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The evaluation of reliability for structural system is important in engineering practices. In this paper, by combining the design 
point method, JC method, interval analysis theory, and increment load method, we propose a new interval design point method 
for the reliability of structural systems in which the distribution parameters of random variables are described as interval varia-
bles. The proposed method may provide exact probabilistic interval reliability of structures whose random variables can have 
either a normal or abnormal distribution form. At last, we show the feasibility of the proposed approach through a typical ex-
ample. 
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1  Introduction 

With the development of technology, the structural systems 
in engineering practices are increasingly complex, and the 
influence of uncertainties can be more and stronger. There-
fore, the analyzing and decision-making must consider the 
existing uncertainties. Reliability is highly interrelated with 
uncertainties. Over the past decades, probability theory has 
enabled reliability estimate of all kinds of industry systems. 
Many practical numerical techniques, such as the Monte 
Carlo simulation [1], response surface approximation [2], 
central point method [3] design point method [4], and JC 
method [5] have been developed to achieve this goal. 
Among these methods, the design point method is one of 
the most efficient and exact computational methods and is 
widely accepted by engineers. 

However, recent research indicates that the probabilistic 
reliability is very sensitive to small variations of the distri-
bution parameters in probabilistic models. It means that 
even small perturbations of distribution parameters will lead 
to the imprecise results of probabilistic predictions. There-
fore, the uncertainties in the distribution parameters of 
probabilistic models have been already considered in a gen-
eral manner and it is rational to describe the uncertainties by 
interval variables [6]. 

Gurov and Utkin [7] pointed out that some structural in-
formation can be described in probabilistic theory and the 
others can be represented by interval estimation, based on 
the variety of information sources. Consequently, it is nec-
essary to develop rigorous mathematical methods of com-
bining all the information from different sources for obtain-
ing exact estimates of the structural reliabilities [8]. Eli-
shakoff was the pioneer in researching hybrid reliability 
theories, who combined probabilistic and non-probabilistic 
information to calculate the structural interval reliability for 
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the first time [9]. Then, he utilized the combined method to 
solve many practical issues such as the reliability of space 
shuttle systems [10–12]. Wu et al. [13] and Elishakoff et al. 
[14,15] compared probabilistic and non-probabilistic ap-
proaches and discussed the compatibility of the two meth-
ods. 

Recently, Qiu et al. [16,17] combine non-probabilistic 
interval analysis and probabilistic methodology in an effort 
to determine the bounds of both the component’s and the 
system’s structural reliability. However, the probabilistic 
model utilized by them is the central point method. The 
main drawbacks of the central point method can be general-
ized as follows. For one thing, it is irrational to expand the 
structural state function at mean value. Also, with the cen-
tral point method, one may obtain different results from the 
structural state functions which have the same mechanical 
meaning and different mathematical expressions. Moreover, 
the probability distribution forms of random variables are 
ignored. These inherent deficiencies can lead to the inaccu-
racy and unreasonable interval evaluation of structural reli-
ability. 

In this paper, we first propose a new interval design point 
method for the reliability of structural components. Then, 
according to the increment load method [18], we present the 
enumerating method for the significant failure modes of 
structural systems when parameters of random variables are 
interval variables. The present criterion to enumerate the 
failure modes of structural systems may ensure the worst 
failure mode included in a few enumerated significant fail-
ure modes. Furthermore, the interval design point method 
for the reliability of structural systems is presented.  

2  Conventional probabilistic reliability theory 

Assuming that  T

1 2, , ,  mX X XX  is the m-dimensi- 

onal random variable vector denoting the various factors 
that affect the structural functioning, then 

    1 2, , ,  X mZ g g X X XX  (1) 

is the state function of structures, and ( ) 0 XZ g X  is 

the limited state equation of random variable space. The 
structural reliability should be expressed as: 
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where  1 2, , , mf x x xX  is the joint distributional density 

function of the basic random variables 1 2, , , mX X X . 

It can be seen that calculating eq. (2) is a complex task 
for multiple integrals. In order to find an effective and ac-
curate method of calculation, engineers introduce the struc-

tural reliability index : 
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where ( ) Z E Z  and ( ) Z Var Z  are the mean val-

ue and standard variance of the state variable Z , respec-
tively.  

If ( ) XZ g X  is a linear function of the vector X which 

can be expressed as  
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On the contrary, if ( )Z g X  is a non-linear function, 


LZ  and 

LZ  of the linearized Z can be written, respec-

tively, as: 
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where  1, 2, , ia i m  are the constant coefficients and 
*x  is the design point on the failure surface. 

If each basic random variable   1, 2, , iX i m  sub-

mits normal distribution-that is to say, the state variable Z is 
a normal distribution variable-the expression for the struc-
tural reliability Ps can be rewritten as:  

   L
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ZZ
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where ( )   represents the standard normal distribution 

function and the condition >0 which is equivalent to Z>0 
should be satisfied, since Ps0.5 has no meaning when 0.  

If several basic random variables are abnormal distribu-
tion variables, some approaches such as equivalent normal-
ized approach (i.e. JC method) can be taken to transform the 
abnormal distribution variables into the normal distribution 
variables. Then, the state variable Z submitted to normal 
distribution can be obtained, and eq. (8) computes the 
structural reliability sP . 
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3  Probabilistic interval reliability 

3.1  Probabilistic interval reliability with normal dis-
tribution variables 

Generally, the distributed parameters of random variables 
have some uncertainties and it is rational to describe them 
with bounded interval variables. For a normal distribution 
variable X, its uncertain but bounded distributed parameters 
X and X can be written, respectively, as:  

 ,I
X X X X         (9) 

and 
  ,I

X X X X     . (10) 

Thus, if distributed parameters of each basic random varia-
ble  1, 2, , iX i m  are bounded interval variables, the 

uncertain but bounded distributed parameters of the state 
variable Z can be rewritten as follows: 

corresponding to eqs. (4) and (5) 
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and corresponding to eqs. (6) and (7): 
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and 
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(14) 
where the definition of equal intervals in interval analysis 
[19,20] is utilized. 

In eqs. (11) and (12), Z , Z  and Z , Z  are, re-

spectively, the lower and upper bounds of the mean values 
and standard variances of the state variable Z. In eqs. (13) 
and (14), 

LZ , 
LZ  and 

LZ , 
LZ  are, respectively, the 

lower and upper bounds of the mean values and standard 
variances of the linearized state variable LZ . The structural 

reliability index of the structure with uncertain but bounded 
distributed parameters will become a set as follows: 
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from eq. (15), we can get the reliability index interval: 
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According to eq. (8) and the monotonicity of ( ),   the 

lower bound and the upper bound of the structural reliability 
can be calculated, respectively, as: 

  sP    (19) 

and 

  sP   . (20) 
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Thus, the probabilistic interval reliability with normal 
distribution variables is written as: 

 ,I
s s sP P P    . (21) 

3.2  Probabilistic interval reliability with abnormal 
distribution variables 

Based on the equivalent normalized approach, we will pre-
sent the interval equivalent normalized approach in this sec-
tion. 

Assume that the component Xi of the vector X  

 T

1 2, , , mX X X  is the abnormal distribution variable, and 

1 2, , , nb b b  are its uncertain but bounded distributed pa-

rameters, which can be written as: 
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The distribution function F(xi) and distributed density 
function f(xi) of Xi can be expressed, respectively, as: 
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From eqs. (23) and (24), the lower and upper bounds of 
F(xi) and f(xi) can be obtained as follows: 
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According to the JC method, the abnormal distribution 
variable Xi can be transformed into the equivalent normal-

ized variable iX . The upper and lower bounds of standard 

variance 
iX

  and equivalent mean value 
iX

   of iX  can 

respectively be obtained by 
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where *
ix  is the design point of iX , 1( )   is the in-

verse function of ( ),   and ( )   is the standard normal 

density function. The monotonicity of 1( )   & ( )   and 

the non-negativity of ( )F , ( )f  and ( )   are utilized to 

obtain eqs. (29)–(32). 
Thus, the interval mean value and standard variance of 

iX , which is the equivalent normalized variable of the ab-

normal distribution variable iX , are expressed as: 
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Replacing eqs. (9) and (10) by eqs. (33) and (34), respec-
tively, and using eqs. (11)–(21), the probabilistic interval 
reliability with abnormal distribution variables can be ob-
tained: 
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4  Interval design point method 

In sect. 3, the design point is used to calculate the probabil-
istic interval reliability of a structure, but determining how 
to obtain the design point under the condition that the dis-
tributed parameters are uncertain becomes the chief prob-
lem. In this section, we will present the interval design point 
method for both normal and abnormal variables needed to 
solve it.  

4.1  Interval design point method for normal distribu-
tion variables 

Utilizing eqs. (13), (14), (16) and (18), we can obtain 
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and  
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where  T
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From eq. (6), we know that the linearized limited state equation is expressed as:  
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The standardized forms of eq. (38) corresponding to eqs. (36) and (37) are, respectively, 
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where iY   and iY   are standardized variables of iX  

corresponding to eqs. (36) and (37), respectively. 
Substituting eqs. (36) and (37) into eqs. (39) and (40), 

respectively, eqs. (39) and (40) can be rewritten as:  

 1

2

2

1

( )

0
( )

i

i

m
X

X i
i i

m
X

X
i i

g
Y

X

g

X










 


  
 

  





x

x
 (41) 

and 

 1

2

2

1

( )

0
( )

i

i

m
X

X i
i i

m
X

X
i i

g
Y

X

g

X










 


  
 

  





x

x
. (42) 

The sensitivity factors of iY   and iY   can respectively 

be defined as:  

 1

2

2

1

( )

cos
( )

i

i i

i

m
X

X
i i

Y Y
m

X
X

i i

g

X

g

X


 




 






  
 

  





x

x
 (43) 

and 

 1

2

2

1

( )

cos
( )

i

i i

i

m
X

X
i i

Y Y
m

X
X

i i

g

X

g

X


 




 






  
 

  





x

x
. (44) 

Thus, eqs. (41) and (42) can be transformed into 

 
1

cos 0
i

m

Y i
i

Y 


   (45) 

and 

 
1

cos 0
m

Y i
i

Y 


  . (46) 

From eqs. (45) and (46), we can get the relation between 
the reliability indexes   &   and the coordinates of the 

design points in Y and Y  space, respectively. They are  

 cos ,  ( 1, 2, , )     
ii Yy i m  (47) 

and 

 cos ,  ( 1, 2, , )     
ii Yy i m . (48) 

According to the upward equations, the corresponding 
coordinates of the design points in X  and X  space are 
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 cos , ( 1, 2, , )       
i i ii X X Yx i m  (49) 

and 

 cos , ( 1, 2, , )       
i i ii X X Yx i m , (50) 

where 
iX S   ( { |  or }

i i i i iX X X X XS        ) and  

 
       min

i i
Xi

X X
X i X i

S
i i

g g
x x

X X
 



  
    

 
x x

, (51) 

iX S   and  

 
       max

i i
Xi

X X
X i X i

S
i i

g g
x x

X X
 



  
    

 
x x

. (52) 

Combining eqs. (36), (43) and (49), the lower bound re-
liability index   and the design point coordinate 

 T

1 2, , ,    mx x xx =  can be obtained. Here, the iterative 

method is utilized; the iterative steps are written as follows: 
(1) Assume an initial design point (0)x ; usually assume 
(0) ( ) / 2c

X X X
   x    ; 

(2) Utilizing eq. (43), compute cos
iY  ; 

(3) Utilizing eq. (36), compute  ; 

(4) Utilizing eq. (49), compute a new design point (1)x ; 

(5) Repeat steps (2)–(4) until ( ) ( 1)n n   x x . 

Combining eqs. (37), (44), and (50), the upper bound re-
liability index   and the design point coordinate 

 T

1 2, , ,    mx x xx =  can be obtained. The corresponding 

iterative steps are written as follows: 
1) Assume an initial design point (0)x , usually assume 
(0) ( ) / 2c

X X X
   x    ; 

2) Utilizing eq. (37), compute cos
iY  ; 

3) Utilizing eq. (44), compute  ; 

4) Utilizing eq. (50), compute new design point (1)x ; 

5) Repeat steps 1) to 4) until ( ) ( 1)n n   x x . 

Substitute ( )nx  and ( )nx  into ( )Xg , if ( )( ) n
Xg x  

( )( ) 0 n
Xg x , ( )n x = x  and ( )n x x  are just the de-

sign points we want; if ( )( ) 0n
Xg  x  or ( )( ) 0n

Xg  x , 

we can assume a new initial design point and repeat the 
corresponding steps (1)–(5) or 1)–5). 

4.2  Interval design point method for abnormal distri-
bution variables 

For abnormal distribution variables, the process of interval 
equivalent normalized stated in sect. 3.2 should be utilized. 

Replacing the variables 
iX , 

iX , 
iX  and 

iX  in 

eqs. (36)–(52) with 
iX

  , 
iX

  , 
iX

   and 
iX

   in eqs. 

(29)–(32), respectively, new equations will be generated. 
Utilizing them and executing the similar iterative steps of 
(1)–(5) and 1)–5) in sect. 4.1, the design points for abnor-
mal distribution variables can be obtained. 

5  Probabilistic interval reliability of structural 
systems 

5.1  Enumerating significant failure modes of structur-
al systems 

Based on the incremental loads approach, in this section, the 
enumerating method is presented for the significant failure 
modes of structural systems when parameters of random 
variables are interval variables. First, we should determine 
the most serious and less serious critical members under the 
first incremental loading.  

Assumed that the mean value and standard variance of 
the ith member’s strength Ri are expressed as eqs. (9) and 
(10), respectively. The expression for the load effect of the 
ith member 1iF  and the first incremental loading 1S  is  

 1 1 1i iF a S  (53) 

where 1ia  is the load utilization of the ith member. In or-

der to ensure the worst failure mode included in a few enu-
merated significant failure modes, we will consider two 

kinds of load effect: 1
c

iF  and 1
l

iF . If we consider that any 

member’s load effects reach their full strength, then 

 1 ,  ( 1,2, , )  
i

c c
i cr RF i n , (54) 

 1 ( ),   ( 1,2, , )    
i i

l
i cr R RF k i n , (55) 

where n is the total number of the members of the entire 
structure and subscript cr means that the ith member has 
reached its critical case under the first incremental loading; 

( ) / 2
i i i

c
R R R     and k  is a constant ( 3k   here ac-

cording to “3” theorem in probability theory [21]).  
Substituting eqs. (54) and (55) into eq. (53), respectively, 

one obtains 

 1 1 1i

c c c
i cr R i i crF a S  , (56) 

 1 1 1( )=
i i

l l
i cr R R i i crF k a S   . (57) 

Then 

 1 1/
i

c c
i cr R iS a , (58) 

 1 1( ) /
i i

l
i cr R R iS k a   . (59) 
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The symbols 1
c
crS  and 1

l
crS  are defined as:  

 1 11
min( )c c

cr i cri n
S S

 
 , (60) 

 1 11
min( )l l

cr i cri n
S S

 
 . (61) 

Let 

 1 1
1

1 1

max , ,  ( 1,2, , )
    
  


c l
cr cr

i c l
i cr i cr

S S
S i n

S S
. (62) 

Then, the first group of serious critical members should be 
determined by using the following inequality. 

 1 1 1iC S  , (63) 

eq. (63) means that we take Si1=1 as the most serious critical 
case and C1Si1<1 as less serious critical cases. We take the 
value of C1 as 0.8~0.9. 

The approach to determining the j-th (j2) group of seri-
ous critical members under the j-th (j2) incremental load-
ing is explained as follows: 

 
1

1

( ) /
i

j
c

ijcr R ik k ij
k

S a S a




  . (64) 

Then 

 
min( ),

( 1, 2, , ,   except the  1 critical members).



  

jcr ijcri
S S

i n j
 (65) 

Let 

 /ij jcr ijcrS S S . (66) 

Therefore, the j-th group of serious critical members should 
be determined by using the following inequality. 

 1j ijC S  . (67) 

In general, the value of the constant Cj (j2) may be taken 
as 0.8~0.9. 

After enumerating the significant failure modes, the lim-
ited state equation of each failure mode can be determined 
by increment load procedure. The relation between the in-
cremental load  ( 1,2, , )iS i n   and the strength 

 ( 1, 2, , )iR i n   is  

 

1 11 1

2 21 22 2

1 2

0 0

0

n n n nn n

R a S

R a a S

R a a a S

     
     
                    




     


. (68) 

Therefore, the strength of structural system Rs and the 
corresponding limited state equation are, respectively 

 s j j j
j j

R S d R   , (69) 

 0j j
j

d R P  , (70) 

where di is the coefficient determined by the load utilization 
ratio ( , 1,2, , )ija i j n  , and P is the generalized load 

used on the structural system.  

5.2  Computation of the probabilistic interval reliability 
of structural system 

For each significant failure mode, there is a corresponding 
limited state equation as eq. (70). One can obtain the proba-
bilistic interval reliability of each significant failure mode 
using the present interval design point method for structural 
members. Given a structural system which has k significant 
failure modes, the probabilistic interval reliability of each 
mode can be written as: 

 ( ) ( ) , ( ) ,   ( 1, 2, , )    
I

s i s i s iP P P i k . (71) 

Then, the lower and upper bounds of the probabilistic in-
terval reliability of the structural system should be, respec-
tively 

 min{( ) , 1, 2, , }s s iP P i k    (72) 

and 

 min{( ) , 1, 2, , }s s iP P i k   , (73) 

since the reliability of structural system is mainly decided 
by the failure mode which has the minimum reliability. 

Thus, the probabilistic interval reliability of the structural 
system is 

 [ , ] [1 ,  1 ]I
s s s f fP P P P P    , (74) 

where Pf is the failure probability. 

6  Numerical examples 

Consider a 14-bar 2D truss structure in Figure 1. The elastic 
module and cross-sectional areas for all members are the 
same, which are E=70 GPa and 20.004 miA  ( 1,i  

2, ,14) . The strength of each bar is normally distributed. 

The load P  submits to lognormal distribution. The mean 
value and standard variance of  ( 1,2, ,14)iR i    and P  

are uncertain, changing within the following intervals, re-
spectively, 

 

[60(1 ),60(1 )] MPa , 

[13(1 ),13(1 )] MPa,  ( 1,2, ,14),

[120(1 ),120(1 )] kN , 

[20(1 ), 20(1 )] kN.

  

  

  

  

  

   

  

  


i

i

I
R

I
R

I
P

I
P

i
 (75) 
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where  is the coefficient in the range of 0–0.1. 
Utilizing the present enumerating method, we get 6 sig-

nificant failure modes of the system. The failure tree is 
shown in Figure 2, and the corresponding limited state 
equations are listed in Table 1. The comparison of the in-
terval central point method and the present method on cal-
culating the probability interval reliability index and inter-
val failure probability of each failure path as  varies is 
showed in Figures 3–8. 

In Figures 3–8, the subscript D means the interval design 
point method and the subscript C represents the interval 
central point method, Figure (a) shows the probabilistic 
interval reliability indexes while Figure (b) shows the 
probabilistic interval failure probabilities. As can be seen 
from these Figures, the bounds of the reliability index and 
reliability increase monotonically with increasing  and the 
bounds obtained using the interval design point and interval 
central point methods are different. When =0 which im-
plies all the parameters are deterministic, the failure proba-
bilities of Z1 to Z6 obtained by Monte Carlo simulation are 
9.4×104, 9.96×104, 4.03×103, 4.21×103, 2.72×103 and 
2.05×103, which are identical to those obtained by the in-
terval design point method. It is obvious that the result ob-
tained by the interval central point method is incorrect,  

 

Figure 1  A 14-bar 2D truss structure. 

 

Figure 2  Fault tree of the 14-bar 2D truss structure. 

since the distribution characteristics of each random varia-
ble are neglected. 

Utilizing the present method for calculating the probabil-
istic interval reliability of the structural system, we can ob-
tain the probabilistic interval reliability index and reliability 
of the frame system as shown in Figure 9. When =0.1, the 
probabilistic interval reliability of the reliability system 
calculated by the interval design point method and the in-
terval central point method are [0.9782, 0.9993] and [0.9051, 
0.9991], respectively. 

Moreover, we take the first failure path as an example to 
show the iteration process of the interval design point 
method. The iteration process for both 1  and 1  when 

=0.05 are listed in Tables 2 and 3.  

7  Conclusions 

In this paper, a new interval design point method for the 
reliability of structural systems is presented. The uncertain 
parameters are described as interval variables in this ap- 

Table 1  The limited state equations of the main failure modes of the 2D truss structure 

Sequence number Failure path Limited state equation 

1 6-14-2-5 1 14 2 5 61.25383 0.772071 2.97442 0.11376 0Z R R R R P       

2 6-2-4-5 2 2 4 5 61.8336 0.546651 1.73491 0.830773 0Z R R R R P       

3 13-6 3 13 60.39888 3.32557 0Z R R P     

4 13-8-6 4 13 6 80.6977 1.96348 1.03534 0Z R R R P      

5 8-6-14 5 144 0Z R P    

6 8-6-2 6 2 6 81.81225 1.69342 0.716037 0Z R R R P      
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Figure 3  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of Z1 (b) obtained using the interval design 
point and interval central point methods as  varies for the 2D truss structure. 

 
Figure 4  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of Z2 (b) obtained using the interval design 
point method and interval central point method as  varies for the 2D truss structure. 

 
Figure 5  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of Z3 (b) obtained using the interval design 
point and interval central point methods as  varies for the 2D truss structure. 

 
Figure 6  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of Z4 (b) obtained using the interval design 
point and interval central point methods as  varies for the 2D truss structure. 
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Figure 7  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of Z5 (b) obtained using the interval design 
point and interval central point methods as  varies for the 2D truss structure. 

 

Figure 8  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of Z6 (b) obtained using the interval design 
point and interval central point methods as  varies for the 2D truss structure. 

 

Figure 9  (Color online) The comparison of the probabilistic interval reliability index (a) and failure probability of 2D truss structure (b) obtained using the 
interval design point and interval central point methods as  varies. 

Table 2  The iteration process of the interval design point method for the lower bound reliability index 1  of Z1 when =0.05 

Iterations  1 2 3 4 5 6 7 

Initial coordinate of the design 
point 

(0)R  60 29.8345 18.2643 20.0873 20.4649 20.5352 20.5480 
(0)P  120 94.2121 99.1748 100.192 100.381 100.415 100.422 

Reliability index 
  2.1029 2.9007 2.7706 2.7436 2.7386 2.7377 2.7375 

  —— 0.7978 0.1301 0.0270 0.0050 0.0009 0.0002 

New coordinate of the design 
point 

(1)R  29.8345 18.2643 20.0873 20.4649 20.5352 20.5480 20.5504 
(1)P  94.2121 99.1748 100.192 100.381 100.415 100.422 100.423 
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Table 3  The iteration process of the interval design point method for the upper bound reliability index 1  of Z1 when =0.05 

Iterations  1 2 3 4 5 

Initial coordinate of the design point 
(0)R  26.5108 22.9062 22.3147 22.2880 22.2864 
(0)P  110.454 108.975 108.908 108.904 108.903 

Reliability index 
  3.0663 3.3669 3.4144 3.4165 3.4166 

   0.3006 0.0475 0.0021 0.0001 

New coordinate of the design point 
(1)R  22.9062 22.3147 22.2880 22.2864 22.2863 
(1)P  108.975 108.908 108.904 108.903 108.903 

 
proach. The present criterion to enumerate the failure modes 
of structural systems may ensure the worst failure mode 
included in a few enumerated significant failure modes. 

From the results of numerical examples, we may find 
that the proposed method can overcome the inherent defi-
ciencies of the interval central point method and may pro-
vide exact probabilistic interval reliability of structures 
whose random variables can have either normal or abnormal 
distribution form. Moreover, the obtained exact probabilis-
tic interval reliability is expressed in the form of interval 
range which can provide more information than any single 
number result on the safety degree of structures. 

This work was supported by the Postdoctoral Science Foundation of China 
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