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Significant propellant mass saving can be obtained with the use of complex multiple intermediate flyby maneuvers for conven-
tional propulsion systems, and trip time also decreases for a portion of the proper solar sail missions. This paper discusses the 
performance of gravity assist (GA) in the time-optimal control problem of solar sailing with respect to sail lightness number 
and the energy difference between the initial and final orbit in the rendezvous problem in a two-body model, in which the GA 
is modeled as a substantial change in the velocity of the sailcraft at the GA time. In addition, this paper presents a method to 
solve the time-optimal problem of solar sailing with GA in a full ephemeris model, which introduces the third body’s gravity in 
a dynamic equation. This study builds a set of inner constraints that can describe the GA process accurately. Finally, this study 
presents an example for evaluating the accuracy and rationality of the two-body model’s simplification of GA by comparison 
with the full ephemeris model. 
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1  Introduction 

The solar sail has been considered to be one of the most 
promising propulsion systems without fuel consumption 
[1,2]. In contrast to conventional propulsion systems for 
spacecraft, solar sails are continuously accelerated to escape 
the solar system [3] or spiral inward to the inner solar sys-
tem [4]. With the second booming of deep space exploration, 
the solar sail has attracted increasing levels of attention. In 
2010, Japan’s IKAROS [5] spacecraft became the first ve-
hicle successfully accelerated only by solar radiation pres-
sure, which enhanced confidence in solar sail development. 
Because solar sailing has great advantages in interplanetary 
missions [6,7], it has been investigated in various areas, 
such as attitude control [8], passive stability design [9–11], 
trajectory optimization [12–14] and mission analysis [15]. 

Large energy transformations of spacecraft need to be 
completed when the target is far from the initial orbit, and 
gravity assist (GA) has been introduced to lower the energy 
increment. Such an approach has been adopted in the 
MESSENGER mission, of which the spacecraft trajectory 
used one Earth flyby, two Venus flybys, and three Mercury 
flybys during its flight toward the closest planet to the Sun 
[16]. However, although the use of multiple flyby maneu-
vers substantially reduces the total mission energy incre-
ment, it increases both the mission complexity and the trip 
time. For time optimal problem of the solar sail, GA may 
play an undesirable role in reducing the trip time. Quarta 
and Mengali investigated the solar sail missions to Mercury 
with a single Venus GA [17] and analyzed the effect of GA 
in the solar sail problem using a polar inertial frame in the 
coplanar condition. 

Most studies involve multiple flyby interplanetary tra-
jectories in a two-body model, in which the spacecraft is 
subject only to the gravitational force of the center of mass 
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and the spacecraft’s own solar radiation pressure. Broucke 
[18] used linked conics in a two-body model and introduce 
the flyby maneuver to increase or decrease the orbit energy. 
Prado [19] measured the GA time via a combination of the 
impulsive maneuvers and GA. Felipe et al. [20,21] sorted 
the trajectory by analyzing the mechanical energy of the 
spacecraft and the GA planet. All of the abovementioned 
research treated the GA in the linked-conics model 
(two-body model), in which the GA planet was considered 
massless, and the GA was modeled as an instantaneous ve-
locity increment. There is rare literature studying GA in a 
full ephemeris model. Bayliss [22] researched GA by con-
sidering the third body’s gravity perturbation in a two-body 
model, which did not avoid linking the trajectory, and the 
procedure was highly complicated. Cai et al. [23] consid-
ered the GA in low-thrust trajectory optimization in a full 
ephemeris model. 

The reasons outlined above demonstrate that the em-
ployment of GA should be carefully investigated when GA 
can decrease the trip time in the time optimal problem of 
solar sails. Literature on solar sails with GA is rare. The 
first part of this paper quantifies the improvement (in terms 
of mission time saving) that a single GA offers with respect 
to a classical direct transfer (DT) and analyzes the changing 
of trip time relative to the sail lightness number and the en-
ergy difference between the initial and final orbit numeri-
cally. 

For a practical mission, the spacecraft is subject to a third 
body’s gravity, especially the GA planet’s gravity, and the 
“zero-sphere-of-influence patched conic” cannot describe 
the real GA process. The second part of this paper presents 
a method to solve an accurate many-body reference trajec-
tory in a full ephemeris model that introduces the third 
body’s gravity in dynamic equations. At the same time, to 
describe the GA process, this study builds a set of 3-D 
equivalent inner equality constraints, which constrains the 
actual orbit inclination, the perigee distance and the true 
anomaly relative to the GA planet. This paper uses an indi-
rect method to solve the problem [24,25].  

2  Gravity assist in a two-body model 

2.1  The mathematical model 

In a two-body model, the dynamic equation for a perfectly 
reflecting solar sail in a Sun-centered orbit is written as: 

 , 
2

3 4

( )
,

r r

  
   r nr v v = r + n  (1) 

where r and v denote the position and velocity of the sail-
craft in the heliocentric ecliptic reference system (HECS), 
respectively. The sun’s gravitational constant is denoted by 
μ, 1.32712440018×1011 km3/s2. β is the sail lightness num-
ber.  

Figure 1 shows the sail sailing altitude control angles in 
the orbital coordinate system, where s-rth is a Heliocentric 
orbital coordinate system. The origin of coordinates s is at 
the solar sailing’s center of mass, sr axis is in the same di-
rection of incident sunlight, sh axis is along the direction of 
normal vextor of solar sailing’s orbit, st axis, sr axis and sh 
axis constitute a right-handed coordinate system. The con-
trol variable is the normal vector of the solar sail n, which 
has the form of 

  = (cos ,sin cos ,sin sin )T , 0, , 0, 2 ,
2
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where α and δ denote the cone angle and clock angle de-
scribed by Figure 1, and they consist of the control vector 
u(α, δ). 

The minimum time trajectory is obtained with the aid of 
an indirect approach, from Pontryagin’s maximum principle 
(PMP), requires the maximization of the following Hamil-
tonian function H: 
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where λr and λv are the functional Lagrange multipliers 
whose time derivative is given by the following equations: 
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The optimal normal vectors of a solar sail, which are the 
maximum of the Hamiltonian, are determined by [14] 
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Figure 1  Sail sailing altitude control angles in the orbital coordinate system. 
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and 

 cos sin ,
r

 


  v
v

r w  

where w denotes the unit vector, which is perpendicular to r 
and lies on the plane defined by r and λv, and   denotes 
the angle between r and λv. 

Eqs. (1) and (4) represent a system of twelve first-order 
differential equations. By taking into account the functional 
dependence given by eqs. (5) and (6), they can be rewritten 
in the compact form as: 

  T( )     with    , , , .r v   x f x x r v  (7) 

The optimal trajectory can be obtained by numerically inte-
grating eq. (7) in the time interval t∈[t0,tf] because the 
twelve suitable boundary conditions are given. 

2.2  Constraints 

Let us consider the simplest rendezvous problem, in which 
the sailcraft starts from the asteroid 1 and targets the aster-
oid 2 with a single planet GA during the mission. 

2.2.1  Sailcraft launch (t=t0) 
At the initial time t0, the sailcraft has the same position and 
velocity of asteroid 1: 

        0 1 0 0 1 00,  0,As Ast t t t   r r v v  (8) 

which corresponds to the Lagrange numerical multipliers 
χ1~6. rAs1(t0) and vAs1(t0) denote the position and velocity of 
Asteroid 1 at time t0 in HECS. 

2.2.2  Midcourse flyby (t=tm) 
In the two-body model, the GA is modeled such that the 
sailcraft velocity suffers a sudden change, namely, the di-
rection of hyperbolic excess velocity v∞ obtains a substan-
tial change of angle θ, due to the GA effect [18].  

The time spent inside planetary influence is neglected. 
The sailcraft positions just before and after GA are both 
required to be equal to the GA planet position. The magni-
tude of hyperbolic excess velocity remains invariant imme-
diately before and after GA. The rotation angle θ that v∞ is 
turned during the GA depends on the periapsis radius rp of 
the sailcraft relative to the GA planet and the magnitude of 
the hyperbolic excess velocity v∞. These relationships, 
which correspond to Lagrange numerical multipliers χTBM 

GA1-4,  
κTBM 

GA , are expressed by 
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where 
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where the superscript TBM denotes the quantities in the 
two-body model, superscripts – and + denote the quantities, 
respectively, just before and after GA, tm is the date on 
which GA occurs, μa denotes the gravitational constant of 
the GA planet and rmin is the minimal admissible periapsis 
radius. 

2.2.3  Rendezvous (t=tf) 
At the final instant, when the sailcraft has reached the tar-
geting orbit, it has the same position and velocity of asteroid 
2: 

        2 20,  0,f As f f As ft t t t   r r v v  (11) 

which corresponds to the Lagrange numerical multipliers 
χ7~12. rAs2(tf) and vAs2(tf) denote the position and velocity of 
Asteroid 2 at time tf in HECS. 

2.3  Nonlinear equation solver 

According to the PMP, the boundary transversal conditions 
are 
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and the boundary stationary conditions are 

      0 1 3 1 0 4 6 1 0 0,As AsH t t a t      χ v χ  (13) 

      7 9 2 10 12 2 0,f As f As fH t t t     χ v χ a  (14) 

where aAs1(t0) and aAs2(tf) denote the acceleration of Aster-
oid 1 at time t0 and Asteroid 2 at time tf in HECS, respec-
tively. 

There are 8 unknowns of the DT rendezvous problem of 
solar sailing, including 6-D initial costate vectors λ(t0), t0 
and tf. And there are the same number of equations, which 
are called shooting functions, including 6-D eq. (11) and 
stationary conditions (13) and (14). For convenience, in the 
process of the numerical solution, we express χ1~12 with 
λr(t0), λv(t0), λr(tf) and λv(tf) via eq. (12). Therefore, the La-
grange numerical multipliers χ1~12 do not appear in the 
shooting functions. 

It is clear that the time and position vary continuously so 
that t- 

m= t+ 
m  = tm and r( t- 

m)= r(t+ 
m)= r( tm). Using the PMP, the 

inner transversal conditions are 
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And the inner stationary condition is 
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Ref. [26] gives the derivatives of the inner constraints (9) 
and (10), especially the variables v− 

∞, v+ 
∞ and rp, with respect 

to the basic variables tm, r( tm), v( t− 
m ) and v(t+ 

m ). The inner 
transversal conditions are 
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and the inner stationary condition is 
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The rigid condition is derived as: 

 0, 0.TBM
GA GA GA   σ  (19) 

For an intermediate GA, there are 9 unknowns, including 
the 5-D Lagrange numerical multipliers χTBM 

GA1-4and κTBM 
GA , the 

3-D velocity vector v(t+ 
m ) just after GA, and the GA date tm. 

Additionally, there is an identical number of equations, in-
cluding the 4-D equality constraints (9), the 1-D rigid con-
dition (19), the 3-D inner transversal conditions (16) and the 
1-D inner stationary condition (18). The velocity increment 
ΔvGA is caused by GA, rather than the velocity immediately 
after GA. Eqs. (15) and (17) are not used as parts of the 
shooting function but are used to update the position and 
velocity of the costates immediately after GA. The varia-
tions of the mass, as well as its costate, and the position 
vector are not considered for update because they are con-
tinuous just before and after GA. 

3  Gravity assist in the full ephemeris model 

In a practical mission, the GA is a continuous process, as 
shown in Figure 2. The sailcraft flies mainly under the GA 
planet’s gravity in the sphere of influence of the GA planet 
for several days. During the flyby process, the states of the 
sailcraft are continuous. Therefore, the GA in the full 
ephemeris model has to be considered to satisfy the preci-
sion requirement. This section builds a set of equivalent 
inner constraints that can describe the GA process accu-
rately, to determine the GA effect, which can freely change 
the states of the sailcraft. 

3.1  The mathematical model 

In the Heliocentric transfer trajectory, the sailcraft is subject 
to not only the Sun’s gravity but also the planetary gravity. 
In HERF, the third body gravity perturbative acceleration fPl 

is 

  3 3
,Pl Pl

Pl Pl Pl

Pl Pl

 
   


f r r r

r r r
 (20) 

where rPl denotes the position of the planet in HERF. μPl 
denotes the gravitational constant of the planet. 

 

Figure 2  (Color online) Gravity assist process in the full ephemeris model. 
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The dynamic equation of solar sailing in the full ephem-
eris model can be written as: 

 , 
2

3 4

( )
,

r r

  
    Pl

r nr v v = r + f n  (21) 

where ΣfPl are all the third-bodies’ perturbations, mainly the 
eight main planets. 

The Hamiltonian function H can be expressed as follows: 
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The costate differential functions have changed accord-
ingly and can be derived as: 
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where 

 
     3 5

3
.v Pl Pl v PlPl

v Pl

Pl Pl

   
   

  

λ f λ r r
λ r r

r r r r r
 

The optimal normal vector of the solar sail is the same as 
eqs. (5) and (6), and the differential equation is the same as 
eq. (7). 

3.2  Constraints 

3.2.1  Sailcraft launch (t=t0) and Rendezvous (t=tf) 

The simplest problem is considered, and the constraints of 
the sailcraft and rendezvous in the full ephemeris model are 
the same as the constraints of the sailcraft (8) and rendez-
vous (11) in the two-body model. 

3.2.2  Midcourse flyby(t=tm) 

The dynamic equation of solar sailing, eq. (20) or (21), in 
the full ephemeris model has considered all the transfer tra-
jectories both with and without GA, which denotes whether 
the spacecraft does or does not fly though the sphere of in-
fluence of major planet. But when the spacecraft flies 
through the GA planet’s sphere of influence during the 
flight, the perturbation of the GA planet is obvious, the non-
linearity of the shoot function increases, the domain of 
convergence becomes narrower, so it is very hard or even 
impossible to obtain the solution to problem with GA, even 
if the solution to problem with GA is the global optimal 
solution. So it is very necessary to add inner constraints to 
guide the spacecraft to fly though the sphere of influence of 
major planet to get GA. 

The full ephemeris model describes an actural space en-
vironment, which can achieve a GA process if the sailcraft  

flies through the GA planet’s sphere of influence. A set of 
constraints, which correspond to the Lagrange numerical 
multipliers χFEM 

GA1-4, with GA can be built as: 
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where superscript FEM denotes the quantities in the full 
ephemeris model, tm is the time of perigee of the hyperbolic 
relative to the GA planet. i(tm), rp(tm) and f(tm)are the actual 
orbit inclination, the perigee distance and the true anomaly 
of the hyperbolic relative to the GA planet in the full 
ephemeris model. inorm, rpnorm and fnorm are the nominal orbit 
inclination, the perigee distance and the true anomaly given 
by the two-body model. The first two equations are to en-
sure that the sailcraft’s states are suitable for the ones given 
by the two-body model at the perigee time, and the last 
equation is to ensure that the tm is the time of perigee of the 
hyperbolic. Therefore, fnorm is set as zero. It is trivial to ob-
tain the true anomaly such that the third equality constraint 
of (24) is equivalent to 

 ,  0r v =  (25) 

where Δr and Δv denote the position and velocity of the 
sailcraft relative to the GA planet in HECS, respectively. 

(i) The nominal value of the orbit inclination and the 
perigee distance. The nominal orbit inclination and the per-
igee distance can be defined with the incoming and out-
going hyperbolic residual velocity in the two-body model of 
trajectory with GA. The nominal orbit inclination is defined 
as: 

  norm norm normcos / ,zi h h  (26) 

 norm norm norm, ,zh
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where hnorm is the orbital plane normal to the sailcraft rela-
tive to the GA planet, and k is the reference unit vector, 
which is set as the ecliptic plane normal for convenience, 
k=(0, 0, 1)T. 

The nominal perigee distance is defined as: 

 pnorm 2

1
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where θ is rotation angle of the hyperbolic excess speed for 
the planetary GA, which is defined as: 
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(ii) The actual orbit inclination, the perigee distance and 
the true anomaly. The actual orbit inclination, the perigee 
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distance and the true anomaly can be calculated with the 
actual position and velocity vector relative to the GA planet. 
The actual orbit inclination is defined as: 

  cos ( ) / ,m zi t h h  (28) 

where h is the Angular momentum of the sailcraft relative 
to the GA planet: 

 ( ) ( ),    ,zh    m mt th r v h N  

where Δr(tm) and Δv(tm) denote the position and velocity 
with respect to the GA planet. 

The actual semimajor axis is 
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and the eccentricity vector is 
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so the perigee distance is defined as: 

   (1 ).p mr t a e   (29) 

3.3  Nonlinear equation solver 

The boundary transversal conditions and the stationary con-
ditions are the same as eqs. (12)–(14).  

According to the PMP, the inner transversal conditions 
are 

      
FEM FEM
GA GA 0,m m

m

t t
t

  


x
 

    (30) 

and the inner stationary condition is 
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FEM FEM
GA GA 0.m m
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H t H t
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  


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 (31) 

The derivation of deriving the derivatives of the inner 
constraints with respect to the basic variables is listed in the 
appendix. 

There are four extra unknowns in all, including the 3-D 
Lagrange numerical multipliers ΧGA and the event time tm.  

There are identical numbers of equations, including the 3-D 
equation (24) and the inner stationary condition (31). It is 
important to note that transversal condition (30) is not used 
to constitute the targeting functions but is used to update the 
value of the costate vectors at the event time tm. The values 
of the position vectors and the velocity vectors of the sail-
craft are continuous at the event time tm; therefore, they 
need not be updated. 

4  Numerical simulations 

One example of the time optimal problem with a single 
Earth gravity assist (EGA), both in the two-body model and 
the full ephemeris model, will be given to substantiate the 
techniques and theories presented in sect. 2 and 3. The he-
liocentric position, velocity and orbit elements of the plan-
ets are computed online by the JPL Horizons system. 

In the numerical results, we multiply the performance 
index by a positive unknown factor λ0 to make the optimal 
control problem homogeneous to the Lagrange multipliers 
including this factor [26]. Hence, normalization is applica-
ble to restrict the unknown multipliers on a unit hypersphere, 
which can enhance the possibility of converging to the 
global optimal solution. 

For calculation convenience, the quantities of length and 
time are normalized by astronomy units (AU, 149597870.66 
km), and years (a, 356.25×86400 s), respectively. Therefore, 
the value of µ should be 39.476926 AU3/a2. The other val-
ues should be transformed into those consistent with the 
normalized units. Because Uranus and Neptune are too far 
from the solar sail and because the gravitational perturba-
tion to the solar sail is minimal, we only consider the other 
six main planets, of which the gravitational constant and the 
minimal admissible periapsis radius are listed in Table 1. 

4.1  Examples of a mission using direct transfer (DT) 
and a mission including a single EGA in the two-body 
model 

4.1.1  A rendezvous problem between two fixed trajectories 
with fixed β 
For the sake of demonstrate the effect of EGA on trip time, 
the rendezvous problem from Asteroid 1 to Asteroid 2 is 
considered. This example, which avoids the escaping orbit 
and capture orbit, is chosen to highlight the core technique 
in sect. 2. The elements of the Earth, Asteroid 1 and Aster-
oid 2 are listed in Table 2. The sail lightness number is set 
as β=0.1. 

Table 1  The values of the parameters of the six main planets 

Main planets Mercury Venus Earth Mars Jupiter Saturn 

Gravitational constants μPl (km3/s2) 22032.1 324859.0 398600.0 42828.3 1.26687×108 3.79313×107

The minimal admissible periapsis radius rmin Pl (km) 2740.0 6373.0 6678.0 3689.9 71700.0 60568.0 
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Table 2  The orbital elements of Asteroid 1, Earth and Asteroid 2 

Orbital element Asteroid 1 The Earth Asteroid 2 

t (MJD) 54000.000 54000.000 54000.000 
a (AU) 0.800000 1.000840 1.500000 

e 0.016507 0.016507 0.016507 
i (°) 0.001218 0.001218 0.001218 

 (°) 1.770191 1.770191 1.770191 

 (°) 98.504893 98.504893 98.504893 
f (°) 240.000000 260.350296 320.000000 

 
 
The techniques presented in sect. 2 are applied to solve 

the time-optimal rendezvous problem of DT and EGA. The 
results are listed in Table 3, which shows that the trip time 
using EGA (549.308 d) is 127.682 d shorter than the trip 
time (676.990) using direct transfer. 

The transfer trajectory is shown in Figure 3, from which 
it can be observed that the sailcraft of the mission using 
EGA starts later from the orbit of Asteroid 1 and targets the 
orbit of Asteroid 1 earlier than when using DT. 

Figure 4 shows the energy-changing curve. From the 
figure, it can be seen that the energy of the sailcraft is con-
tinuous and gradually increases from the energy of the orbit 
of asteroid 1 to the energy of the orbit Asteroid 2 because of 
the solar radiation pressure in DT. However, the energy of 
the sailcraft is discontinuous at the EGA time and increases 
instantly because of the EGA when using EGA, which 
shows the effect of EGA intuitively. 

4.1.2  A rendezvous problem between two fixed trajectories 
under different β 

For the mission, significant propellant mass saving may be  

Table 3  The results of the two-body model both with and without EGA 

Parameter Director transfer Earth gravity assist

The starting time t0 (MJD) 53907.952 53989.824 
The EGA time tm (MJD)  54092.843 

The targeting time tf (MJD) 54584.942 54539.132 
 

 

 

Figure 3  (Color online) The optimal transfer trajectory in a two-body 
model. 

obtained with the use of complex multiple intermediate 
flyby maneuvers, but the corresponding trip time increase is 
substantial in many cases. This section discusses the trip 
time of a mission using DT and a mission using EGA, along 
with the change of the sail lightness number β∈[0.06,0.15]. 
The same rendezvous problem from Asteroid 1 to Asteroid 
2 is considered, and the elements of the Earth, Asteroid 1 
and Asteroid 2 are listed in Table 2.  

Figure 5 shows that the trip time of both the mission us-
ing DT and the mission using EGA decreases with the in-
crease of β because the propulsion capability of the sailcraft 
increases with the increase of β. This result also shows that 
the smaller the β is, the more obvious is the decrease of trip 
time when using EGA. However, when β0.07, the trip time 
increases markedly because it costs the sailcraft a signifi-
cant length of time to approach Earth to achieve EGA. 

4.1.3  A rendezvous problem targets different trajectories 
with fixed β 

This part discusses the trip time of the mission using DT 
and the mission using EGA along with the change of the 
semi-major axis of Asteroid 2, where a2∈[1.32AU,1.58AU]. 
The elements of the Earth, Asteroid 1 and 2 are listed in 
Table 4.  

Figure 6 shows that the trip time increases with respect to 
the increas of the difference between the initial orbital en-
ergy and the final orbital energy in both the DT and the 
EGA. It shows that the larger the difference between the  

 
Figure 4  (Color online) Energy-changing curve in the two-body model. 

 

Figure 5  (Color online) The change of trip time relative to β. 
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Table 4  The orbital elements of Asteroid 1, Earth and Asteroid 2 

Orbital element Asteroid 1 The Earth Asteroid 2 

t (MJD) 54000.000 54000.000 54000.000 
a (AU) 0.800000 1.000840 a2 

e 0.016507 0.016507 0.016507 
i (°) 0.001218 0.001218 0.001218 

 (°) 1.770191 1.770191 1.770191 

 (°) 98.504893 98.504893 98.504893 
f (°) 240.000000 260.350296 320.000000 

 
 

 

Figure 6  (Color online) The change of trip time relative to a2. 

initial orbital energy and the final orbital energy, the more 
obvious the decrease of trip time when using EGA com-
pared to DT, which shows that EGA is more useful when 
the difference between the initial orbital energy and the fi-
nal orbital energy is large. 

4.2  Examples with EGA in the two-body model and the 
full ephemeris model 

The same rendezvous problem from Asteroid 1 to Asteroid 
2 is considered. The elements of the Earth, Asteroid 1 and 
Asteroid 2 are the same as in Table 2. 

Table 5 lists the results of the time optimal problem of a 
solar sail with EGA designed in the two-body model, in-
cluding the initial time, the final time, the hyperbolic excess 
velocity v− 

∞ and v+ 
∞, the minimal value of the constraints and 

the related parameters are given via TBM. All the vectors 
are projected into HECS. 

In making the numerical solution more convenient, the 
time of the perigee of Earth is set as the event time. Because 
of the highly nonlinear, highly sensitive initial values of the 
costate vectors in the fuel-optimal problem in the full 
ephemeris model, the beforehand mission has to be solved, 
which starts from Asteroid 1 and arrives at the GA planet, 
Earth. In the beforehand mission, the initial state and the 
starting time are identical to the primal mission above, and 
the final boundary value is the same as the inner constraints 
of the mission. The solution of the two-body model is given 
to the equation of the beforehand mission, and then the so-
lution of the beforehand mission is given to the primal mis-
sion. Table 6 lists the results of the time optimal problem of 
a solar sail with EGA designed in the full ephemeris model, 
including the initial time, the final time, and so on. All the 
vectors are projected into HECS. By comparison between 
table 5 and table 6 of the starting times, the targeting time of  

Table 5  The results obtained via the two-body model 

Variables Value 

Starting time (MJD) 53989.824 
Event time (MJD) 54092.844 

Targeting time (MJD) 54539.131 
The incoming hyperbolic exceeding velocity v− 

∞ (km/s) [1.418000,  4.718120,  9.934324×105] 
The outgoing hyperbolic vxceeding velocity v+ 

∞ (km/s) [1.541324,  4.679863,  1.004324×104] 
The velocity increment ΔvGA (km/s) [2.959432,  3.864432×102,  1.122234×106] 

Rotation angle δ0 (°) 1.496 
The trip time Δt (d) 549.307 

The nominal value designed via TBM cosinorm 0.997 
The nominal value designed via TBM rpnorm (km/s) 3.824941×104 

Table 6  The results obtained via the full ephemeris model 

Variables Value 

Starting time (MJD) 53990.142 
Time of perigee of Earth (MJD) 54092.844 

Targeting time (MJD) 54539.132 
The time entering the sphere of influence of GA planet (MJD) 54090.838 

The exceed velocity when entering the sphere of influence of GA planet (km/s) [1.440939, 4.811423, 1.012583×104] 
The time leaving the sphere of influence of GA planet (MJD) 54094.930 

The exceed velocity when leaving the sphere of influence of GA planet (km/s) [1.565568, 4.769470, 1.012583×104] 
The velocity increment ΔvGA (km/s) [3.006507, 0.041953, 0.000000] 

The fly time through the sphere of influence of GA planet Δt (d) 4.092 
The trip time Δt (d) 549.307 
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the full ephemeris model is close to the time corresponding 
to the variables in the two-body model. The difference be-
tween the two model missions is small, only 5.771×104 d.  

Figure 7 shows the transfer trajectories of the two-body 
model and the full ephemeris model, and the two curves are 
almost overlapping with the starting point and targeting 
point of both models close together. Figure 8 shows that the 
optimal control rate of the sailcraft in the full ephemeris 
model is similar to the consumption and similar to the opti-
mal control rate in the two-body model, which shows that 
the results obtained via the two-body model are reasonable. 

Figure 9 shows the changing trend of the main force and 
the perturbation during the flight in the full ephemeris mod-
el. The sun’s gravitational acceleration is approximately 
5×106 km/s2, the solar radiation pressure is approximately 
5×108 km/s2, and both of them decrease as the sailcraft 
flies away from the Sun. As the sailcraft gains energy by 
virtue of EGA, the Earth’s gravitational acceleration be-
comes the main force when the sailcraft flies through the 
sphere of influence of the Earth, and the magnitude of 
Earth’s gravitational acceleration is approximately 5×104 
km/s2. The figure shows that the main perturbations are Ju-
piter’s gravitational acceleration and Venus’s gravitational  

 

Figure 7  (Color online) The optimal transfer trajectory in the two-body 
model and the full ephemeris model. 

 

Figure 8  (Color online) The sail altitude control profile. 

 

Figure 9  (Color online) The main force and the perturbation in the full 
ephemeris model. 

acceleration. 
Figure 10 shows the Energy curve of the sailcraft in both 

models. The two curves are similar when the sailcraft is far 
from the Earth. At the event time in the two-body model, 
the energy curve jumps substantially, which shows that the 
sailcraft gains substantial energy via EGA. In the full 
ephemeris model, the curve increases gradually, and the 
EGA process costs approximately over 4 d, in which the 
sailcraft flies through the sphere of influence of the GA 
planet. The figure shows that when the sailcraft flies away 
from the Earth, the energy curve decreases a little because 
of the resistance from Earth’s gravity. 

5  Conclusions 

For the sailcraft, whose performance index is the trip time, 
the employment of the flyby maneuver reduces the total 
mission energy requirement, but it also increases both the 
mission complexity and the trip time. When the sail light-
ness number β is small, the trip time of the direct transfer 
(DT) is large, and using gravity assist (GA) can reduce the 
trip time. The decrease is more significant when β is smaller. 
For the rendezvous problem, when the energy difference of 
the initial and final orbit is large, the trip time of DT is long, 
using GA can also decrease the trip time, and the decrease is 
more significant when the difference is larger. For low per-
formance (β is small) solar sails, multiple flyby maneuvers 
should be considered to decrease the trip time when the en-
ergy difference between the initial and final orbit is large. 

Compared to the two-body model, the solar sailing tra-
jectory design in the full ephemeris model is much closer to 
the real problem. This design introduces the third-body 
gravity perturbation, especially the GA planet’s gravity, and 
it can describe the GA process more accurately. A set of 
inner constraints, including the actual orbit inclination, the 
perigee distance and the true anomaly constraints, can guide 
the sailcraft flying through the sphere of influence of the 
GA planet and finishing the GA process. However, because  
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Figure 10  (Color online) Energy-changing curve in the two-body model and the full ephemeris model. 

of the strong nonlinearity of the dynamic equations in the 
sphere of influence of the GA planet, it is more difficult to 
find the optimal solution in the full ephemeris model than in 
the two-body mode. The differences of the optimal results, 
including the trip time, sail altitude control profile and the 
transfer trajectory, are small between the two-body model 
and the full ephemeris model, which indicates that the 
two-body model is quite rational in primary design. 

Appendix 

The inner constraints are associated with the intermediate 
state and time. The work left is to derive the derivatives of 
the inner constraints (24), in other words, i(tm), rp(tm) and 
f(tm), with respect to the basic variables r(tm), v(tm) and tm. 
For convenience, we omit the “(tm)” after the variables a, e, 
e, i, h, h, r, r, v and v in the deriving, and all of these varia-
bles are the values at tm. 

The Partial derivatives to x(tm) and tm of the inner con-
straints are 
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where h is the column vector, and hT is the row vector. If an 
arbitrary column vector a=(a1, a2, a3)
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and the partial derivative to the tm of the cosine of the orbit 
inclination is 
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The partial derivative to x(tm) of the perigee distance is 

 
 

= (1 ) ,
( ) ( ) ( )

p pnorm

m m

r r a e
a

t t

   
 

  m

e
tx x x

 

where 

 
2 2

2

2
,

( ) ( ) ( )2

a r v
v

r
v

r

 



   
           

Pl Pl

m m mPl
t t tx x x

 

 
1

,
( ) ( )
e

e

 
 

 m mt t
e e

x x
 

where 

 
1

,
( ) ( )

r

r

 
 

  
r r

x xm mt t


  

 
1

,
( ) ( )

v

v

 
 

  
v v

x xm mt t


  



 Cai X S, et al.   Sci China-Phys Mech Astron   January (2015)  Vol. 58  No. 1 014501-11 

 

 

+

T
2

2

T

T

1
2

( ) ( ) ( )

1
 

( )

1
 

( )

1
 

( )

1
 .

( )

Pl

Pl

Pl

Pl

Pl

Pl

Pl

v r
v

r

v
r













   
       

     
 

    
 

    


  


e r
x x x

r
x

r v v
x

v r v
x

vr v
x

m m m

m

m

m

m

t t t

t

t

t

t

 

The partial derivative to tm of the perigee distance is 
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