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The Kutta Joukowski (KJ) theorem, relating the lift of an airfoil to circulation, was widely accepted for predicting the lift of viscous
high Reynolds number flow without separation. However, this theorem was only proved for inviscid flow and it is thus of academic
importance to see whether there is a viscous equivalent of this theorem. For lower Reynolds number flow around objects of small
size, it is difficult to measure the lift force directly and it is thus convenient to measure the velocity flow field solely and then, if
possible, relate the lift to the circulation in a similar way as for the inviscid KJ theorem. The purpose of this paper is to discuss
the relevant conditions under which a viscous equivalent of the KJ theorem exists that reduces to the inviscid KJ theorem for high
Reynolds number viscous flow and remains correct for low Reynolds number steady flow. It has been shown that if the lift is
expressed as a linear function of the circulation as in the classical KJ theorem, then the freestream velocity must be corrected by
a component called mean deficit velocity resulting from the wake. This correction is small only when the Reynolds number is
relatively large. Moreover, the circulation, defined along a loop containing the boundary layer and a part of the wake, is generally
smaller than that based on inviscid flow assumption. For unsteady viscous flow, there is an inevitable additional correction due to
unsteadiness.
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1 Introduction

For a two dimensional incompressible flow around an airfoil
with a sharp trailing edge at incidence, the Kutta-Joukowski
(KJ) hypothesis holds good for at least steady unseparated
flow. In this hypothesis, the viscosity is explicitly ignored
but implicitly incorporated in the Kutta condition (see for in-
stance ref. [1]). The Kutta condition imposes a circulation
or a bound vortex attached to the airfoil and creates a start-
ing vortex, of opposite sign, which moves in the downstream
direction. Consider an incompressible two-dimensional flow
around an airfoil with a velocity field v = (u, v) at constant
density ρ, in an unbounded domain R f . The freestream ve-
locity V∞ is assumed to be horizontal. The circulation of
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the bound vortex is defined as Γb =
∫
∂A

(udx + vdy) for the
closed curve ∂A along the airfoil, with a counter-clockwise
path, so that a clockwise circulation has a negative sign. The
classical (here called inviscid) KJ expression for inviscid flow
expresses the lift (F) and drag (D) per unit span as:

F = −ρV∞Γb, D = 0 (KJ theory). (1)

Though obtained under the strict assumption of inviscid
flow, the lift predicted by the Kutta Joukowski expression is
accurate even for high Reynolds number viscous flow with
small angle of attack, provided the flow is steady and unsep-
arated ([2], p192). The reason being that for high Reynolds
number flow at small angle of attack, the viscous effect is
confined in a very narrow region near the airfoil such that the
pressure field, responsible for the lift force, is essentially the
same as for inviscid flow.
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For small Reynolds number problems, as appeared in mi-
cro air vehicle flow or insect flow, the viscous boundary layer
may be thick enough to have important perturbation on the
pressure field. It is thus imperative to investigate whether
the inviscid KJ expression would accommodate such cases,
or, whether there is an equivalent KJ expression for viscous
flow.

Apart from academic importance, it is also significant for
practical applications, since for small Reynolds number flow
problems, it is difficult to measure the force directly using a
force balance. It becomes rational to measure the velocity
flow field experimentally and determine the lift force by us-
ing integral force formulas that relate the force to the veloc-
ity field [3]. Integral approaches used for such applications
require the measurement of velocity field and the computa-
tion of vorticity in the whole space. It is desirable to have a
lift force formula for viscous flow that is simple enough as
the inviscid KJ expression, The reason being one just needs
to measure the velocity field along a closed loop. Sharma
and Deshapande [4] indeed used this idea to determine the
lift force. In their work, the lift force generated by a two-
dimensional thin flat plate at various angles of attack in low
Reynolds number flow was experimentally determined with
the application of the KJ expression, where the circulation
around the flat plate was obtained from the line integral of
velocity measured using LDV (a non-invasive optical tech-
nique) along a closed rectangular loop containing the bound-
ary layer and a part of the wake.

Due to the above mentioned importance of applications in
small Reynolds number flow, it is important to know whether
there exists a viscous equivalent of the inviscid KJ theorem,
meeting the following requirements:

(1) it should be in a form similar to the inviscid KJ theo-
rem, for purpose of simplicity;

(2) it is practically applicable to lower Reynolds number
flow.

The derivation of an equivalent KJ expression for viscous
flow will be presented in sect. 2 and this expression is dis-
cussed in sect. 3.

2 Kutta Joukowski expression for viscous flow

The viscous KJ expression is here obtained by using the in-
tegral force theory of Wu [5]. In this theory, the lift and drag
are expressed as the time variation of the integral of vorticity
moment. In the case of two dimensional viscous flow around
a fixed airfoil, the lift and drag forces are expressed as the
time variation of the integral of vorticity moment

F = ρ
d
dt

∫

R∞
xωdxdy + ρ

d
dt

∫

Rb

udxdy,

D = −ρ d
dt

∫

R∞
yωdxdy + ρ

d
dt

∫

Rb

vdxdy.

(2)

Here ω = ∂v/∂x−∂u/∂y is the local vorticity, R∞ is the entire
region including both fluid and solid body, and Rb is the re-

gion occupied by the solid body. For a non-accelerating and
non-rotating airfoil, with a body fixed frame, we have

F = ρ
d
dt

∫

Rf

xωdxdy,D = −ρ d
dt

∫

Rf

yωdxdy, (3)

where Rf is the region occupied by the fluid only. A useful
force formula requires that only the near flow field velocity
appears in the formula.

As displayed in Figure 1, let x = xd be a cutline down-
stream of the airfoil. Assume that this cutline is far enough
so that the pressure at xd is the same as at infinity and the
shear stress is negligibe. This cutline splits the domain Rf

into Ra (containing the airfoil where the flow is steady) and
Rd (containing the rest of the flow where the flow may be still
unsteady). Due to conservation of total circulation [5]

Γo � −
∫

Rf

ωdxdy = 0 (viscous flow), (4)

we may rewrite the lift viscous formula in eq. (3) as F =
FRa + FRd , with

FRa = ρ
d
dt

∫
Ra

xωdxdy − ρV∞
∫

Ra
ωdxdy,

FRd = ρ
d
dt

∫
Rd

xωdxdy − ρV∞
∫

Rd
ωdxdy.

(5)

Let

Γb,vis �
∫

Ra

ωdxdy. (6)

Let C∞ be the contour of the semi-space Rd and C∞ be that
part of C∞ excluding the straight line x = xd. Due to the
condition (4), the flow is uniform on C∞, thus the use of Di-
vergence Theorem yields

−
∫

x=xd

vdy =
∫

Rd

ωdxdy = −Γb,vis. (7)

Ourside of the countour Ca and on the
left of the cutline is free of vorticity

The flow may be unsteady
due to the starting vortex

The flow is steady

Starting vortex
Wake

BL

BL

Freestream Ca

xd

RdRa

Figure 1 Viscous flow with boundary layer, with wake and starting vortex.
There is a cutline x = xd, downstream of the airfoil, at which some parame-
ters are defined. The countour Ca surrounding the airfoil and boundary layer
and tangent to the cutline x = xd is used to define the bound circulation Γb,vis.
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With Γb,vis defined by eq. (6) and with the use of eq. (7), we
may rewrite FRa and FRd as:

FRa = ρ
d
dt

∫
Ra

xωdxdy − ρV∞Γb,vis,

FRd = ρ
d
dt

∫
Rd

xωdxdy + ρ
∫

x=xd
V∞vdy.

(8)

Eventually only the first term on the right hand side of the
expression of FRd depends on the flow field downstream of
x = xd. Now consider the component FRd . With the defini-
tion ω = ∂v/∂x − ∂u/∂y, we have the identity

xω = ∇ · (xv,−xu) − v

and thus
∫

Rd

xωdxdy =
∫

Rd

(∇ · (xv,−xu) − v) dxdy

=

∫

Rd

∇ · (xv,−xu) dxdy −
∫

Rd

vdxdy.

Apply the Divergence Theorem to Rd we have
∫

Rd

∇ · (xv,−xu) dxdy = −
∮

C∞

xudx + xvdy.

Hence ∫

Rd

∇ · (xv,−xu) dxdy = −
∫

x=xd

xvdy,

and thus

∫

Rd

(∇ · (xv,−xu) − v) dxdy = −
∫

x=xd

xvdy −
∫

Rd

vdxdy.

The integral
∫

x=xd
·dy is performed for −∞ < y < ∞.

Now use the integral form of the y momentum equation of
the Navier-Stokes equations to relate the momentum change
downstream of x = xd to the momentum flux ρuv across the
downstream boundary x = xd

ρ
d
dt

∫

Rd

vdxdy =
∫

x=xd

ρuvdy.

Here, due to the assumption that xd is relatively far from the
airfoil, the pressure and shear stress contribution on x = xd is
neglected. Hence,

ρ
d
dt

∫

Rd

xωdxdy = −ρ d
dt

∫

x=xd

xvdy −
∫

x=xd

ρuvdy. (9)

Inserting eq. (9) into the second formula in eq. (8), we obtain

FRd = −ρ
d
dt

∫

x=xd

xvdy − ρ
∫

x=xd

(u − V∞) vdy

= −ρ d
dt

∫

x=xd

xvdy − ρup

∫

x=xd

vdy,

where

up =

∫

x=xd

(u − V∞) vdy
/∫

x=xd

vdy (10)

is the mean deficit velocity up at x = xd, caused by wake
arising from the viscous boundary layer.

Summation of this with FRa defined in eq. (8) and using
eq. (7), we have

F = −ρ
(
V∞ + up

)
Γb,vis + Fu,

where

Fu = ρ
d
dt

∫

Ra

xωdxdy − ρ d
dt

∫

x=xd

xvdy (11)

is due to unsteadiness. Since this paper exclusively considers
steady flow, Fu = 0 and thus

F = −ρ
(
V∞ + up

)
Γb,vis. (12)

With the decomposition of yω = ∇· (yv,−yu)+u and repe-
tition of the same analysis for the second formula in eq. (15),
we obtain the drag formula:

D = ρV∞
∫

x=xc

(V∞ − u)dy. (13)

In summary, if, downstream of the body, we choose a cut-
line x = xd where the pressure is close to that at infinity and
the shear stress is negligible, then we have a viscous equiva-
lent of the Kutta Joukowski formula:

F = −ρ
(
V∞ + up

)
Γb,vis,

D = ρV∞
∫

x=xc

(V∞ − u)dy,

Γb,vis �
∫

Ra

ωdxdy,

up =

∫

x=xd

(u − V∞) vdy
/∫

x=xd

vdy.

(Viscous KJ expression)

(14)

The viscous bound circulation Γb,vis, that will be defined
along a loop containing the boundary layer and a part of the
wake, can not be replaced by the circulation along the surface
of the airfoil, since for viscous flow the velocity vanishes on
the body.

3 Discussions

Compared to the inviscid KJ expression (1), the freestream
velocity has a correction due to the mean deficit velocity up

in the viscous case. From the drag formula in eq. (2), we see
that the physical existence of drag for viscous flow implies
that up < 0, so that there is a lift decrease due to drag. Now
we will consider three problems: (1) the connection of the
force formula (2) to the inviscid KJ theorem; (2) whether the
viscous expression (2) gives the same force for high Reynolds
number unseparated flow; (3) restriction of eq. (2) in low
Reynolds number flow.
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3.1 Connection to the inviscid theorem

Several authors have discussed the connection between inte-
gral force approaches and the inviscid KJ expression [5–7],
however, they are focused on the reduction of their formu-
las to the inviscid KJ expression in cases where the flow is
steady and inviscid. Wu (1981) [5] attempted to obtain a vis-
cous equivalent of the KJ expression. For this purpose, the
vortical region is decomposed into four parts: (1) near vorti-
cal region of the airfoil (including majority of the boundary
layer), (2) near wake region (part of the wake starting from
the trailing edge and translating at a velocity different from
the freestream velocity), (3) far wake region (the rest of the
wake translating at a velocity at V∞) and (4) starting vortex
region. Let xc be the cutline separating regions (2) and (3).
Wu (1981) [5] showed that for steady airfoil viscous flow, the
forces can be expressed as:

F = −ρV∞ (Γa + Γs) , D = ρV∞

+∞∫

−∞
(V∞ − u(xc, y))dy. (15)

Here Γa is the circulation for a contour enclosing region (3)
(far wake region) and Γs is the circulation of the starting vor-
tex. By definition, Γb = Γa + Γs where Γb may be regarded
as the circulation integrated over a contour enclosing regions
(1) and (2); the first formula in eq. (15) has exactly the same
form as the inviscid KJ expression. However, there is an in-
consistency for eq. (15). Wu’s formula (15) requires a cut-
line x = xc at which u(xc, y) = V∞. This means, by the drag
formula, that D = 0. Hence, physically, due to the fact we
necessarily have a drag for viscous flow, we can never have
a cutline with u(xc, y) = V∞. Compared to Wu’s formula
(15), the present formula (2) does not require the constraint
u = V∞ at the cutline, thus eliminates the inconsistency (of
whether D = 0 or there is no cutline at which u = V∞).

Let Ca be a contour surrounding the near vortical region of
the airfoil and lying inside Ra in such a way that in that part
of Ra outside of Ca, the flow is vortex free, then we have

∫

Ra

ωdxdy =
∫

inside Ca

ωdxdy.

By using the Divergence Theorem, we have
∫

inside Ca

ωdxdy =
∮

Ca

(udx − vdy) −
∮

body

(udx − vdy) .

On the body surface for viscous flow, the velocity vanishes.
Thus

Γb,vis =

∮

Ca

udx − vdy. (16)

With this definition for Γb,vis, the viscous KJ expression (2) is
similar to the inviscid one, except that we have a correction
up to the free-stream velocity and have D > 0.

3.2 High Reynolds number flow case

Now, consider the second question, for an airfoil of chord
length cA. The airfoil is assumed to be thin enough and at
a Reynolds number Re large enough, for the wake to be nar-
row in the vertical direction. The center of the airfoil is at
x = 0. Put xd =

1
2 cA (just at the trailing edge), in this case,

u(xd, y) ≈ V∞ except at the narrow region inside the wake.
Inside the wake, v is approximately constant and τy ≈ 0, so
that

up ≈
∫

x=xd

(u − V∞)dy
v(xd, 0)∫
x=xd

vdy
= − v(xd, 0)

ρV∞
∫

x=xd
vdy

D.

Since the flow is assumed steady near the airfoil, the starting
vortex has no influence on v(xd, 0). The velocity v(xd, 0) is
essentially induced by the bound vortex, regarded as a point
vortex

v(xd, 0) ≈ Γb,vis

2πxd
.

By eqs. (4), (6) and (7), we have
∫

x=xd
vdy = Γb,vis, hence

up ≈ − 1
2πxdρV∞

D = − 1
πcAρV∞

D = − cd

2π
V∞,

where cd = D/ 1
2 cAρV2∞ is the drag coefficient. Putting this

into eq. (14) we obtain

F ≈ −
(
1 − cd

2π

)
ρV∞Γb,vis.

For thin airfoil with angle of attack small enough, we may
estimate cd by a flat plate, as:

cd ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.328

Re
1
2

(laminar),

0.148

Re
1
5

(turbulent).

For typical aeronautical applications, Re is of the order of 106

and higher, such that the correction factor cd
2π is of the order

of 0.1% or less. For insects and micro air vehicles with Re
is of the order of 103, such that the correction is of the order
of 1%. For these types of flow, the viscous correction to the
inviscid KJ expression is small or rather negligible.

3.3 Lower Reynolds number flow case

The viscous KJ expression (2) has been obtained for steady
flow. For unsteady flow, the unsteady correction (11) may
be important. Lower Reynolds number flow is generally un-
steady and involves free vortices and vortex shedding. Even
for unsteady inviscid flow with free vortices, the KJ expres-
sion involves contributions by free vortex induction, vortex
motion and vortex producton [8,9]. For general viscous flow,
if unsteadiness is important, one should use the more com-
plex force formulas as reviewed by Noca et al. [3] and Wu et
al. [10] to determine the forces.
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For the particular case of lower Reynolds number steady
flow, the viscous KJ expression (2) obtained here not only has
academic value but may also be used to pick up forces from
the data of the velocity field (for applications where it is diffi-
cult to measure the force directly), as done experimentally by
Sharma and Deshapande [4]. They directly used the original
inviscid KJ theorem for lower Reynolds number flow with
wake, probably with negligible unsteady effect. The method
to apply (2) is simple. It can be rewritten as:

F = −ρ
(
V∞ + up

)
Γb,vis,

D = ρV∞
∫ Y

−Y
(V∞ − u)|x=xd

dy,

Γb,vis =

∮

Ca

udx − vdy,

up = Γ
−1
b,vis

∫ Y

−Y

(
(u − V∞)v + τy

)∣∣∣∣
x=xd

dy,

(17)

where Y → ∞ but one may set Y to be several times of cA as
V∞ − u quickly drops to zero away from the wake. Choose a
cutline x = xd downstream of the airfoil and a loop Ca around
the airfoil containing the boundary layers, such that the right
boundary of Ca coincides with x = xd, so that the velocity
can be conveniently obtained along the loop Ca and along the
line x = xd ,−Y < y < Y from experimental data. The only
constraint is that flow should be steady at and upstream of
x = xd. Since up is small for moderate to large Reynolds
number flow, we may set up = 0 for such cases.

In summary, for steady viscous flow, the viscous equiva-
lent of the Kutta Joukowski expression is given by eq. (2),
where the cutline x = xd is sufficiently far away from the air-
foil so that the pressure difference p− p∞ and the shear stress
at x = xd are negligible. The correction by the mean deficit
velocity up to the inviscid KJ expression is due to the wake,

and is negligible when the Reynolds number is high enough.
For unsteady flow, with vortex shedding, the unsteady force
component as defined by eq. (11) which may be important
and in this case there is no force formula as simple as for the
inviscid KJ theorem.

This work was supported by the National Natural Science Foundation of

China (Grant No. 11472157) and the National Basic Research Program of

China (Grant No. 2012CB720205). Prof. SHE ZS provided valuable com-

ments which are found to be very helpful for improving this manuscript.

1 Batchelor F R S. An Introduction to Fluid Dynamics. Cambridge:
Cambridge University Press, 1967

2 Anderson J. Fundamentals of Aerodynamics, Mcgraw-Hill Series in
Aeronautical and Aerospace Engineering. New York: McGraw-Hill
Education, 1984

3 Noca F, Shiels D, Jeon D. A comparison of methods for evaluating
time-dependent fluid dynamic forces on bodies, using only velocity
fields and their derivatives. J Fluids Struct, 1999, 13: 551–578

4 Sharma S D, Deshpande P J. Kutta-Joukowsky theorem in viscous and
unsteady flow. Exp Fluids, 2012, 52: 1581–1591

5 Wu J C. Theory for aerodynamic force and moment in viscous flows.
AIAA J, 1981, 19: 432–441

6 Saffman P G. Vortex Dynamics. New York: Cambridge University
Press, 1992

7 Howe M S. On the force and moment on a body in an incompressible
fluid, with application to rigid bodies and bubbles at high Reynolds
numbers. Q J Mech Appl Math, 1995, 48: 401–425

8 Bai C Y, Wu Z N. Generalized Kutta-Joukowski theorem for multi-
vortex and multi-airfoil flow (a lumped vortex model). Chin J Aero-
naut, 2014, 27: 34–39

9 Bai C Y, Li J, Wu Z N. Generalized Kutta-Joukowski theorem for multi-
vortex and multi-airfoil flow with vortex production (general model).
Chin J Aeronaut, 2014, in press

10 Wu J C, Lu X Y, Zhuang L X. Integral force acting on a body due to
local flow structures. J Fluid Mech, 2007, 576: 265–286


