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Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching
algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based
on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications,
an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general
rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous
quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented.
In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the
coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and
external coordinates of the ion.
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Quantum circuit model has been explored to undertake in-
tractable computation tasks in regards to classical comput-
ers. The primary reason is that the quantum system possesses
have different features such as entanglement or quantum cor-
relation [1]. In comparison to the binary logic gates and
Boolean algebra in the classical computation theory, the qubit
gates and Pauli algebra are critical for the quantum compu-
tation based one the qubit system. However, the local qubit
operations are not sufficient for synthesizing general global
quantum evolutions. Thus some correlated operations are re-
quired to construct the universal quantum logic gates which
are performed on a small and fixed number of qubits. Spe-
cially, global unitary transformations can be implemented us-
ing only two-qubit operation at each time [2–5], which has
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no analog result in the classical reversible logic. For exam-
ple, three-bit gates are necessary to simulate all reversible
Boolean functions [6].

The universal qubit logic may be extended the qudit logic
[7–15], where the information unit is qudit system [16]. The
qudit state in the d-dimensional state space may offer greater
flexibility in the storage and processing of quantum informa-
tion, such as improving the channel capacity [17,18], imple-
menting special quantum gates [19–22], increasing the infor-
mation security [23–28] and exploring different quantum fea-
tures [29–34]. The qudit system has also been realized with
different physical systems [35–38]. Unfortunately the pre-
vious schemes have had to control many freedoms in imple-
menting the evolution of general qudit systems. The primitive
qudit gates are more complex than the qubit counterparts be-
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cause of the control of all levels of one qudit system. Herein
we present a set of one-qudit and two-qudit gates which are
sufficient for the universal qudit computation. These gates are
easily implemented using multilevel ions with the linear ion
trap model. The controlling parameters are greatly reduced.

We present some primitive quidit gates. In addition we
present the universal qudit circuit model for general qudit
systems and the associated evolution. Included are the phys-
ical implementations of the universal qudit gates.

1 Primitive qudit gates

Let Ud be a d-dimensional transformation mapping a general
qudit state to |d − 1〉 such that

Ud(α0, α2, · · · , αd−1) :
d−1∑

j=0

α j| j〉 �→ |d − 1〉. (1)

Similar to the qubit case, Ud is not unique in terms of com-
plex parameters α0, · · · , αd−1. This problem has been ad-
dressed elsewhere [7] with probabilistic quantum search al-
gorithm. Here, we define another deterministic unitary trans-
formation to realize Ud with d− 1 steps. In detail, Ud may be
decomposed into

Ud = Xd−1(ad−1, bd−1) · · ·X1(a1, b1), (2)

with

X j(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I j−1

x√|x|2 + |y|2
−y√|x|2 + |y|2

y∗√|x|2 + |y|2
x∗√|x|2 + |y|2

Id− j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

and a j = α j, b j =

√∑ j−1
i=0 α

2
i . The new primitive transfor-

mations X j(x, y) in eq. (3) are easily implemented in physics
with two freedoms such as the linear ion trap model and lin-
ear optics with multiport.

We define the d-dimensional phase gate Zd as an operator

Zd(θ) =
d−1∑

j=0

ei(1−sgn(d−1− j))θ | j〉〈 j|, (4)

which alters the phase of |d − 1〉 by θ without affecting
other states in the qudit. The sgn denotes the sign func-
tion. This seemingly shows that {Zd, Xd} with Xd = {X j(x, y)}
is sufficient to simulate all single-qudit unitary operations.
Each primitive gate may be implemented by controlling no
more than two complex parameters. This decomposition
has greatly simplified the physical implementations of qudit
gates. If Rd represents either Xd or Zd, then the controlled-
qudit gate is defined as:

C2[Rd] =

( Id2−d

Rd

)
(5)

acting on the two-qudit system. The identity operation Id2−d

acts on the substates |0〉|0〉, · · · , |d − 2〉|d − 1〉 while Rd acts
on the remaining d substates |d − 1〉|0〉, · · · , |d − 1〉|d − 1〉 of
one general two-qudit system. These gates are sufficient to
construct unitary transformation of S U(dn) and proved in the
next section.

2 Universal quantum qudit circuits

Herein we provide the primary result.

Theorem 1 The following qudit gates set

Γ = {Xd, Zd,C2[Rd]} (6)

is universal for general quantum computation based on quan-
tum circuit model.

To show the universality of Γ we have to address n-qudit
operations in S U(dn). Consider an N-dimensional unitary
transformation U ∈ S U(dn) acting on the n-qudit state. The
following task is to synthesize U with Γ.

Denote the computation basis of n-qudit space Cdn
as:

|k〉 = |k1, k2, · · · , kn〉, k = 0, · · · , dn − 1. (7)

k1, k2, · · · , kn is the base-d representation of k and |ki〉 denote
the states of the ith qudit, i = 1, · · · , n. The proof of Theorem
1 is completed by the following subsections.

2.1 Eigen-decomposition of U

The first step is eigen-decomposition of U. For U ∈ S U(dn)
there exist N = dn different eigenstates |E j〉 with correspond-
ing eigenvalues eiλ j , j = 1, 2, · · · , dn. Each eigenstate is rep-
resented with the computation basis as:

N−1∑

j=0

α j| j〉 =
d−1∑

i1,··· ,in=0

αi1,··· ,in |i1, i2, · · · , in〉 (8)

from special αi1 ,··· ,in . From the representation theory the uni-
tary matrix U may be rewritten as:

U =
N∑

j=1

eiλ j |E j〉〈E j| =
N∏

j=1

Υ j (9)

with eigenoperators

Υ j =

N∑

s=1

ei(1−|sgn( j−s)|)λs |Es〉〈Es|, (10)

which generate a phase λ j of |E j〉 without affecting any other
eigenstates, j = 1, · · · ,N.

Now the qudit decomposition of U is reduced to synthesize
all the eigenoperators Υ j. Notice that Υ j can be decomposed
with two basic transformations [7] as follows:

Υ j = U−1
j,NZ j,NU j,N . (11)
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Here U j,N and Z j,N are the N-dimensional analogs of Ud and
Zd. U j,N transforms the jth eigenstate to |N − 1〉, that is

U j,N(α0, · · · , αN−1) : |E j〉 �→ |N − 1〉 (12)

which is not unique. Zj,N changes the phase of |N − 1〉 with
the jth eigenphase λ j, leaving other computation states un-
changed, that is

Z j,N =

N−1∑

s=0

ei(1−|sgn(s−N+1)|)λ j |s〉〈s|. (13)

Combining eqs. (9)–(13) it follows that {Z j,N ,U j,N} is suffi-
cient to decompose U. Similar to eq. (2) U j,N may be decom-
posed with primitive gates X j,k(x, y). Thus X j,k(x, y) and Zj,N

are sufficient to decompose U.

2.2 Controlled decomposition of U j,k and Z j,N

The second step is to realize the controlled decomposition of
X j,k and Z j,N , which are equivalent to decomposing U j,k and
Zj,N in terms of multiple controlling circuits in the next sub-
section. For convenience denote Ck[Rd] as:

Ck[Rd] =

(
Idk−d

Rd

)
, (14)

which acts on the dk-dimension computation basis of k-qudit
space. Rd acts on the last d substates |d − 1〉⊗n−1|0〉, · · · , |d −
1〉⊗n−1|d − 1〉 while others are unchanged. This controlled
qudit operation transforms the last qudit system with Rd con-
ditional on the first k − 1 qudits being in |d − 1, · · · , d − 1〉.
Notice that Z j,N = Cn[Zd(E j)] from eq. (13). For U j,N we
have

Proposition 1 Each U j,N can be decomposed into some
combinations of Ck[Ud] and Ck[Pd].

The proof is shown in Appendix.

2.3 Primitive decomposition of Cm[Rd]

The third step is to complete the primitive decomposition
of Cm[Rd] using the two-qudit gates C2[Rd]. Derived from
the decomposition in ref. [7] one possible decomposition is
illustrated in Figure 1 for d > 2. This circuit uses r =

(m−2)/(d−2)� auxiliary qudits (
x� denotes the smallest inte-
ger greater than x), where k is the remainder of (m−2)/(d−2)
. The box represents C2(Pd(p, q)), and the controlled permu-
tation of |p〉 and |q〉. The last box contains Rd = Zd or Xd. We
want to combine all these gates to implement Cm[Rd], which
applies Rd to the mth qudit if and only if the first m− 1 qudits
are in |d − 1〉⊗m−1.

From left to right in Figure 1, the first permutation
C2[Pd(0, 1)] increments the first auxiliary qudit from |0〉 to |1〉
if and only if the qudit 1 is in |d−1〉. The second permutation
C2[Pd(1, 2)] increments the first auxiliary qudit m+1 from |1〉
to |2〉 if and only if the qudit 2 is in |d−1〉, and so in sequence.

Continuing this way, the first auxiliary qudit reaches |d−1〉 if
and only if all the first d − 1 qudits are in |d − 1〉. This infor-
mation is then transferred to the second auxiliary qudit using
C2[Pd(0, 1)] elevating |0〉 to |1〉 provided the first auxiliary
qudit is in |d − 1〉. This procedure is carried out sequentially
through all the first m − 1 qudits. Finally we get that the rth
auxiliary qudit reaches to |s〉 (in the case where s is remainder
of (m − 2)/(d − 2)). Controlled by the last qudit, C2[Ud] acts
on the qudit m, which completes the simulation of Cm[Ud].
The two-qudit permutation gates C2[Pd(p, q)] are reapplied
to the auxiliary qudits at the end to disentangle them from the
first m qudits and restore them to |0〉 for reuse.

In fact, from the proof above we have obtained general
quantum circuits for Cm[Ud]. It takes m numbers of C2[Rd].
However, this method cannot be reduced to the qubit case.
Another hybrid way may be used in general case, see Figure
2. Here, an md-level auxiliary state is used to register the
controlling information.

Proposition 2

Γd := {Xd, Zd,C2[Rd]} (15)

is universal for the quantum computation.
Proof It is sufficient to decompose all U ∈ S U(N) with

Γd. From the proof in sect. 2.2 U may be decomposed into the
combinations of U j,k and Z j,N . Then from eq. (6) and the cir-
cuits in Figures 1 and 2 U can be decomposed with Γd. This
completes the proof that two-qudit gates C2[Zd] and C2[Xd]
together with the one-qudit gates Zd and Xd are universal for
the quantum computation.

3 Physical realizations

The qudit state may be realized with the linear iron in trap
(see Figure 3). Our scheme is derived elsewhere [7]. How-
ever, our implementation is easy using few parameters. Let
â† and â be the creation and annihilation operators for the
center-of-mass mode, and σ̂ j j = | j〉〈 j| be the internal projec-
tion operators for a given d-level ion in the trap. The Hamilto-
nian for the ion in the absence of interaction fields is defined
as:

Ĥ0 = �μx(â†â +
1
2

) +
∑
�ω jσ̂ j j. (16)

The computation scheme considered is shown in Figure 3,
where the transition frequencies ω j, j+1 = |ω j+1 − ω j| are dis-
tinct.

To implement Xd( j, j + 1) it is sufficient to couple the jth
neighboring level with the j + 1th level. The jth neighboring
transition is driven by the near-resonant laser field with its
standing-wave configuration along the trap axis,

E(x̂, t) = ε j, j+1(E j, j+1e−α j, j+1 t + c.c.) cos(k j, j+1 x̂ + ϕ)

= ε j, j+1(E j, j+1e−α j, j+1 t + c.c.)
[
− η j, j+1√

n
(â† + â) sin(ϕ)
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+ cos(ϕ) + O(η2
j, j+1)

]
. (17)

1
2

d−1
d

m−1
m

m+1
m+2

m+r−1
m+r

Pd(0,1) Pd(1,2) Pd(d−2,d−1)

Pd(0,1) Pd(1,2)

Pd(0,1) Pd(k,d−1)

Rd…

…
   

   
   

   
…

   
   

 …

…

…       …

Figure 1 (Color online) Schematic circuit of Cm[Rd] with C2[Rd]. Hori-
zontal lines denote qudits, with the black lines denoting m controlling qudits
and the red lines denoting auxiliary qudits being initialized to |0〉. Vertical
lines represent the two-qudit controlled gates, originating from the control
qudit (which is required to be in |d−1〉 for the gate to apply) and terminating
in a box on the target qudit.
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P(0,1) P(1,2)

P(d−1,d+1)              P(d+m−1,d+m)

P(m−1,m)

Figure 2 (Color online) Quantum circuit of multiple controlled qudit op-
erations. Dashed line is an (m+ d)-level auxiliary state. (a) Controlling state
is (m + d)-level. (b) Auxiliary state is (m + d)-level.

j − 1 j + 1

j

(a)                                                            (b)

d−1 lasers

…

…
1            2                          n

x

ωj−1,j                      ωj,j+1

Figure 3 Iron implementation. (a) Linear ion trap, with n ions. Trap axis
is along x. (b) Level scheme for a d-level ion, with one of neighboring tran-
sitions ω j−1, j or ω j, j+1.

Here E j, j+1 and α j, j+1 are the complex field amplitudes and
field frequencies (respectively) corresponding to the atomic
transitions, ε j, j+1 and k j, j+1 are the associated polarizations
and wave vector components respectively. The new Hamilto-
nian is defined as:

Ĥdip = −
[
d j, j+1σ̂

†
j, j+1 + d∗j, j+1σ̂

†
j, j+1

]
E(x̂, t). (18)

Note that α j, j+1 = ω j, j+1 if tunes the jth and ( j + 1)th lasers
to the resonance. Thus Hdip is reduced to a time-independent
interaction under the rotating-wave approximation, that is

Ĥdip,v = −�
[
Ω j, j+1σ̂

†
j, j+1 + Ω

∗
j, j+1σ̂

†
j, j+1

]
(19)

with the Rabi frequency Ω j, j+1 = (d j, j+1 · ε j, j+1E j, j+1)/�. The
unitary evolution operator is given as:

V̂ = exp
(
−i(t/�)Ĥdip,V

)
, (20)

which is sufficient to generate the single-qudit gate Xd (up to
an overall phase factor)

X j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I j−1

Y j

Id− j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (21)

with

Y j =

⎛⎜⎜⎜⎜⎜⎝
cos |Ω j, j+1|t ieiφ j, j+1 sin |Ω j, j+1|t

ie−iφ j, j+1 sin |Ω j, j+1|t cos |Ω j, j+1|t

⎞⎟⎟⎟⎟⎟⎠ .

Here, φ j, j+1 is the phase of Ω j, j+1. The phase flip Zd may
be realized by Zd = [U−1

d LdUd] with general phase rotation
Ld = Zd ||d−1〉, Ld is performed on the classical state |d − 1〉.
Moreover, the permutation Pd( j, j + 1) is also followed from
eq. (21) for |Ω j, j+1|t = π/2 and φ j, j+1 = π/2.

Consider the controlled-qudit gate C2[Rd]. Detuning each
laser above or below resonance by the trap frequency,α j, j+1 =

ω j, j+1 ± μx, we find that

Ĥdip,U+ = −
η j, j+1�√

q

[
Ω j, j+1σ̂

†
j, j+1â† + Ω∗j, j+1σ̂

†
j, j+1â

]
,

Ĥdip,U− = −
η j, j+1�√

q

[
Ω j, j+1σ̂

†
j, j+1â† + Ω∗j, j+1σ̂

†
j, j+1â

]
. (22)

Their time evolution operators are thus

Û± = exp
(
−i(t/�)Ĥdip,U±

)
, (23)

which conditionally couple the internal and external coordi-
nates of the ion. Thus C2[Rd] may be implemented using
Û± and V interactions, and auxiliary d levels in each ion, see
ref. [7] for detail. The primary difference is that only two
parameters Ω j, j+1 and φ j, j+1 are required in implementation
while 2d − 2 parameters should be controlled simultaneously
for the qudit operations in ref. [7].
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4 Discussions and conclusion

Let us consider a general unitary U ∈ S U(N). From eq. (9)
there are N eigenoperators Γ j defined in eq. (10). Each is re-
duced to three global primitive rotations defined in eq. (11).
Then from the proof of the Proposition 1, one Cm[Pd] and
Cn[Ud] are used to eliminate d − 1 substates of one eigen-
state. Thus it requires no more than 3dn−1 multiple controlled
operations to decompose U j,N . Finally from the decomposi-
tion in Figure 1, m numbers of C2[Rd] or C2[Pd] are needed
for Cm[Rd] or Cm[Pd] respectively. C2[Ud] may be further de-
composed into d − 1 numbers of C2[X j] using eq. (2). There-
fore, the total number of the primitive operations is given as:

L � 2N × 3dn−1 × n × (d − 2) + N × n � 6nd2n + ndn (24)

for a general n-qudit unitary operation. Of course, this bound
may be reduced if one reconsiders the number of different
Cm[Pd] for Cn[Ud].

One advantage of our qudit model is the logarithmic re-
duction in the number of separate quantum systems needed
to span the quantum memory, that is, k = log2 d. Using a
similar construction, we find that the circuit complexity of
the qudit simulation is O(nd2n) which is lower than that in
ref. [7]. This represents an upper bound on the circuit com-
plexity and shows (log2 d)2 advantage over the qubit case. Of
course, note that no logarithmic scaling in the global dimen-
sion N, which is natural in terms of the unitary parameteriz-
ing. This is similar to the qubit case, where special sparse
unitary transformations (with sparse eigenoperator represen-
tations) admit efficient simulations in terms of the elementary
qubit gates. In comparison to the proof in ref. [7], our prim-
itive qudit gates are easy in physical implementations with
few free parameters. Their scheme is dependent of the in-
deterministic qudit operation Ud with many free parameters.
Of course, the detailed circuit in sect. 3 is also different. The
other advantage of our qudit model is simplicity of primitive
gates which are easily realizable in physics by controlling few
parameters simultaneously.

Appendix

Proof of Proposition 1 The proof is completed by induc-
tion. For each eigenstate,

|E〉 =
N−1∑

j=0

α̂ j| j〉 =
d−1∑

i1···in=0

αi1,··· ,in |i1, · · · , in〉. (a1)

Firstly, for the substate
∑d−1

in=0 αd−1,··· ,d−1,in |d−1〉⊗n−1|in〉, us-
ing one multiple controlled qudit operation Cn[Ud] defined in
eq. (14) |E〉 is changed into a new state, that is

|E〉 �→
N−d−1∑

j=0

α̂ j| j〉 + βN−1|N − 1〉. (a2)

Here, the first n − 1 qudits |d − 1〉⊗n−1 is controlling term and

βN−1 =

√∑d−1
j=0 |αd−1,··· ,d−1, j|2.

Secondly, using one multiple controlled permutation
Cn−1[Pd(in−1, d−1)]⊗ Id the substate

∑d−2
in=0 αd−1,··· ,d−1,in−1,in |d−

1, · · · , d − 1, in−1, in〉 of |E〉 in eq. (a2) is changed into∑d−2
in=0 αd−1,··· ,d−1,in−1,in |d−1, · · · , d−1, d−1, in〉 for each in−1 =

0, · · · , d − 1. Here,

Cm[Pd(in−1, d − 1)] =

(
Idm−d

Pd(in−1, d − 1)

)
(a3)

is performed on the first m qudits, and so

Pd( j, d − 1) = | j〉〈d − 1| + |d − 1〉〈 j| +
∑

i� j,d−1

|i〉〈i|. (a4)

Followed this transformation Cn[Ud] is used to reduce the
new substate, see Figure 1 with k = 1. After these controlled
operations for in−1 = d−1, · · · , 0 the eigenstate |E〉 is reduced
to a new state, that is

|E〉 �→
d−1∑

i1,··· ,in=0,
∏n

j=1 i j�(d−1)n−2

αi1,··· ,in |i1, · · · , in〉 + β̃N |N − 1〉(a5)

with β̃N =

√∑d−1
j1, j2=0 |αd−1,··· ,d−1, j1, j2 |2. Here, the controlled

permutation is not required for in−1 = d − 1.
Thirdly the reduction method above can be generalized to

other substates by induction. Assume that one obtains the
reduced eigenstate

|Ê〉 =
d−1∑

i1,··· ,in=0,i1···ik+1�dk+1

αi1,··· ,in |i1, · · · , in〉 + β∗N |N − 1〉, (a6)

then it can be further reduced to

d−1∑

i1,··· ,in=0,
∏k

j=1 i j�(d−1)k

αi1 ,··· ,in |i1, · · · , in〉 + β∗∗N |N − 1〉 (a7)

with one constant β∗∗N . In detail, this step can be shown by
induction.

a)
∑d−2

in=0 α∗|d − 1〉k−1|ik〉|d − 1〉n−k−1|in〉 of |Ê〉 in eq. (a7)
is changed into

∑d−2
in=0 αd−1,··· ,d−1,in |d − 1, · · · , d − 1, in〉 using

the controlled permutation Ck+1[Pd(ik, d − 1)] ⊗ Idn−1−k for
each ik = d − 1, · · · , 0. Here α∗ denote the correspond-
ing coefficients of substates for convenience. Then one spe-
cial Cn[Ud] is used to complete the reduction task. Af-
ter these operations for all in−1 = d − 1, · · · , 0 the sub-
state

∑d−2
in=0 α∗|d − 1〉k−1|ik〉|d − 1〉n−k−1|in〉 of |Ê〉 is reduced

to β̂N |N − 1〉 with some constant β̂N .
b)

∑d−2
in=0 α∗|d − 1〉k−1|ik〉|d − 1〉n−k−2|in−1in〉 of |Ê〉 for

each ik, in−1 = 0, · · · , d − 2 may be changed into∑d−2
in=0 α∗|d − 1, · · · , d − 1, in〉 using [Cn−1[Pd(ik, d − 1)] ⊗

Id2 ][Cn−2[Pd(in−1, d − 1)] ⊗ Id3]. Here α∗ denote the cor-
responding coefficients of substates for convenience. The
controlling qudits are 1, · · · , k − 1, k + 1, · · · , n − 2 while
1, · · · , k− 1, k+ 1, · · · , n− 1 for the second. These controlled
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d−1

j1

j2

jk−1

n−1−k⊗

Pd(j1,d−1)

Pd(j2,d−1)

…

…

Pd(jk,d−1)

Ud

Figure a1 Schematic quantum circuit of substates’ reduction. Dash-dot
line denotes the combination of first n − 1 − k qudits as |d − 1〉⊗n−1−k. Dash
line denotes the nth qudit as

∑d−2
in=0 |in〉. Pd(s, t) denotes the permutation op-

eration of |s〉 and |t〉. Substate is
∑d−2

in=0 αd−1,··· ,d−1, j1 ,··· , jk ,in |d − 1, · · · , d −
1, j1 , · · · , jk, in〉 + β|d − 1〉⊗n for each j1 , · · · , jk = 0, · · · , d − 2.

operations can be easily implemented by permuting the par-
ticles in implementations. Then a new reduced substate is
followed using another Cn[Ud].

c) Assume that the substate
∑d−1

ik ,in−s+1,··· ,in=0 α∗|d−1, · · · , d−
1, ik, d − 1, · · · , d − 1, in−s+1, · · · , in−1, in〉 of |E〉 has been re-
duced to |N−1〉 using some controlled operations Cm[Pd]⊗Id3

and Cn[Ud]. The substate
∑d−1

in=0 α∗|d − 1, · · · , d − 1, ik, d −
1, · · · , d − 1, in−s+1, · · · , in−1, in〉 of |Ê〉 may be reduced to
c|N − 1〉 with some constant c because it is changed into∑d−1

in=0 αd−1,··· ,d−1,in |d−1, · · · , d−1, in〉 using multiple controlled
permutations [Cn−1[Pd(ik, d−1)]⊗ Id2][Cn−2[Pd(in−s, d−1)]⊗
Id3 ] · · · [Cn−s+1[Pd(in−1, d − 1)] ⊗ Id3], see Figure a1 with ar-
ranged order of qudits. The new substate may be reduced
from another Cn[Ud]. Thus we have completed the proof for
this step.

Finally when k = 1, the eigenstate |E〉 is reduced to
|d − 1〉⊗n.
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