initial phase angle j is very small.

The anomalous incident-angle §® can cause the ellipti-
cal-polarization rotation direction of the inhomogenously
refracted P-wave to change. Figures 5 and 6 also show
that, for the inhomogenously refracted P-wave with an
existing anomalous incident-angle 9@, the influence of the
rock anisotropic parameters on the elliptical-polarization
state is smaller in the region 9© ¢ (9;2)’ 90°) than that of
09 < (02,02

Finally, we should note that while the results of derivation
and calculations presented in this paper are significant the-
oretically, it will be more significant if it can be confirmed
experimentally and applied to geophysics and to seismic ex-
ploration.

This work was supported by Xi’an University of Posts and Telecommunica-
tions, and the Physical Sciences Division at The University of Chicago.
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