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The properties of strangelets at zero temperature with a new quark model that includes both the confinement and one-gluon-
exchange interactions is studied in a fully self-consistent method. The charge and parameter dependence of the stability of
strangelets are discussed. It is found that the one-gluon-exchange interaction lowers the energy of a strangelet, and consequently
allows the strangelet to be absolutely stable. The stable strangelet radius in the present model is smaller in comparison with the
absence of one-gluon-exchange interaction, and can thus be much less than that of a normal nucleus with the same baryon number,
according to the strength of the confinement and one-gluon-exchange interactions.
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1 Introduction

Researchers have studied the question of whether the ordi-
nary nuclear matter is actually metastable and decay slowly
into quark matter of lower energy. Bodmer [1] first suggested
a low energy nuclear state called “collapsed nuclei”. Sub-
sequently, Witten [2] studied the stability of strange quark
matter (SQM) consisting of approximately equal numbers of
u, d and s quarks, suggesting that SQM could indeed be sta-
ble even at zero external pressure. Since then, SQM has been
intensely studied in nuclear physics, astrophysics, and other
related fields.

Small lumps of SQM are normally called strangelets [3–5],
or for short, slets [6]. Because of their low charge to baryon
number ratio, strangelets have been proposed to be a complex
ingredient of ultrahigh energy cosmic rays [7,8]. Also, they
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could be found in the cooling products of energetic heavy ion
collisions as a unique signature for the formation of quark
gluon plasma [9]. Because of the obvious difficulties in work-
ing out QCD directly and strictly, phenomenological models
are needed in exploring the properties of strangelets. The
most well known phenomenological model is the MIT bag
model, in which the fundamental assumption is that the vac-
uum has a constant energy density, that is, the bag constant B
which provides a negative pressure to confine quarks. Thus
the confinement is assumed to be achieved by the special
property of the vacuum.

Employing the bag model, many researchers have studied
the properties of strangelets and presented interesting results.
For example, Farhi and Jaffe [3] found that strangelets in per-
fect weak equilibrium are slightly positively charged. It is
found that the properties of strangelets have strong parameter
dependence [10,11]. Greiner et al. [12,13] studied the possi-
ble formation of strangelets in heavy-ion collisions, and they
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have suggested that strangelets are most likely highly nega-
tively charged [9]. Other researchers have noted the impor-
tant effect of the curvature contribution [14–16]. Taking into
account the electrostatic effects and Debye screening, and an
arbitrary surface tension of the interface between quark mat-
ter and vacuum, Alford et al. [17] determined that there is a
critical surface tension below which large strangelets are un-
stable to fragmentation.

Another phenomenological quark model incorporates con-
finement through the density dependence of quark masses
(CDDM) [18,19]. In this model, the key points are to use
a proper quark mass scaling and to adopt a self-consistent
thermodynamic treatment.

The original authors suggested an inversely linear scal-
ing for up and down quarks [20] which was later extended
to include strange quarks [21]. With the inversely linear
scaling [22,23], Zhang and Su [24] studied the stability of
strangelets at both zero and finite temperatures. Because the
inversely linear scaling was derived according to the basic as-
sumption of the bag model, the results from it are, in general,
similar to those from the bag model [25–27].

Based on the in-medium chiral condensates and linear con-
finement, an inversely cubic scaling was derived [28,29].
With this scaling, Wen et al. [30,31] investigated the proper-
ties of strangelets versus the electric charge and strangeness
at both zero and finite temperatures.

On application of the quark mass scaling derivation pro-
cedure and the thermodynamic formulas suggested by Wen
et al. [31] (WZP model), Modarres and Gholizade [32] cal-
culated the thermodynamic properties of strange quark mat-
ter. They introduced the one-gluon-exchange interaction ob-
tained from the Fermi liquid picture. However, the confine-
ment was not included, or simply they did the same as in the
bag model by adding a constant vacuum energy density.

In a recent work [33], we have studied the effect of
one-gluon-exchange interactions on the properties of strange
quark matter and strange stars where the finite-size effect
is unimportant. For a strangelet, however, the finite-size
does matter. Therefore, in the present paper, we consider
the important finite-size effect on strangelets, when both the
confinement and the one-gluon-exchange interactions are in-
cluded in a fully self-consistent way. It is found that the one-
gluon-exchange interaction lowers the energy of a strangelet,
and thus making the strangelet to be more stable. The sta-
ble radius of a strangelet is thus smaller compared to the case
without one-gluon-exchange interactions.

Hereinafter, we describe the new quark mass scaling, the
consistent thermodynamic treatment, and properties of slets.

2 Quark mass scaling with one-gluon-ex-
change interaction

The original idea in the quark mass density-dependent model
is that the quarks would become, with decreasing density,
so massive that the vacuum is unable to support them, and

thereby must be confined in a finite volume. Because the
energy density of the system for a large particle mass mq

is 3mqnb at lower baryon number density nb while the bag
model assumes a constant vacuum energy density B, Fowler
et al. [20] naturally made them equal and gave the mass scal-
ing of u and d quarks as mu/d = B/(3nb). Subsequently,
Chakrabarty et al. [21–23] extended this to include strange
quarks as ms = ms0 + B/(3nb), where ms0 is the current mass
of strange quarks.

Based on the in-medium chiral condensates and linear con-
finement, an inverse cubic-root scaling was derived [28]. At
zero temperature, it is

mq = mq0 +
D

n1/3
b

(q = u, d, s), (1)

where mq0 is the current mass of quark flavor q, and D is a
confinement parameter determined by stability arguments.

Eq. (1) considers merely the linear confinement interac-
tion. Because the confinement interaction dominates at lower
density, the scaling in eq. (1) describes quark matter accu-
rately. With increasing density, however, perturbative inter-
action becomes more critical. We should thus include pertur-
bative interaction at higher density.

As described elsewhere [33], a new quark mass scaling
was obtained using the quark interaction

v(r) = σr − 4
3
αs

r
, (2)

where σ is the string tension and αs is the running coupling
constant of QCD. The first term on the right hand side is the
linear confinement while the second term represents the one-
gluon-exchange interaction. The new quark mass scaling can
be expressed as:

mq = mq0 +
D

n1/3
b

−Cn1/3
b , (3)

where nb =
1
3

∑
i ni is the baryon number density, D is still

the confinement parameter as in eq. (1), and C represents the
strength of the one-gluon-exchange effect.

The last two terms on the right hand side of eq. (3) are,
respectively, the contributions of the confinement and one-
gluon-exchange interactions. They are the same for all fla-
vors, representing the interaction between quarks. We thus
specially denote them as:

mI =
D

n1/3
b

−Cn1/3
b . (4)

Because of quark confinement, the effective quark mass
would be infinitely large that the quark can only be confined
in a proper region. Therefore, the density-dependent form
in eq. (4) can be understood as a Laurent series of the Fermi
momentum which is proportional to the cubic root of the den-
sity, truncated to leading order in both directions. For the two
coefficients D and C, they can be linked to known quantities
such as the pion-nucleon sigma term, the chiral condensates,
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quark current masses and the coupling constant. One method
to derive the linkage is provided elsewhere [33] where C is
given to be proportional to the coupling constant of strong
interactions. As known, the strong coupling constant is run-
ning. Therefore, C should also be density-dependent. How-
ever, the running speed is rather slow because the strong cou-
pling is a logarithmically decreasing function [34]. On the
other hand, the derivation must have some assumptions and
approximations. We thus treat C as a phenomenological pa-
rameter with different values.

Previously [31], the squared root of the confinement
parameter, D1/2, is estimated in the range of (156, 270)
MeV [18]. Here, we employ the values D1/2 = 160, 180,
200, 220 MeV. For the strength parameter C of the one-gluon-
exchange effect, we take C = 0.1, 0.6 as examples. Formally,
if one takes C = 0, then the previous quark mass scaling in
eq. (1) can be obtained. To compare with the previous results,
we will also present the results by taking C = 0 at D1/2 = 160
MeV.

3 Self-consistent thermodynamic formulae

The special problem in studying strangelets is to include the
finite-size effect, while the size of a strangelet is of cru-
cial importance in analyzing the propagation and detection.
Therefore, the proper density of state which includes the
finite-size effect needs obtained initially. This has been done
by applying the multi-expansion method originally com-
prised by Balian and Bloch [35], and later developed by oth-
ers [3,14,24,36–38].

In the present model, the quark acts like a free parti-
cle with the equivalent mass mi and the dispersion relation

εi =

√

p2 + m2
i . Therefore, the energy density of a strangelet

with radius R can be given in the multi-expansion approach
by

E =
∑

i

Ei + EC, (5)

where mi is the mass of flavor type i, R is the strangelet ra-
dius, and νi is the Fermi momentum corresponding to flavor i.
The summation index i goes over all flavors considered. The
thermodynamic contribution from flavor i is

Ei = Ei(νi,mi,R) =
∫ νi

0

√

p2 + m2
i n′i(p)dp, (6)

where the density of state n′i(p) is given in the multi-
expansion method by

n′i(p) =
gi

2π2

{

p2 − 3p
2R

arctan
(mi

p

)

+
1

R2

[

1 − 3p
2mi

arctan
(mi

p

)]}

, (7)

with gi being the degeneracy factor of particle type i, i.e.
gu = gd = gs = 6, ge = 2. The three terms on the right

hand side of eq. (7) are the volume term, surface term [4],
and curvature term [14–16], respectively. The particle num-
ber density is

ni =

∫ νi

0
n′i(p)dp. (8)

In principal, the Coulomb energy contribution should be
included for a charged system. The corresponding contribu-
tion, EC in eq. (5), is

EC =
2
15

πR2αC(Q2
v + 5Q2), (9)

where αC ≈ 1/137 is the fine structure constant and Qv is
the volume term of the total electric charge density Q, i.e.,
Q =

∑
i qini and Qv =

∑
i qini,v with qu =

2
3 , qd = − 1

3 ,
qs = − 1

3 and qe = −1.
From eqs. (5) and (8), and the fundamental thermody-

namic laws, we can show that the pressure is given as:

P =
∑

i

[

−Ωi − R
3
∂Ωi

∂R
+ nb
∂Ωi

∂mi

dmi

dnb

]

+ PC, (10)

where PC represents the contribution from the Coulomb in-
teraction. It should be pointed out that any model needs to
satisfy the thermodynamic consistent conditions. For this to
be fulfilled in the present model, the pressure is derived ac-
cording to the fundamental thermodynamic differential equa-
tion, which gives an additional term because of the density
dependence of the quark masses. The quantity Ωi in eq. (10)
is the free-particle contribution of the particle type i with a
density dependent mass and an effective chemical potential.
The concrete expression can be given by

Ωi = Ωi(νi,mi,R) =
∫ νi

0

(√

p2 − m2
i − μ∗i

)

n′i(p)dp. (11)

Here we have introduced an effective chemical potential μ∗i ≡√

ν2i + m2
i . In the quark mass density-dependent case, the ac-

tual chemical potential is

μi = μ
∗
i +

4
15

πR2αCqi

⎛
⎜⎜⎜⎜⎝5Q +

giν
2
i Qv

2π2n′i(νi)

⎞
⎟⎟⎟⎟⎠ +

1
3

∑

j

∂Ω j

∂m j

dm j

dnb

−2αCR2Qv

45π

∑

j

q jg jν
2
j

n′j(νi)
∂n j

∂m j

dm j

dnb
. (12)

At finite temperature, the relevant results can be similarly
given. For detailed information, one refers to the section
V of ref. [31]. For a fully self-consistent thermodynamic
derivation and explanation, one can refer to the appendix of
ref. [18].

Here we present the results at zero temperature. For con-
venience, we define xi ≡ νi/mi and yi ≡ μ∗i /mi, and carry out
the relevant integrations to give concrete expressions.

The particle number density in eq. (8) becomes thus

ni =
giν

3
i

6π2
+

3gim2
i

8π2R

[

y2
i arctan(xi) − xi

(
πxi

2
+ 1

)]

+
3gimi

8π2R2

[

y2
i arctan(xi) − xi

(
πxi

2
− 1

3

)]

. (13)
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The energy density in eq. (6) and the pressure in eq. (10)
respectively give

Ei =
gim4

i

8π2

{1
2

[
xi(2x2

i + 1)yi − arcsh(xi)
]

+
1

miR
[π − xiyi − 2y3

i arccot(xi) − arcsh(xi)]

+
1

m2
i R2

[π + xiyi − 2y3
i arccot(xi) + arcsh(xi)]

}

, (14)

and

P =
∑

i

gim4
i

48π2

{

(2x2
i − 3)xiyi + 3arcsh(xi)

+
2

miR

[
3πyi − 4xiyi − 2π + 2arcsh(xi) − 2y3

i arccot(xi)
]

+
1

m2
i R2

[
π(3yi − 2) − 2arcsh(xi) − 2y3

i arccot(xi)
] }

−
∑

i

gim3
i nb

16π2

dmi

dnb

{

4
[
arcsh(xi) − xiyi

]

− 6
miR

[
π + xiyi − πyi − arcsh(xi)

]

+
1

m2
i R2

[
3πyi − 4π − 2xiyi − 4arcsh(xi)

+2y3
i arccot(xi)

]
}

+PC, (15)

where the contribution from the Coulomb interaction PC can
be expressed as such

PC =
2
9
πR2αC

[3Qv

5π2

∑

i

qigiν
2
i

n′i(νi)

(

ni +
R
3
∂ni

∂R
− ∂ni

∂mi

dmi

dnb
nb

)

+Q2 − Q2
v

]

, (16)

and the quark mass derivative with respect to the density is

dmi

dnb
=

dmI

dnb
= − D

3n4/3
b

− C

3n2/3
b

. (17)

It should be noted that the Coulomb contribution PC in
eq. (16) differs from the corresponding equation given else-
where [15], such that

PC =
2

45
πR2αC(Q2

V + 5Q2). (18)

Only when the numbers of particles in the surface are not
changed with the size at a fixed total baryon number, and
quark masses do not depend on density, eq. (16) is reduced to
eq. (18).

4 Properties of strangelets in the new quark
mass scaling

In the early 1990s it was realized that electric field is screened
over a distance inside strange matter so that the electron num-
ber density, is not zero inside a strangelet [39]. The β equi-
librium requires μu + μe = μd = μs.

A strangelet, in principal, has electric charge at its surface
due to the important finite-size effect [40]. If the baryon num-
ber is less than about A � 107, electrons can not exist within
a strangelet because the Compton wavelength of the electron
exceeds the size of the strangelet [41,42]. Therefore, in the
present calculations, the electron is ignored and the chemical
potential is treated as zero to achieve lower energy, that is,
μe � 0. Thus, the chemical equilibrium condition becomes
μu = μd = μs. It should also be noted that the inclusion of
electrons barely affects our final results.

If we use A, S and Z to represent the baryon number,
strangeness and electric charge, and Nu, Nd and Ns to denote
the number of u, d and s quarks respectively, then we have
three equations as follows:

A =
1
3

(Nu + Nd + Ns), (19)

Z =
2
3

Nu − 1
3

Nd − 1
3

Ns, (20)

S = Ns. (21)

For a mechanically stable strangelet, the pressure inside the
strangelet must be zero, namely

P = 0, (22)

from which the stable radius of the strangelet can be obtained.
With a view to the pressure expression in eq. (15), the volume
term, surface term, and curvature term are included.

To allow for a clearer depiction, we define the electric
charge to baryon number ratio and strangeness fraction as
fZ = Z/A and fS = S/A, respectively. If the strangelet
radius R is given, we can obtain the strangelet volume as
V = (4/3)πR3, then the baryon number density is nb = A/V ,
and from eq. (3) the quark mass mi (i = u, d, s) can be gained.
From the expressions in eqs. (19)–(21) we have Nu = A + Z,
Nd = 2A−Z−S and Ns = S , then we obtain the number den-
sity ni (i = u, d, s). The fermi momentum νi (i = u, d, s) can
be derived by solving ni = 3Ni/(4πR3) with the ni expression
in eq. (13).

For all the numerical calculations in this paper, we used
mu0 = 5 MeV, md0 = 10 MeV, and ms0 = 100 MeV. Other
parameters are specifically presented.

We calculated the charge dependence of the mechanically
stable radius and energy per baryon E/nb of the strangelet
first. Figures 1 and 2 show the stable radii and energy per
baryon of the strangelet as functions of their charge fraction
with A = 50 and fS = 0.12 as was done elsewhere [30]. To
compare with the previous results, we also plot the curve in
the case of C = 0 at D1/2 = 160 MeV. We can see that the sta-
ble radius and energy per baryon are not monotonic functions
of the ratio of charge to baryon number. There is a minimum
point on each curve, which depends on the values of the pa-
rameters C and D. We note, from Figures 1 and 2, that the
stable radius of a strangelet in the present model is smaller
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Figure 1 Mechanically stable radii of strangelets as functions of the ra-
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Figure 2 Energy per baryon of a strangelet with the fixed baryon number
A = 50 and the strangeness fraction fS = 0.12 versus the ratio of charge to
baryon number fZ . A minimum is found on each curve.

and the energy becomes lower in comparison with absence of
one-gluon-exchange effect.

Figures 3 and 4 show how the parameters affect the ra-
dius and energy per baryon. The figures were given with
A= 10, Z = 1, S = 10. From the two figures we can draw the
conclusion that both the stable radius and the energy per
baryon are monotonic functions of the parameter C for a
given D value, namely, they are decreasing functions of C.

Figure 5 gives the baryon number dependence of the me-
chanically stable radius. To compare with the ordinary nu-

clei radius relation R = 1.12A1/3 fm, we also plotted it with
a dash-dotted line. Comparing with previous works where
the one-gluon-exchange effect was not involved, the mechan-
ically stable radii of a strangelet is smaller. It is readily appar-
ent that the radius of a strangelet in the present model is also
smaller than that of a nucleus with the same baryon number.

Figure 6 shows the baryon number dependence of the en-
ergy per baryon and the charge fraction of stable strangelets.
Generally, they decrease with increasing baryon number A.
We find that once the one-gluon-exchange interaction is as-
sumed, then both the energy per baryon and the charge frac-
tion are reduced.
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the dash-dotted line.
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charge fraction of stable strangelets. Both the energy per baryon and the
charge fraction are decreasing functions of the baryon number.

In general, gluons contribute to a quark system because
the quarks interact with each other via gluon exchanges.
Presently we have tried to include the one-gluon-exchangeef-
fect on the properties of zero-temperature strangelets at lead-
ing order. In further studies at finite temperature, a free gluon
contribution term can be included. Concurrently, the quark
masses needs to be dependent on both the density and the
temperature as well.

5 Summary

On application of a new quark mass scaling which includes
one-gluon-exchange effect and considering the weak chemi-
cal equilibrium, we have studied the thermodynamical prop-
erties of strangelets. The results show that the radius and
energy per baryon of a strangelet is not a monotonic func-
tion of the charge fraction. The stable strangelet radius in the
present model is smaller than in other cases [30] where the
important one-gluon-exchange interaction was not included.
It is also smaller than that of a normal nucleus with the same
baryon number, which might be relevant to the propagation
and detection of strangelets [43–45].

We have also investigated the baryon number dependence
of the energy per baryon, and the charge fraction. It was
found that the one-gluon-exchange interaction lowers the en-
ergy of a strangelet, and consequently allows the strangelet to
be absolutely stable.
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