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In this paper, we analyze the stress and electric field intensity factors affected by residual surface stress for conducting cracks 
in piezoelectric nanomaterials. The problem is reduced to a system of non-linear singular integral equations, whose solution is 
determined by iteration technique. Numerical results indicate that the residual surface stress can significantly alter the crack tip 
fields at nanometer length scales. Due to the residual surface stress, 281he electric field can produce stress around crack tip. 
This suggests a strong electromechanical coupling crack tip field for nanoscale piezoelectric materials. Such a finding is con-
siderably different from the classical fracture mechanics results. A transit electric field to stress load ratio is identified, for 
which influences of residual surface stresses vanish. The research is useful for the applications of nanoscale piezoelectric de-
vices. 
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1  Introduction 

The understanding of the fracture mechanisms of devices 
with nanosized defects such as cavities and cracks has 
aroused much attention in research works. Some experi-
ments and simulations have been done to focus on the issue. 
For example Huang et al. [1] explore the mechanical be-
havior of nanosacle cracks by atomistic analysis, and Be-
lytschko et al. [2] deal with nanotube fracture by applying 
the atomistic simulations. Several theoretical methods have 
been developed to demonstrate the problem. Ou et al. [3] 
investigated the problem of a nanosized spheroidal cavity 
by considering the residual surface stress. Duan et al. [4] 
worked out elastostatic solutions to the problem of a nano 
inhomogeneity. 

Along with the nanotechnology development, piezoelec-
tric nanostructured materials now can be successfully fabri-
cated with great potential applications. Many nanodevices 
are based on piezoelectric nanostructured materials, such as 
nanosensors, nanoresonators and nanogenerators [5–7]. For 
promising applications in nanoscale devices, an important 
research topic is to analyze the deformation and failure be-
havior of piezoelectric nanomaterials. However, due to the 
large surface-to-volume ratio, the electromechanical behav-
ior of the piezoelectric nanostructured materials often ex-
hibits distinct size dependence [8,9]. Many researchers have 
studied the surface effect on the mechanical properties of 
nanostructures by using the continuum mechanics model of 
surface elasticity developed by Gurtin and Murdoch [10] 
and Gurtin et al. [11]. For example, the natural frequency of 
nanobeam affected by surface elasticity has been investi-
gated by Gurtin et al. [12]. Buckling and vibration study of 
piezoelectric nanowires with the consideration of residual 
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surface stress was performed by Wang et al. [13]. Thus, 
how residual surface stresses affect the cracking of na-
noscale piezoelectric material is a valuable task for design 
and manufacture of piezoelectric devices at nanosacle. 

Although many researches have been done in the field of 
fracture problems for piezoelectric macrostructure [14,15], 
studies about the surface effect on fracture behaviors of 
piezoelectric nanomaterials with conducting cracks is still 
very limited. As a parameter to measure fracture behaviors 
of the materials, the crack tip field intensity factor is essen-
tial for evaluating the reliability and estimating the residual 
life of the structures. Thus this paper analyzes the influence 
of residual surface stress on the energy release rate, stress 
and electric field intensity factors for a conducing crack in 
an infinite piezoelectric nanomaterial. We proposed the ex-
pressions of energy release rate and field intensity factors 
with the consideration of residual surface stresses on the 
whole crack surface. A continuum modeling of elastic 
nanostructures is used. The problem is nonlinear and is 
solved by the numerical iteration method. The result indi-
cates residual surface stresses reduce the energy release rate 
and crack tip field intensity factors if residual surface 
stresses are positive. However, the electric field intensity 
factor is found to have no correlation with the residual sur-
face effect, which is also consistent with the classic fracture 
mechanics theory.  

2  Formulation of the problem 

Considered is a problem of an infinite piezoelectric nano-
materails containing a crack lying along the poling axis (x 
axis) shown in Figure 1(a), where (x, y) is a coordinate sys-
tem. The length of crack is 2a . It is a symmetric problem 
about the y=0 plane. We study the plane problem so that all 
field variables are assumed to be functions of x and y only. 
The medium is subjected to a uniform electric field E∞ in 
the x direction and a normal stress ∞ perpendicular to the  

 

Figure 1  (a) A crack of length 2a in an infinite piezoelectric nanomateri-
als. (b) The residual surface stress on the crack surface. 

direction of E∞ at infinity. The crack is free of mechanical 
forces and electrically conducting. Mathematically, the bou- 
ndary conditions of the crack surface can be read as: 

 ( ,0) 0,  ( ,0) 0,  .   yy xx E x x a  (1) 

According to Cammarata [16] and Gibbs [17], the sur-
face tensor  s  can be defined as / ,        s s  

where  is the surface energy density,  s  is the surface 

strain tensor and   is the Kronecker. In this problem, the 

one-dimensional form is used to describe the crack surface 
stress, that is, 0 ,   s sE  where Es is the surface 

Young’s modulus and 0 is the residual surface stress under 
unstrained case. The contribution of the component of Es 
can be neglected compared with that of 0 [3,18] when the 
deformed atomic spacing changing infinitesimally. Then the 
surface stresses on the crack surface are governed by 0 as 
shown in Figure 1(b), where the direction of 0 is tangent to 
the crack surface. According to the equilibrium conditions 
on the surface, the residual surface stress induces a trans-
verse loading at any point o on the crack surface, which can 
be expressed as 0, where no is the unit normal vector at 
point o and  is the surface curvature tensor. The fact that 0 
can produce a load perpendicular to the crack face is 
demonstrated in Figure 1(b). Obviously, the load generated 
by 0 along the y axis is 0ny, where ny is the orientation 
cosine of the vector normal to the crack surface. 

3  Solution to the problem 

Numerous references are related to solve the crack problem 
in piezoelectric medium [19]. Using Fourier integrals and 
characteristic equation, the stress and the electric field func-
tion can be derived. By introducing the auxiliary functions 
that satisfy the boundary conditions, the crack tip fields can 
be obtained by solving a system of singular integral equa-
tions. Analog to solutions for piezoelectric crack problem 
[20], we introduce auxiliary functions g(x) and gV(x) along 
the crack plane, where    2 ,0 / ,   g x x x  ( ) Vg x  

 2 ,0 / , V x x   is electric potential and V is the crack 

face displacement in the y-direction. From the geometry 
analysis, the orientation cosine for the vector normal to the 
crack surface ny and the radius of crack surface curvature  
can be expressed by gV as:  

 21/ 1 / 4 y Vn g  (2) 

and 

 2 3/21 / 2(1 / 4) / .      V Vg g  (3) 

According to Gurtin et al. [10–12], the presence of re-
sidual surface stress only results in non-classical boundary 
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conditions. It does not change any other governing equa-
tions. Thus by incorporating the residual surface stress 0 
and with the aid of singular integral equation method [21], 
the electric field and stress in terms of g(r) and gV(r) on the 
y=0 plane can be expressed as: 
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where   11 12

21 22

  
     

 only related to material’s prop-

erties is a (2×2) symmetric matrix [19]. Eq. (4) gives the 
stress and electric displacement inside and outside the crack. 
For inside the crack, |x|<a, eq. (4), together with the bound-
ary conditions (1), gives 
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Eq. (5) are Cauchy-type singular integral equations. Using 
the method of integral equation [22] and let /x x a  and 

/r r a , the solutions to gV(r) and g(r)
 

related to the 

Chebyshev polynomials of the first kind  mT r  and un-

known constants  T
, Vm mC C  can be expressed as: 
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where  / cos( arcos( / ))mT r a m r a  and  T
, Vm mC C  

need to be determined. Eq. (5) are solved by truncating and 
substituting the first M terms of eq. (6) into it and using the 
well-known integral  
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for m1 and 1,x  where  1 sin( arccos ) / mU x m x  

21 x  is the Chebyshev polynomial of the second kind, 
we can obtain 
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where   1 11 12

21 22

   
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 is the inverse matrix of 

 .  To solve eq. (8), for 1 1kx   we let kx  
cos[(2 1)π / (2 )],k M   1,k M . The substitutions of xk 

into eq. (8) yield [21] 
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where  VC , C  are, respectively, a column whose ele-

ments are VmC  and mC ;  T  is a column whose ele-
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;  S  is a M M matrix 

whose elements are  

   2
1( ) sin( arccos ) / 1 .  n m m mmn
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After solving eq. (9), we can obtain the solution to VmC  
and mC . Then the stress and electric field can be derived 

by     T
, Vg r g r  in terms of  T

, Vm mC C . Based on the 

definitions of the field intensity factors, we have    
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In fracture mechanics application, energy release rate is a 
vital aspect to evaluate crack growth behavior. With the 
expressions of the field intensity factors, we can obtain the 
energy release rate as [19]: 
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Since the influence of residual surface stress has been in-
cluded in field intensity factors at crack tip, G will automat-
ically reflect the effect of residual surface stress. 

From above analyzes we can find that it is impossible to 
get the close-form solution to eq. (9) on account of the in-
clusion of the residual surface stress. However, the closed 
form solutions can be obtained by taking M=1. In such a 
case, we obtain 
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Thus, 
3/22 2 2

1 12 1 / 4 /V Va r C r C        and 1/yn 
 

2 2 2
11 / (4 4 )VC r r  . Finally,   1S  ,   10 2 / Va C    
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and ny=1. Substituting the results into eq. (9) gives 
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Accordingly, we can obtain the close-form solutions to 
field intensity factors 
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Based on the above analyses, we can have the normal-
ized results. If the residual surface stress is absent (i.e., in  
eq. (9) the term 0 ( ) / ( ) yn x x  is neglected), the solutions 

to KIo and KEo are given by π oK a

 
and EoK  

π ,E a  which are the field intensity factors without con-

sidering the residual surface stress. The corresponding en-
ergy release rate can be expressed by oG { , }o EoK K  

 T
, / 4   o EoK K . These are well-known classical frac-

ture mechanics solutions. For any piezoelectric material 
/ E  can be expressed by 11,  and then we have 
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which will approach 1 when  ca l , where 11 0cl    is 

the characteristic length parameter of materials. Under the 
conditions, we can also have the result KE=KEo. Thus, KE 
does not depend on the residual surface stress on the crack 
faces. 

However, a reasonable accuracy is desired to reach for 
M>1 in practical applications. Here we exploit an iterative 
method to calculate the solutions. First, because there are no 
initial electro-mechanical loads the crack is flat and closed. 
Then the crack opening is not influenced by residual surface 
stress. Second, when the crack is opened due to the me-
chanical and electrical load, a load 0ny would generated 
by surface stress, which can be determined by crack surface 
displacement. After solving eq. (9), we can obtain the solu-
tions to CV and a new crack surface displacement related to 
the residual surface. Next repeat the second procedure till 
solutions converge. In doing so, the solutions to CV and C 
in eq. (9) for M>1 will be worked out. The exact solutions 
will be approximated as M increases. 

4  Results and discussion 

For numerical illustrations, we chose PZT-4 piezoelectric 
media to analyze the residual surface effect on the field in-
tensity factor. Their bulk material properties are given by 
[23]: c11=13.9 (1010 N/m), c13=7.43 (1010 N/m), c33=11.3 
(1010 N/m), e31=6.980 (C/m2), e33=13.84 (C/m2), e15=13.44 
(C/m2), 11=60.0 (1010 C/Vm), 33=54.7 (1010 C/Vm). After 
solving the problem as in sect. 3, we can obtain the matrices 

  102.838 0.05338
= 10

0.05338 0.005375

 
  

 
 and   1

=
      

100.4332 4.3021
10 .

4.3021 228.7543
 

  
 In this work, the residual 

surface stress 0=110 N/m is taken for the simulation [24]. 
Then use the above date, and the characteristic material pa-
rameter can be calculated as 11 0 4.7652 nm.  cl   

By the iteration algorithm as mentioned in sect. 3, we 
know that KE is not depending on the residual surface stress. 
Therefore, only the stress intensity factor influenced by re-
sidual surface stresses needs to be discussed. To clearly 
understand such an effect, we focus our discussions on three 
cases: pure stress load ∞, pure electric field E∞ and com-
bined application of electric field and stress.  

For the case of pure stress load, the normalized stress in-
tensity factor KI/KIo as a function of a/lc is plotted in Figure 

2. Here KIo is π oK a  according to sect. 3. Clearly 

we find that in this case KI/KIo is only related to a/lc rather 
than the remote applied stress load and that all the values of 
KI/KIo approach 1 as the half length of crack a increases. 
That is, the influence of the residual surface stress on the 
stress intensity factor becomes weak or even vanishes as a 
certain crack length is reached. Thus, the effect of residual 
surface stresses is dramatic and should be taken into con-
sideration when the crack length is reduced to nanoscale. 

When the piezoelectric medium is subjected to a pure 
electric field E∞, Figure 3 displays the stress intensity factor 
influenced by residual surface stresses, where KI has been 

normalized by 12 11/ .   cK E a  The curve for M7 

is supposed to be good agreement with the exact solution. 
From Figure 3, it is found that the stress intensity factor will 
run to zero when the crack length increases. These results 
imply that in consideration of residual surface stress, the 
application of an electrical field load will generate the stress 
intensity factor. This is different from the knowledge from 
the classical fracture mechanics results of linear piezoelec-
tric elasticity that the in the crack plane electric field alone 
cannot produce the mechanical stress [14,15,19]. 

The variation of KI/KIo with a/lc for combined electric 
field E∞ and stress load ∞ is shown in Figure 4, where KIo 

is prescribed as .  oK a  According to eq. (16), we 

let  12 11/ .    B E  Then applying the iteration  
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Figure 2  (Color online) Normalized crack tip stress intensity factor ver-
sus normalized half crack length (E∞=0). 

 
Figure 3  (Color online) Normalized crack tip stress intensity factor ver-
sus of normalized half crack length (∞=0). 

technique, for different values of B∞, Figure 4 gives the 
relation of the normalized crack length and normalized 
stress intensity factor. According to the former researchers 
who have given the reasonable range of B∞ ratio [25], we 
set B∞=2, 0 and 2. From Figure 4, KI/KIo increases with 
increasing a/lc when B∞=0 and 2  while it decreases with 
increasing a/lc for B∞=2. The result, combining eq. (16), 
shows that a transit electric field to stress load ratio exists 
for which the function of residual surface stresses on KI 
vanishes: 

 1.B    (17) 

Specifically, for B∞<1, the value of stress intensity factor 
increases due to the residual surface stress. However, for 
B∞>1 the residual surface stresses decrease the value of KI. 
The information is useful for the determination of an appro-
priate electric field to mechanical load ratio for piezoelectric 
devices. 

Finally, the energy release rate influenced by residual 
surface stress is discussed for three cases as shown in Fig-
ures 5–7. Correspondingly Go for these three figures are 
calculated as 2

11, o oG K  2
22 o EoG K  and oG  

2
11, oK  respectively. It can be seen that curves for M8 

are convergent and can be considered as the exact solutions 
of energy release rate. It can be seen that for all the cases, 
the existence of the residual surface stress will decrease the 
energy release rate. Figure 7 shows that by considering re-
sidual surface stresses, the electric field will always increase 
the crack tip energy release rate whatever direction of the 
electric field. Influences of residual surface stresses on the 
energy release rate become more prominent with a decrease 
of crack length. 

5  Conclusion 

Understanding how the residual surface stress influences the  

 

Figure 4  (Color online) Normalized crack tip stress intensity factor ver-
sus of normalized half crack length (B∞=2,0,2). 

 

Figure 5  (Color online) Normalized crack tip energy release rate versus 
of normalized half crack length (E∞=0). 
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Figure 6  (Color online) Normalized crack tip energy release rate versus 
of normalized half crack length (∞=0). 

 
Figure 7  (Color online) Normalized crack tip energy release rate versus 
normalized half crack length (B∞=2,0,2). 

fracture behavior of piezoelectric nanomaterials is essential 
for tailoring their mechanical properties. This paper studies 
the residual surface stress on the fracture mechanics param-
eters of piezoelectric nanomaterials with a conducting crack. 
The residual surface stress is included in the governing 
equations by the surface continuum theory. The solutions to 
the stress intensity factor and the electric field intensity fac-
tor are determined though the iteration method. The solu-
tions show that there is no effect on the electric field inten-
sity factor KE when the residual surface stress exists. How-
ever, the stress intensity factor is greatly affected by the 
residual surface stress. Moreover, by including residual 
surface stresses, the electric field can cause crack tip stress 
intensity factor, which is different from results of the linear 
piezoelectric crack problem. There exists a transit electric 
field to stress load ratio for which the influence of residual 
surface stresses vanish. Influences of residual surface stress 
on energy release rate are also studied and it is found to be 
remarkable at nanoscale. These results are envisaged to be 
helpful for the design piezoelectric nano-devices in NEMS. 
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