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The main bottleneck of the reliability analysis of structures with aleatory and epistemic uncertainties is the contradiction be-
tween the accuracy requirement and computational efforts. Existing methods are either computationally unaffordable or with 
limited application scope. Accordingly, a new technique for capturing the minimal and maximal point vectors instead of the 
extremum of the function is developed and thus a novel reliability analysis method for probabilistic and fuzzy mixed variables 
is proposed. The fuzziness propagation in the random reliability, which is the focus of the present study, is performed by the 
proposed method, in which the minimal and maximal point vectors of the structural random reliability with respect to fuzzy 
variables are calculated dimension by dimension based on the Chebyshev orthogonal polynomial approximation. First-Order, 
Second-Moment (FOSM) method which can be replaced by its counterparts is utilized to calculate the structural random relia-
bility. Both the accuracy and efficiency of the proposed method are validated by numerical examples and engineering applica-
tions introduced in the paper. 
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1  Introduction 

Reliability is one of the major concerns in engineering prac-
tices since the occurrence of failures may lead to cata-
strophic consequences. A variety of reliability analysis 
methods have been proposed over the last three decades and 
have stimulated the interest in the probabilistic optimum 
design of structures based on the consideration that the 
structural reliability is solely determined by the parametric 
randomness. With the theoretical advancements of uncer-
tainty analysis theory, the nature of uncertainty is gradually 
recognized, which subsequently promotes the development 
in the structural reliability analysis. Uncertainties present in 
realistic problems can be classified into two categories, 

namely, aleatory and epistemic uncertainties depending on 
the amount and type of information available. The aleatory 
uncertainty modeled as randomness using probabilistic the-
ory is the natural variation of the structure while the epis-
temic uncertainty modeled as fuzziness using possibility 
theory is due to the lack of knowledge about the parameter. 
It is noted that both randomness and fuzziness always coex-
ist in engineering practices, e.g. the preliminary design of an 
airfoil where sufficient information required to model ran-
dom variation is typically unavailable. However, as the de-
sign progresses additional information can be used to mod-
ify some of these parametric variations initially modeled as 
fuzziness and then coexistence of randomness and fuzziness 
occurs. Accordingly, the reliability analysis for probabilistic 
and fuzzy mixed variables is urgent. 

Reliability analysis for the probabilistic and fuzzy mixed 
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variables originates from the random reliability analysis 
combining possibility theory dealing with fuzziness in the 
structure. The classical random reliability has been studied 
deeply and then numerous methods have been proposed, e.g. 
sampling method [1–5], moment method [6–9] and MPP 
method [10–12]. Following the pioneering work of Braibant 
et al. [13] who used possibilistic approaches for the struc-
tural optimization and design, vertex method which is only 
well suited for monotonic problems was proposed [14] and 
optimization techniques with high accuracy as well as un-
affordable computational efforts for implicit performance 
functions have been employed to accomplish the fuzziness 
propagation for fuzzy reliability analysis [15,16]. All meth-
ods aforementioned consider only either random or fuzzy 
variables but do not accommodate a combination of varia-
bles. Considering mixed uncertainties in the structure, a few 
typical methods have been proposed. Möller et al. [17] de-
veloped an effective method for estimating the membership 
function of the safety index from which the calculation of 
the structural failure probability is prone to errors. Adduri et 
al. [18,19] proposed a system reliability analysis method 
utilizing the transformation of membership functions for the 
random reliability analysis and a non-complete second-  
order response surface model with limited accuracy for the 
limit-state function, which cannot handle the cross-terms of 
random and fuzzy variables. Besides, Lu et al. [20–22] pro-
posed a methodology combining the saddle-point approxima-
tion for linear performance function with the line or trun-
cated importance sampling method to improve the computa-
tion efficiency in random reliability analysis but optimiza-
tion techniques with much computational efforts are adopt-
ed to capture the minimum and maximum of the random 
reliability with respect to (w.r.t.) fuzzy variables at each 
alpha-level, in which local extremum may yet be obtained. 

It is noted that the efficiency of the reliability analysis 
method for probabilistic and fuzzy mixed variables can be 
enhanced by improving the random reliability analysis 
method, which is the motivation of existing methods 
[18–22], and by accomplishing fuzziness propagation based 
on the random reliability analysis efficiently, which have 
not been reported yet but motivated the present study. In 
this paper, an efficient reliability analysis method with high 
accuracy for probabilistic and fuzzy mixed variables based 
on the First-Order Second-Moment (FOSM) method for the 
classical random reliability analysis is proposed to over-
come the potential obstacles mentioned above. The mini-
mum and maximum of the structural reliability at each al-
pha-level can be calculated dimension and dimension w.r.t. 
fuzzy variables based on the Chebyshev orthogonal poly-
nomial approximation instead of optimization techniques.  

2  Problem statement 

For simplicity, the independent probabilistic variables, into 

which the dependent ones could be transformed, are merely 
considered. And it is noted that fuzzy variables are, in gen-
eral, independent of each other in engineering practices. The 
vector consisting of probabilistic and fuzzy mixed variables 
for the reliability analysis can be denoted as x=(xS, xF) 
where xS=(xs1,xs2,…,xsn) is a vector with probabilistic ele-
ment whose probability density function is expressed as 

 
s six if x  w.r.t. six  (i=1,2,…,n) while xF=(xf1,xf2,…,xfm) is 

a vector with fuzzy element whose membership function is 

denoted as  
f fjx jx  w.r.t. fjx  (j=1,2,…,m). Thus, the 

structural performance function can be expressed as 
z=g(xS,xF) and then the reliability is obtained as follows: 

    r f0 1 0 1P P z P z P       , (1) 

where fP  is the failure probability of the structure. It is 

noted that the resulting reliability is fuzzy due to the fuzzi-
ness of the parameters xF based on the random reliability 
theory. Theoretically there are two pivotal procedures for 
accurately estimating the membership function of the relia-
bility, i.e. calculating the random reliability in the reduced 
space spanned by the probabilistic variables with the fuzzy 
variables being fixed at given values and capturing the 
minimum and maximum of the random reliability within the 
specified bounds of fuzzy variables at each alpha-level. It is 
the classical random reliability analysis essentially for the 
former that has been extensively researched with plentiful 
and substantial achievements and the fuzziness propagation 
analysis for the latter which is the focus of the present 
study. 

Zadeh’s extension principle extending a classical crisp 
function to a fuzzy mapping plays an important role in the 
fuzziness propagation analysis. It is supposed that V is a 
Cartesian product of universes 1 2 nV V V V     and 

1 2, , , na a a    are n fuzzy sets in 1 2, , , nV V V , respectively. 

Let  1 2, , , nf x x x  be a crisp function mapping from V to 

a universe set W  and then the extension principle induces 

a fuzzy set b  in W  by 

       1 2 1 2, , , , , , , , ,n nb
b y y y f x x x x x x V  
    (2) 

where 

 
 

      
1 2

1 2
1 2, , ,

max min , , ,
n

n
a a a nb y f x x x

y x x x   


   
 . (3) 

As the mathematical basis of the present method for the 
fuzziness propagation analysis, the following property of 
Zadeh’s extension principle is firstly obtained. 

Proposition  Let  1 2, , , nf x x x  be a crisp function 

and 1 2, , , na a a    be n  fuzzy numbers. : nf  F F  is 

supposed to be a fuzzy-valued function induced by f 
through Zadeh’s extension principle. If all membership 
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functions  
ia ix   are continuous and the range of f is 

compact for all y, the alpha-cut of the resulting fuzzy num-

ber  1 2, , , nb f a a a      can be expressed as follows: 

   1 2 ,, , , : , 1,2, ,n i ib f x x x x a i n      . (4) 

That is 

  
  

l l u
1 2 , ,

u l u
1 2 , ,

min , , , , , 1,2, , ,

max , , , , , 1,2, , ,

n i i i

n i i i

b f x x x x a a i n

b f x x x x a a i n

  

  

    

    

  

  
 (5) 

where lb  and ub  are the lower and upper bounds of the 

fuzzy number b  at the alpha-level, respectively. 
Proof  For an arbitrary real number y  in the range of 

the crisp function f , if 

   0 1 2 ,, , , : , 1,2, , ,n i iy f x x x x a i n     

then a vector  1 2, , , nx x xx   satisfying the equation 

y0=f(x1,x2,…,xn) can be obtained and ,i ix a   ( 1,2, ,i n  ). 

Thus  
ia ix   holds and the following equation could 

be obtained 

  
 

 
0 1 2

0 1, , ,
max min ,

i
n

a ib i ny f x x x
y x  

 
  

 

i.e. 0y b  . Therefore, we can obtain that 

   1 2 ,, , , : , 1,2, , .n i if x x x x a i n b       

On the other hand, if 0y b  , then 

 
 

 
0 1 2 1, , ,

max min .
i

n
a ii ny f x x x

x 
 


 

Because the range of f is a compact set and  
1
min

ia ii n
x

    is 

continuous on R n , there exists a vector  1 2, , , nx x xx   

satisfying that  
1
min

ia ii n
x 

 
  and  1 2 0, , , nf x x x y . 

Therefore,  
ia ix   i.e. ,i ix a    ( 1,2, ,i n  ) and 

   0 1 2 ,, , , : , 1,2, ,n i iy f x x x x a i n    . 

It says that 

   :1 2 ,, , ,  , 1,2, ,n i ib f x x x x a i n      . 

Therefore, we can obtain that 

   :1 2 ,, , ,  , 1,2, ,n i ib f x x x x a i n      . 

The proof is completed. 
Remark 1  There are two key requirements for the 

above proposition, i.e. the continuous membership function 
for each fuzzy argument and the compact set for the map-
ping function to guarantee the existence of its maximum 
and minimum. Thus, the proposed method in this study is 
suited for the cases where the range of the structural random 
reliability is compact w.r.t. the fuzzy variables and the 
membership function for each fuzzy variable is continuous. 
And fortunately both of these requirements hold for realistic 
problems, which is implied in refs. [20,22] where the max-
imum and minimum of the random reliability at each al-
pha-level of the fuzzy variables have been calculated. 

Accordingly, the bounds of the structural reliability at a 
specified alpha-level can be obtained within the space 
spanned by the basic fuzzy variables at the same alpha-level 
and subsequently the membership function of the structural 
reliability could be estimated. As stated in section 1, both 
vertex method and optimization techniques are not well 
suited for determining the bounds of the random reliability 
which is always an implicit nonlinear non-monotonic func-
tion at each alpha-level. An efficient tool to achieve the 
trade-off between the accuracy requirement and the compu-
tational efforts especially for the implicit nonlinear multi-
variate function is the surrogate model which has been used 
in existing methods for the random reliability analysis, e.g. 
the multi-point approximation (MPA) based on the 
two-point adaptive nonlinear approximation (TANA2) 
[18,19] and the saddle-point approximation based on the 
line sampling method [20–22]. As stated in sect. 1, potential 
obstacles in existing methods are summarized as follows: 

(i) The aim of these approximations is to improve the ef-
ficiency of the random reliability analysis, e.g. capturing the 
most probable failure point (MPP) for MPA based on 
TANA2 and calculating the structural failure probability for 
linear performance functions obtained by the line sampling 
method for the nonlinear ones, which is not the research 
focus of the present study. 

(ii) In refs. [18,19], the fuzziness propagation is per-
formed based on the transformation of membership func-
tions using intervening variables and a non-complete sec-
ond-order polynomial omitting the cross-terms of probabil-
istic and fuzzy variables, which limits its accuracy and ap-
plication scope. 

(iii) In refs. [20–22], the fuzziness propagation is accom-
plished using the optimization techniques, which results in 
two potential issues, i.e. the unaffordable computational 
efforts and the resulting local optimum w.r.t. fuzzy varia-
bles. 

Accordingly, a method with high accuracy, efficiency 
and universal applicability is urgently demanded for the 
fuzziness propagation in the reliability analysis for struc-
tures with probabilistic and fuzzy variables. However, the 
application scope of the methods in refs. [18,19] is limited 
due to the adoption of the non-complete polynomial ap-
proximation for the performance function. Moreover, the 
computational efforts of the optimization techniques for the 
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fuzziness propagation adopted in refs. [20–22] are, in gen-
eral, expensive. 

3  Collocation reliability analysis method 
(CRAM) 

The contradiction between the accuracy requirement and 
computational efforts is the main obstacle in existing relia-
bility analysis methods for probabilistic and fuzzy mixed 
variables. By referring to the idea of surrogate model, a 
univariate function is adopted here to approximate the re-

duced reliability function r
jP    c c

r S f1 f f, , , , ,j mP x x xx    

induced by the original reliability function  r r S F,P P x x  

with one of the basic fuzzy variables varying and the others 
being set to their values at the maximum possibility with the 
denotation of the superscript ‘c’, and subsequently the 
minimal and maximal points w.r.t. xfj at a specific al-
pha-level are calculated. The minimal and maximal point 
vectors of the original reliability function can be obtained 
dimension by dimension and then its bounds can be esti-
mated at the corresponding alpha-level. It is noted that the 
aim of the approximate function is to capture the minimal 
and maximal point vectors rather than the extremum of the 
function of interest. 

Remark 2  The idea of approximation adopted here is 
inspired by the manner for drawing a space curved surface. 
For example, a 2-dimensional space curved surface can be 
generated by either its four sidelines or two different curves 
with one being guiding curve defining the manner of the 
other’s sliding. Accordingly, the minimal and maximal 
point vectors of the function defined by the space curved 
surface can be obtained dimension by dimension if the sur-
face is smooth, i.e. the corresponding function is the first 
order continuous. And, the random reliability function of 
the fuzzy variables satisfies this requirement in the structur-
al analysis for engineering problems, which is implied in ref. 
[20,22]. 

Chebyshev orthogonal polynomial expansion called ‘the 
most economic expansion’ is frequently used to approxi-
mate a univariate function. Therefore, the first class Che-
byshev orthogonal polynomial is used in the present study 
to approximate the reduced reliability function w.r.t. the 
selected fuzzy variable at each alpha-level. The coefficients 
of expansion equation can be obtained according to the 
Gauss-Chebyshev quadrature formula through collocating 
Gauss quadrature points within the bound of the selected 
fuzzy variable at the corresponding alpha-level. The ex-
treme points’ distribution of the approximate function w.r.t. 
the selected fuzzy argument can be determined at the al-
pha-level and thus the minimal and maximal point vectors 
of the reliability function are subsequently obtained by 
traversing for each fuzzy variable, at which the interval of 

the structural reliability are calculated at the same al-
pha-level. The membership function of the structural relia-
bility can be estimated efficiently by traversing alpha 
through specified discrete levels distributed within the in-
terval [0,1]. 

Let xF=(xf1,xf2,…,xfm) be a fuzzy vector, where the com-
ponent element xfj (j=1,2,…,m) is a fuzzy number with 

membership function  fj jx . For a given alpha-level, we 

can obtain the alpha-cut of Fx  as follows: 

  
 

F, F, F,

f1 f 2 f

I I I
f1, f 2, f ,

,

, , ,

, , , ,

m

m

x x x

x x x

  



  

   




x x x





 

(6)

 

where 

 
  I

f , f f f , f ,R , ,

              1,2, , .

j j j j j jx x x x x

j m

          
 

  (7) 

The mid-point vector c
F,x  for the alpha-cut of fuzzy 

vector Fx  is defined as: 

    c F, F,c I
F, f , 2jx  
 


 

x x
x , 1,2, ,j m  , (8) 

and the deviation amplitude vector F,x  is defined as: 

    F, F,I
F, f , 2jx  
 


   

x x
x , 1,2, ,j m  . (9) 

Therefore, the alpha-cut of the fuzzy vector denoted as 

F,x  could be decomposed into the combination of the 

mid-point vector c
F,x  and the deviation vector F,x  

expressed as follows: 

  

c c
F, F, F, F, F, F, F,

c I c
F, F, F, F,

c
F, F,

, ,

1,1

      ,

      

   

 

          
       

  

x x x x x x x

x x x x

x x e

 

(10)

 

where e  is a m-dimensional vector with the absolute value 
of each element not being greater than 1. The Hadamard 
operator ‘  ’ represents the corresponding components in 
two vectors multiplied. We assume that the kth element in 
vector e  is a variable denoted as u (  1,1u  ), and the 

other 1m   elements are all fixed at 0. Accordingly, we 
could define that 

 
   T

0, , , ,0 ,   1, 2, , ,

1, , , ,

k u k m

k n

 U   
 

 (11) 

and  
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    c
F, F, F,
k k
    x x x U . (12) 

The first class Chebyshev polynomials can be expressed 
as: 

     cos arccos , 1 1,pT u p u u      (13) 

where p  is a nonnegative integer. The set   pT u  is a 

series of orthogonal polynomials with a weight function 
21 1 u  within the interval  1,1 , and satisfies recur-

rence relation as follows: 

 

 
 
     

0

1

1 1

1,

,

2 .p p p

T u

T u u

T u uT u T u 





 

 1,2, .p    (14) 

Let  1,1C   be the family of all continuous functions 

within the interval  1,1  and  0 1Span , , ,p pT T TT   

be a subspace included in it. The reduced reliability function 
induced by the original reliability function  ,r S FP x x  can 

be denoted as: 

 

    
 

 
  

  

0 0 0 0
r S f1 f ff 1 f 1

0 0 0 0
r S f1 ff 1 f 1

r

, , , , , , ,

, , , , , , ,

.

j mj j

j
mj j

j

P x x x x x

P x x u x x

P u

 

 



x

x

 

   

(15)

 

For simplicity,   r
jP u  in eq. (15) is denoted as  rP u  

in the sequel, the approximation of which is denoted as 

 p pS u T  expressed in the following: 

    0

1

,
2

p

p j j
j

a
S u a T u



   (16) 

where the coefficients are obtained according to the 
Gauss-Chebyshev quadrature formula as: 

 
   

1
r

0 r21 1

2
d ,

1

L

l l
l

P u
a u A P u

u 

 
 

  (17) 

 

       
1

r
r21 1

2
d ,

1
                 1,2, , ,

L
j

j l l j l
l

P u T u
a u A P u T u

u
j p

 

 
 






  (18) 

where quadrature nodes lu , 1,2, ,l L   are zero roots of 

 LT u  and lA  are quadrature coefficients. The expres-

sions of lu  and lA  are listed, respectively, as: 

 
 2 1

cos ,
2l

L l
u

L

  
   

 
 1,2, ,l L  , (19) 

 
   

1

21
d ,

1

L
l

l L l

T u
A u

Lu u u T u


 

 
  1,2, ,l L  . (20) 

Substituting eqs. (20) into eqs. (17) and (18), the co-
efficients of the expansion equation is calculated as: 

  0 r
1

2 L

l
l

a P u
L 

  , (21) 

    r
1

2 L

j l j l
l

a P u T u
L 

  , 1,2, ,j p  . (22) 

Thus the following formula is obtained by substituting eqs. 
(21) and (22) into eq. (16) as: 

          r r
1 1 1

1 2 pL L

p l l j l j
l j l

S u P u P u T u T u
L L  

   , (23) 

which can be rewritten in the matrix form as: 

        
     
     

     

 
 

 

r 1 r 2 r

1 1 2 1 1 0

1 2 2 2 2 1

1 2

2
, , ,

1 2

1 2
.

1 2

1 2

L

p

p

pL L p L

p P u P u P u
L

T u T u T u T u

T u T u T u T u

T uT

S u

u T u T u



  
  
    
      



  (24)

 

The following denotations will be used in the sequel. 

       r 1 r 2 r, , , LP u P u P uP  , (25) 

 

     
     

     

1 1 2 1 1

1 2 2 2 2

1 2

1 2

1 2

1 2

1 2

p

p

L L p L

T u T u T u

T u T u T u

T u T u T u

 
 
   
 
 
 

T




   


, (26) 

         T

0 1 pu T u T u T uT  , (27) 

 C PT . (28) 

Finally, the approximate polynomial  pS u  can be rewrit-

ten as: 

    pS u u CT , (29) 

where C  is a row vector and  uT  is a column vector. 

It is necessary to obtain the extreme points of the resulted 
approximate function  pS u  in order to calculate the 

minimum and maximum of the reliability function 

 r S F,P x x  when the kth element of F,x  varies within the 

bounds determined by the given alpha-level, which can be 
accomplished through seeking the zero roots of derived 
function  pS u  and combining the bounds of F,x . The 
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minimum and maximum point vectors for the kth fuzzy var-
iable are regarded as max

f ,kx   and min
f ,kx  , respectively. Then 

traversing k from 1 to m, we can obtain the maximum and 
minimum point vectors of the structural reliability function 
w.r.t. fuzzy variables Fx  at the alpha-level. 

The maximum and minimum point vectors can be cap-
tured as follows: 

  Tmax max max max
F, f1, f 2, f ,, , , mx x x   x  , (30) 

  Tmin min min min
F, f1, f 2, f ,, , , mx x x   x  . (31) 

Then the minimum and maximum of the structural reliabil-
ity function  r S F,P x x  w.r.t. fuzzy variables Fx  at the 

alpha-level can be derived from the point vectors in eqs. (30) 
and (31), respectively, i.e. 

  max max
r, r S F,,P P  x x ,  (32) 

  min min
r, r S F,,P P  x x . (33) 

The maximum and minimum of the structural reliability 
at the alpha-level have been calculated according to eqs. (32) 
and (33), respectively, and then the membership function of 
the structural reliability can be determined by traversing 
alpha in a specified set consisting of discrete values distrib-
uted within the interval [1,1]. 

The error from the calculation for coefficients of the ex-
pansion equation can be estimated as: 

 
 

   
 

 

 
     

!

!

2 21

2 21

2

2

d
2 1
2

, 1,1 .
2 2

L
p L

L

L
pL

S T u
R L u

a L u

S
L



 







  


 

(34)

 

Thus, the value  R L  can be reduced to 0 if L is not less 

than (p+1)/2, where L is the number of collocation points. It 
is suggested that 3–11 are chosen for p in engineering ap-
plication and thus the value of L can be determined to re-
duce the error R(L) to 0 subsequently. Accordingly, the total 
error of the present method can be reduced to the truncation 
error when Chebyshev orthogonal polynomials are used to 
approximate the reduced reliability function. The aim of 
polynomial approximation in this study is different from 
that of the traditional one within the space spanned by the 
interval variables obtained at the alpha-level of fuzzy varia-
bles: the latter where non-complete polynomials are always 
used to approximate the accurate function of interest for 
capturing its extremum, limits the accuracy, while the for-
mer instead is to calculate the minimal and maximal point 
vectors of the reliability function dimension by dimension 
with better precision due to higher order polynomial’s 
adoption. Figure 1 shows the flowchart of CRAM for a 
probabilistic and fuzzy mixed structure. 

 

Figure 1  Flowchart of CRAM. 
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Remark 3  The focus of the present study is the fuzzi-
ness propagation rather than the calculation of the random 
reliability and thus FOSM is employed for simplicity. It is 
noted that more efficient methods for the random reliability 
analysis, e.g. the method based on Markov chain and the 
saddle-point approximation, can also be adopted to replace 
FOSM and then the reliability analysis methods for mixed 
uncertainties can be established subsequently. 

4  Examples 

As emphasized in the preceding text, the aim of the present 
study is to accomplish the fuzziness propagation in the 
structural reliability analysis and thus the validation of the 
accuracy of CRAM can be performed based on the same 
procedure for the calculation of the random reliability, e.g. 
FOSM adopted in the paper with considerations of both 
highlighting the idea of CRAM and simplifying the com-
plexity in the random reliability calculation. The improve-
ment in methods for the random reliability analysis and 
combining CRAM suggests a novel category methods for 
the reliability analysis of structures with probabilistic and 
fuzzy mixed variables.  

Following FOSM for the classical random reliability, the 
fuzziness is propagated by CRAM and Monte Carlo (MC) 
simulation at each alpha-level in four numerical examples, 
where the validation of the accuracy of CRAM is performed 
by the comparison between results obtained by MC and 
CRAM. And an application of CARM is also introduced. 
The implications of alphabetical combinations in legends in 
the sequel are explained simultaneously as follows. 

LMF-CRAM: the estimated left membership function 
by CRAM, 

RMF-CRAM: the estimated right membership func-
tion by CRAM, 

LMF-MC: the left membership function obtained by 
MC, 

RMF-MC: the right membership function obtained by 
MC. 

Example 1  Consider a linear performance function 
w.r.t. probabilistic and fuzzy mixed variables expressed as: 

  S F s1 s2 s3 f, 5 2 4 8 ,g x x x x   x x  

where s1 s2,x x  and s3x  are independent normal random 

variables satisfying xs1~N(80,10), xs2~N(170,15) and xs3~ 
N(80,5), respectively. The variable fx  is fuzzy with its 

membership function  fx  expressed as: 

  
 
   

f f

f f f

21.15 8.85, 21.15 30,

38.85 8.85 , 30 38.85,

0,              otherwise.

x x

x x x

   
    



 

It is noted that the result obtained by MC with the proba-
bility convergence feature is, in general, a subset of the ac-
curate one and the former gradually converges to the latter 
with the increase in the number of samples which should 
thus be determined prior to utilizing MC as the reference 
method for the validation of CRAM. The lower and upper 
bounds of the random reliability w.r.t. the fuzzy variable at 
discrete alpha-levels including 0, 0.2, 0.4, 0.6, 0.8, and 1.0 
simulated by MC with different numbers of samples are 
shown in Table 1. 

It can be seen that the ranges are almost unchanged if the 
number of samples is up to 105 at each alpha-level. Accord-
ingly, the bounds calculated by MC with 105 samples are 
chosen as the reference bounds in this example. The mem-
bership function of the reliability obtained by CRAM as 
well as MC is shown in Figure 2. One hundred thousand 
points were sampled for the fuzzy variable fx  at each al-

pha-level in MC. And conclusions as follows can be ob-
tained. 

(i) The membership function obtained by CRAM is ex-
actly identical with that by MC, which suggests that CRAM 
can capture the minimum and maximum of the random re-
liability w.r.t. fuzzy variables at each alpha-level accurately. 

(ii) The computational time of the CRAM is 0.0640 sec-
onds while MC 128.3410 seconds on the same computing 
platform, which demonstrates the efficiency of CRAM by 
the significant efficiency gap (with the order of 103) be-
tween the two methods. The trade-off between the accuracy 
requirement and computational efforts is commendably 
achieved by CRAM. 

Example 2  The performance function considered for 
an engineering structure is given as: 

Table 1  The lower and upper bounds calculated by MC 

Alpha-level 
104 samples  105 samples 106 samples 

LB UB  LB UB LB UB 

0.0 0.880259 0.999829  0.880155 0.999829 0.880154 0.999829 
0.2 0.921666 0.999581  0.921664 0.999583 0.921663 0.999583 
0.4 0.951235 0.999033  0.951234 0.999034 0.951233 0.999034 
0.6 0.971122 0.997880  0.971121 0.997881 0.971120 0.997881 
0.8 0.983748 0.995594  0.983746 0.995594 0.983746 0.995594 
1.0 0.991313 0.991313  0.991313 0.991313 0.991313 0.991313 

  a) The abbreviations ‘LB’ and ‘UB’ represent the lower and the upper bounds, respectively, which will be used in the sequel. 
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Figure 2  Membership function of the reliability. 

  2 2 2 2
1 1 2 2 3 3 4 45 2 8 8 10 200,g x x x x x x x x        x  

where 1x  and 2x  are assumed to be normally distributed 

with a mean of 10.0 and a standard deviation of 2.0. The 
variables 3x  and 4x  are assumed to be fuzzy with their 

membership functions given as: 

 

 
 
   

 
 
   

3

4

3 3

3 3 3

4 4

4 4 4

5 5, 5 10,

15 5 , 10 15,

0,                       otherwise,

5 5, 5 10,

15 5 , 10 15,

0,                        otherwise.

x

x

x x

x x x

x x

x x x





   
    


   
    



 

The lower and upper bounds of the random reliability 
w.r.t. fuzzy variables simulated by MC with different num-
bers of samples at discrete alpha-levels including 0, 0.2, 0.4, 
0.6, 0.8, and 1.0 are listed in Table 2, from which the num-
ber of samples can be determined as 105 to guarantee the 
accuracy of the reference membership function. 

Figure 3 shows the membership functions of the reliabil-
ity estimated using CRAM as well as that obtained using 
MC. It is shown that CRAM could accurately capture the 
minimum and maximum of the random reliability w.r.t. 
fuzzy variables at each alpha-level and thus estimates the  

membership function of the reliability accurately. However, 
the consuming time of CRAM and MC for this problem is 
widely different, i.e. 0.0780 s for CRAM and 114.9250 s for 
MC, which demonstrates the efficiency of CRAM to some 
extent by the significant difference (with the order of 103) in 
computational efforts. Accordingly, the accuracy require-
ment could be satisfied by CRAM with limited computa-
tional efforts, which suggests a potential way for the struc-
tural reanalysis. 

Example 3  A three-span beam is shown in Figure 4. 
The performance function is established under the con-
straint of the critical deflection of the beam not being great-
er than 360L , i.e. 

   4
S F, 360 0.0069 ,g L wL EI x x  

where w and L are independent normal random variables 
satisfying w~N(5,0.001) and L~N(38,4), respectively, while 
E and I are two fuzzy variables with membership functions 

 1 E  and  2 I  as follows. 

 
 
   

1

7 7 7 7

7 7 7 7

1.95 10 0.05 10 , 1.95 10 2 10 ,

2.05 10 0.05 10 , 2 10 2.05 10 ,

0,                                                 otherwise,

E

E E

E E

 

       
        



 

Table 2  The lower and upper bounds calculated by MC 

Alpha-level 
104 samples  105 samples 106 samples 

LB UB  LB UB LB UB 

0.0 0.995211 1.000000  0.995203 1.000000 0.995200 1.000000 

0.2 0.995927 1.000000  0.995927 1.000000 0.995926 1.000000 

0.4 0.997045 1.000000  0.997040 1.000000 0.997039 1.000000 

0.6 0.998223 0.999975  0.998221 0.999978 0.998221 0.999979 

0.8 0.999130 0.999900  0.999130 0.999901 0.999129 0.999901 

1.0 0.999662 0.999662  0.999662 0.999662 0.999662 0.999662 
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Figure 3  Membership function of the reliability. 

 

Figure 4  Sketch of a three-span beam. 
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2

4 4 4 4

4 4 4 4

7.8 10 0.2 10 , 7.8 10 8.0 10 ,

8.2 10 0.2 10 , 8.0 10 8.2 10 ,

0,                                               otherwise.

I

I I

I I


   

   



       
        



 

The lower and upper bounds of the random reliability of 
the three-span beam w.r.t. fuzzy variables E and I simulated 
by MC with different numbers of samples at discrete al-
pha-levels including 0, 0.2, 0.4, 0.6, 0.8, and 1.0 are rec-
orded in Table 3 and thus the number of samples for MC 
can be determined as 105 for the accuracy validation of 
CRAM. 

The resulting membership function of the reliability of 
the three-span beam by CRAM as well as that by MC is 
shown in Figure 5. As emphasized at the beginning of this 
section, FOSM is adopted for the estimation of the random 
reliability to highlight the procedure of CRAM. However, it 
is noted that the structural reliability for this problem cannot 
be calculated by the method in refs. [18,19] due to the ob-
stacle in the cross-term of the probabilistic and fuzzy varia-
bles in the performance function, which is common in en-
gineering practices. The good agreement between the 
membership functions estimated by CRAM and MC in Fig-
ure 5 demonstrates the accuracy of CRAM. It can be recog-
nized that the application scope, which is limited by the 
existence of cross-terms of probabilistic and fuzzy variables 
or the adoption of optimization techniques for capturing the 
minimum and maximum of the random reliability at each 
alpha-level of fuzzy variables, is enlarged by CRAM. Be-
sides, the wide difference (with the order of 104) in the 
computation time for the two methods, i.e. 0.0160 s for 

CRAM and 152.7710 s for MC, demonstrates the efficiency 
of CRAM to some extent. 

Example 4  The top chord and compression bars of the 
roof truss shown in Figure 6 are made of steel reinforced 
concrete while bottom chord and pull bars are made of steel. 
A uniform load q acts on the roof truss, which can be trans-
formed as the node load P=ql/4. The performance function 
under the constraint that the critical deflection of the roof 
truss at the node C in Fig.6 cannot be greater than 3 centi-
meters (cm) is established as: 

  
2

S F
c c s s

3.81 1.13
, 0.03

2
ql

g
A E A E

 
   

 
x x , 

where  

cA  cross section area of the steel reinforced concrete 

bar, 

sA  cross section area of the steel bar, 

cE  elastic modulus of the steel reinforced concrete, 

sE  elastic modulus of the steel, 

and cA , sA , q  and l  are independent random variables 

listed in Table 4 while cE  and sE  are fuzzy variables 

with membership functions  1 cE  and  2 sE  defined 

as follows: 

 
 
   

1 c

10 9 10 10
c c

10 9 10 10
c c

 

1.88 10 1.2 10 , 1.88 10 2 10 ,

2.12 10 1.2 10 , 2 10 2.12 10 ,

0,                                                 otherwise,

E

E E

E E

 

       
        


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Table 3  The lower and upper bounds calculated by MC 

Alpha-level 
104 samples 105 samples 106 samples 

LB UB LB UB LB UB 

0.0 0.997000 0.999971 0.996991 0.999972 0.996991 0.999972 
0.2 0.997964 0.999951 0.997964 0.999952 0.997964 0.999952 
0.4 0.998652 0.999918 0.998652 0.999918 0.998651 0.999919 
0.6 0.999119 0.999862 0.999117 0.999864 0.999116 0.999864 
0.8 0.999433 0.999777 0.999432 0.999777 0.999432 0.999777 
1.0 0.999605 0.999605 0.999605 0.999605 0.999605 0.999605 

 
 

 

Figure 5  Membership function of the reliability of the three-span beam. 
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 

       
        



 

The lower and upper bounds of the random reliability of 
the roof truss w.r.t. fuzzy variables calculated by MC at 
discrete alpha-levels including 0, 0.2, 0.4, 0.6, 0.8, and 1.0 
are listed in Table 5 and thus the number of samples for MC 
can be chosen as 105 to validate the accuracy of CRAM. 

The resulting membership function of the reliability for 
the roof truss using CRAM as well as that by MC is shown 
in Figure 7, where the accuracy of CRAM is demonstrated 
by the good agreement between membership functions ob-
tained by the two methods. It is suggested that CRAM is 
well suited for the reliability analysis of structures with the 
performance function containing cross-terms of probabilis-
tic and fuzzy variables. Moreover, the consuming time for 
the two methods is significantly different, i.e. 0.1090 s for 
CRAM and 160.8360 s for MC on the same computing 
platform, and then the efficiency of CRAM can be shown 
by the great gap (with the order of 103). 

Example 5  Figure 8 shows a finite element model for 
the wing box of an airfoil of a regional aircraft. The mem-
bership functions of the reliability of the skin and web are 
discussed. According to the procedure of CRAM, the min-

imum and maximum of the structural random reliability can 
be calculated in parallel for both the fuzzy variables and 
discrete alpha-levels and thus the total computational efforts 
of CRAM is not proportional to the dimension of the fuzzy 
variable vector. Therefore, the fuzziness in elastic modulus 
of the constituent materials is considered for the validation 
for the applicability of CRAM. Membership functions of 
the elastic modulus are expressed as follows: 

  
1 1

1 1 1 1

70, 70 71,

72 , 71 72,

0,            otherwise,

E E

E E E
  

   



           (GPa) 

  
 
  

2

2 2

2

2 2 2 2

71 , 71 72,

74 2 , 72 74,

0,                        otherwise.

E E

E E E

   

   



    (GPa) 

Theoretically speaking, the reliability can be recognized 
as the result of the mathematical operations between the 
structural responses and the corresponding limit states and 
thus the reliability analysis of structures in engineering 
practices is always based on the finite element analysis 
(FEA), which usually involves the cross-terms of the struc-
tural and external parameters. Furthermore, optimization 
techniques for the minimum and maximum of the structural 
reliability w.r.t. fuzzy variables at each alpha-level are  
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Table 4  Probabilistic parameters of the roof truss 

Variable (unit) Type Mean Standard deviation 

uniform load q (N/m) normal 2×104 1.4×103 
length of bar l (m) normal 12 0.12 

cross section area As (m2) normal 9.82×10-4 5.892×10-5 
cross section area Ac (m2) normal 4×10-2 4.8×10-3 

 
 

 

Figure 6  Sketch of a roof truss. 

Table 5  The lower and upper bounds calculated by MC 

Alpha-level 
104 samples  105 samples 106 samples 

LB UB  LB UB LB UB 

0.0 0.988184 0.999963  0.988182 0.999962 0.988182 0.999963 
0.2 0.992592 0.999925  0.992591 0.999926 0.992591 0.999926 
0.4 0.995409 0.999855  0.995409 0.999855 0.995408 0.999856 
0.6 0.997236 0.999725  0.997236 0.999726 0.997236 0.999726 
0.8 0.998391 0.999488  0.998390 0.999490 0.998389 0.999490 
1.0 0.999082 0.999082  0.999082 0.999082 0.999082 0.999082 

 
 

 

Figure 7  Membership function of the reliability of the roof truss. 
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Figure 8  Finite element model of the wing box of an airfoil. 

 

Figure 9  Membership function of the reliability of the wing box. 

always haunted considering the expensive computational 
cost of FEA for complex structures. Following the valida-
tion of the accuracy and efficiency of CRAM, the member-
ship function of the reliability of the wing box is shown in 
Figure 9, where ‘LMF-Fitted’ and ‘RMF-Fitted’ represent 
‘the fitted left membership function’ and ‘the fitted right 
membership function’. It is noted that the finite element 
analysis for structures involved in CRAM is in the form of a 
black box and thus the conventional FE softwares, e.g. 
MSC.Patran/Nastran and Ansys, could be utilized to per-
form the reliability analysis for complex structures with 
probabilistic and fuzzy variables by CRAM. 

5  Conclusions 

A novel reliability analysis method (CRAM) for structures 
with probabilistic and fuzzy mixed variables has been pro-
posed based on FOSM for the classical random reliability 
and Chebyshev orthogonal polynomial approximation for 
the fuzziness propagation. The focus of CRAM is not the 
calculation of the structural random reliability but the fuzz-
iness propagation in random reliability which is performed 
by capturing the minimal and maximal point vectors instead 
of its extremum w.r.t. fuzzy variables at each alpha-level. 
After the validation of CRAM, the conclusions can be ob-

tained. 
(i) Compared with results obtained by MC, the accuracy 

and efficiency requirements in engineering practices can be 
satisfied by CRAM. 

(ii) CRAM can effectively perform the reliability analy-
sis of structures with cross-terms of probabilistic and fuzzy 
variables in their performance function. Besides, optimiza-
tion techniques with unaffordable computational efforts for 
the analysis of complex structures are avoided. Accordingly, 
CRAM is well suited for engineering applications. 

(iii) The efficiency of CRAM can be significantly im-
proved by the parallel computing of the random reliability 
for both the fuzzy variable vector and the discrete al-
pha-levels in need. 

(iv) FOSM for the random reliability analysis adopted in 
the present study can be replaced by its counterparts in the 
field of the random reliability analysis and thus a category 
method for the reliability analysis of structures with proba-
bilistic and fuzzy variables is suggested by CRAM. 

(v) A potential structural reanalysis method is suggested 
by CRAM considering variations in the structural controlla-
ble parameters. 
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