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1  Introduction 

In the process of traditional structural design, it is assumed 
that the parameters of structural models and operational 
environments involved in engineering problems are deter-
ministic values. However, for most practical engineering 
cases, uncertainties in material properties, geometric di-
mensions, applied loads and other parameters are unavoida-
ble and parameter perturbations may exhibit remarkable 
sensitivity to optimal structural designs [1]. The need to 
incorporate uncertainties in engineering design has long 
been realized. Despite traditional approaches being suc-
cessfully implemented in many practical design situations, 
in which the uncertainties are included by introducing sim-
plifying hypotheses such as the consideration of extreme 
values and/or the application of safety factors, the assump-
tion of a deterministic model is certainly a simplification in 
that different types of uncertainties would cause various 

degrees changes in the performance and reliability of final 
designs. 

In recent years, with the fast development of the compu-
tational technology, many researchers have focused on 
structural design methods with uncertainties which have 
been applied in various fields, such as aerospace structures 
[2–8], ship structures [9], civil structures [10–13], marine 
search and rescue [14] and acoustic analysis [15]. The relia-
bility design is based on the concept of structural safety 
design, which considers uncertainties and ensures that the 
analyzed system will perform within prescribed margins 
with a quantitative measure of system safety. Despite the 
fact that an adequate level of reliability is a basic objective 
when design and construct structural systems or compo-
nents, high levels of reliability are usually associated with 
large economical costs. An appropriate trade-off between an 
acceptable reliability level and economical design of the 
structure should be offered in engineering practice. In con-
sequence, the concept of reliability-based design optimiza-
tion (RBDO) has emerged. 

Although recently introduced, the structural reliability 
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design technologies have made strides in China during the 
past two decades. The “National Guideline on Medium- and 
Long-Term Program for Science and Technology Devel-
opment (2006-2020)” demands advanced techniques, in-
cluding the reliability technology, for both usage and 
lifespan prediction of major products and major facilities. 
Structural reliability technique is one of the most important 
aspects of reliability-based design in complex systems. 
Herein we do not intend to present an exhaustive review of 
the field of structural reliability design but to offer a brief 
survey on some of the most relevant contributions of Chi-
nese researchers in the area, namely uncertainty propagation 
and reliability modeling, reliability analysis and RBDO. 
Thus, the following sections briefly summarize the novel 
uncertainty propagation approaches and reliability models, 
not limited in the stochastic methodology. We also focus on 
recent advances in reliability analysis methods, particularly 
on the reliability sensitivity analysis. Finally, we give an 
overview of recent developments in the context of reliabil-
ity-based design optimization. 

2  Recent advances in propagation of uncertain-
ties and reliability modeling 

The quantification and propagation of uncertainty in struc-
tural analysis of complex models demand large computa-
tional efforts compared with the corresponding determinis-
tic analysis. The computational efficiency and accuracy are 
the basic contradiction in engineering computation. In this 
section, novel uncertainty propagation methods which can 
strongly reduce the cost of evaluation and improve the ac-
curacy of calculation are introduced. These techniques are 
related not only to stochastic methods, but also in a non- 
probabilistic framework. Because the traditional reliability 
models based on probabilistic method are more developed, 
the recent progress of hybrid reliability models is only dis-
cussed herein. 

2.1  Novel uncertainty propagation implementations 

Parallel processing and model reduction are two of the most 
effective techniques to reduce the computational cost. In 
order to evaluate the response variability by parallel pro-
cessing, one should choose a non-intrusive method for un-
certainty propagation analysis, in which the deterministic 
analysis would be considered as a “black box” procedure, so 
that the model with uncertainties can be transformed into a 
new set of models with deterministic parameters. It would 
only then be convenient to implement the parallel computa-
tion.  

In a stochastic context, Monte Carlo simulation is the 
most widely used non-intrusive method. The basic applica-
tion of Monte Carlo procedures is the generation of inde-
pendent samples for the structural properties and loads by 

making use of an appropriate random number generator. 
Parallel processing is particularly well suited to generate the 
response of independent realization since all tasks are com-
pletely independent and require little communication [16]. 
However, the computational efforts by using parallel Monte 
Carlo simulation would not be acceptable as the large 
amount of structural degrees of freedom and uncertain pa-
rameters of complex structures. The structural analysis for 
engineering practice is usually carried out almost exclu-
sively by finite element method. Several stochastic finite 
element (SFE) procedures were developed to handle the 
expensive computational requirement of Monte Carlo sim-
ulation-based methods. In addition to the perturbation SFE 
and spectral SFE, the moment method-based SFE is another 
feasible approach. As the first two order moments of struc-
tural responses are the primary concerned quantities in the 
reliability analysis, Qiu et al. [17,18] developed a direct 
probabilistic approach which can avoid calculating the in-
verse of the mean matrix and reduce storage and computa-
tional complexities. It should be noted that no assumptions 
or approximations were made in deriving the moment equa-
tions, except the assumed existence of the various first and 
second moment values. Therefore, the obtained moment 
equations can be considered to be exact. The parallel arith-
metic was used, which can decrease the runtime effectively 
and increase computational efficiency.  

The K-L expansion and polynomial chaos expansion, 
which are the basis of the spectral SFE, are conventionally 
adopted for the model reduction in SFE analysis. The K-L 
expansion is a spectral representation method of a stochastic 
process which can only deal with the uncertainty by Gauss-
ian random field. The response with non-Gaussian proper-
ties can be approximated by polynomial chaos expansion 
which is a Galerkin projection scheme based on the Wiener 
integral representation [19]. However, the polynomial chaos 
expansion suffers from the reputed excess of dimensionality, 
which indicates an exponential growth of computational 
efforts and the number of terms P as a function of the num-
ber m of independent random quantities. Zhang et al. [20] 
introduced a novel SFE method with dimensional reduction 
integration. The moment computation of random response 
was derived by numerical integration based on weighting 
function of orthogonal polynomial and probability density 
function. The C-type Gram-Charlier series were used to 
calculate moments of uncertain response approximately. As 
a result of the model reduction, it was not necessary need to 
solve the Hessian matrix with respect to random variables, 
and the computational efficiency was considerably im-
proved. 

The Taylor series-based interval method can be used to 
perform a non-intrusive interval finite element (IFE) proce-
dure, which can only solve problems with small levels of 
uncertainty. Wu et al. [21] introduced Chebyshev series 
expansions into IFE for uncertain nonlinear dynamic sys-
tems analysis. The proposed non-intrusive method offered 
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higher accuracy approximation solutions and the Chebyshev 
inclusion function was developed to effectively control the 
overestimation of interval computation. Qi et al. [22] pro-
posed the collocation IFE based on the first class Cheby-
shev polynomial approximation for interval analysis. The 
application of collocation IFE was not limited to small lev-
els of uncertainty, and the truncation order of polynomials 
only contributed to computational accuracy. A higher order 
truncation would effectively add no computational effort. In 
addition, the global optimization strategies are often con-
sidered in that it can give an exact result in interval analysis, 
but the numerical cost would be cumbersome. Wang et al. 
[23] introduced a smallest interval-set for uncertain param-
eters quantification, in which the global optimization algo-
rithm was used for the best interval-set searching to deter-
mine the intervals of the uncertain parameters. By combined 
the interval analysis method the structural response would 
be improved, as the presented strategy obtained more accu-
rate uncertain parameters estimations because of insufficient 
experimental data. By introducing a mathematical pro-
gramme method, Qiu et al. [24] investigated an inequality 
model for solving interval dynamic response of structures 
with interval parameters. Thus, the optimization strategies 
can take advantage of precision amelioration in interval 
operation procedure more effectively. 

2.2  Hybrid reliability models 

After experiencing more than half a century of development, 
the classical probabilistic reliability theory is considered 
well formulated. The probabilistic reliability model, when 
the adequate information and high precision calculation 
model are available, is a good safety assessment model and 
has a significant function in engineering practices. Recently 
there has been some progress in the fields of the fuzzy reli-
ability model and non-probabilistic reliability modelling. 
Along with new mathematical knowledge in engineering, 
studies of the effect of uncertainties on structural reliability 
are more comprehensive. In order to allow the uncertainty 
models to be pertinent to actual conditions, the hybrid un-
certain models are dealt with in the framework of interval 
probabilities, fuzzy randomness and fuzzy interval. The 
hybrid reliability modeling is considered as an approach, 
which exhibits both the merits of two different uncertainity 
models. 

The interval-probability hybrid reliability approach is a 
challenging topic in engineering in that the information 
available is frequently not sufficient to formulate clear pro- 
babilistic models with a substantial confidence level. Two 
differing types of methods for uncertainty quantification in 
the framework of interval probabilities are introduced in 
previous research. In the first-type hybrid model, Wang et al. 
[25,26] combined the probability model and convex model 
to describe the parameters with and without sufficient un-
certainty information, respectively. The optimal criterion 

enumerating the main failure modes and the relationship of 
failure modes were presented in structural system with hy-
brid uncertain parameters. The hybrid reliability of structur-
al system was obtained through analyzing the correlation of 
each failure mode of hybrid structural system. The ad-
vantage of this type model is that it can obtain the reliability 
interval of the hybrid structural system to replace a certain 
value or a simple reliability index, which is more credible 
and significant in the case when the statistic data of uncer-
tain parameters are scant or uncertain information is unclear. 
In the second case, all the uncertain parameters are quanti-
fied through the probability model, while some of the dis-
tribution parameters can only be given variation intervals 
since lacking information. These intervals can be easily 
determined through the interval estimation technique in 
statistics theory [27–29]. The well-developed random 
methods, like reliability index approach and the perfor-
mance measurement approach, can be used for reliability 
analysis. However the dependent of random variables and 
different failure modes still need to be considered. 

The models with fuzzy randomness describe imprecise 
probabilities as randomness measures of fuzzy sets. The 
associated fuzzy probabilities represent weighted bounds of 
probability. With the interpretation of a fuzzy set as a set of 
-level sets via -discretization, the relationship to interval 
probabilities in the form of sets of probability measures 

becomes apparent [30]. The fuzzy random quantity X  is 
defined as the fuzzy result of the mapping from the space of 
the random elementary events  to the set of all fuzzy 
quantities, and each real-valued random quantity X on the 

fundamental set  nX  is referred to as an original of 
X  (see Figure 1). The reliability is fuzzy in the fuzzy ran-

domness hybrid reliability model, which could be obtained 
by the integration on the fuzzy joint probability density 
function over the fuzzy safe region. As the strong nonlinear 
and multi-dimensional limit state functions, some approxi-
mation methods like  level cut set method are used to de-
generate fuzzy variables into interval variables [31]. After 
the boundaries of performance and cumulative distribution 
function are estimated, the reliability can be calculated by 
accounting for the relationship between the cumulative dis-
tribution and reliability. The fuzzy randomness hybrid reli-
ability model has obvious advantages when model parame-
ters may not be precisely represented because of factors in 
engineering practices, such as lack of sufficient data, data of 
fuzziness and unknown or non-constant reproduction condi-
tions. However the computational efficient of exiting fuzzy 
randomness hybrid approaches is always a difficult problem 
because the fundamental mathematical theory of this type 
uncertain problems is not considered ideal. 

Ni at al. [32] introduced a new hybrid reliability model 
which contains randomness, fuzziness, and non-probabilis- 
tic uncertainty. The presented hybrid model utilized availa-
ble data and the advantages inherent in each individual  
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Figure 1  Fuzzy random variable [30]. 

model fully and effectively and may reflect, with validity, 
the real state of structural safety.  

3  Recent advances in reliability analysis 

The primary difficulties in structural reliability analysis are 
in the performance of three aspects: multidimensional un-
certainties, nonlinear and implicit expression of limit state 
function. Both of reliability assessment and sensitivity 
analysis methods are introduced to solve these problems, 
which are primarily based on probabilistic reliability model. 

3.1  Reliability assessment approaches 

The reliability assessment approaches can be divided into 
three types [33]: the first case is approximate analytical 
method, such as the point estimation method, etc.; the se-
cond case is numerical simulation method including Monte 
Carlo simulation and some other sampling methods; the last 
case is the indirect method as the response surface method, 
which constructs an approximate model to reduce the com-
putational cost when the limit state functions are implicit. 

Gong et al. [34] introduced a robust iterative algorithm 
for structural reliability analysis named as finite-step-length 
iterative algorithm, which was built based on the modifica-
tion of the HL-RF iterative algorithm in the traditional 
first-order reliability method and aimed to deal with the 
computational convergence for highly nonlinear limit state 
surfaces. When the step length tends to infinity, the fi-
nite-step-length iterative algorithm was converted into a 
particular case, that is, HL-RF method. As the process of 
line search for obtaining the step length was not needed, the 
proposed algorithm was considered to be easier than other 
optimization schemes. 

The saddlepoint approximation (SA) based method can 
be used to deal with the reliability problems with non- 
Gaussian random variables [35]. Song et al. [36] compared 
three SA based structural reliability analysis methods and 
chose the most ideal case for complex reliability problems. 
The first case was SA based reliability bounds theory, 
which can only obtain the bounds of system failure proba-
bility and be only acceptable for the linear limit state func-
tion. The second case was SA based Nataf approximation, 
which can give the estimation of system failure probability, 
and the error mostly resulted from the approximation of 
Nataf distribution for the joint PDF of the structural system 
performance functions and the linearization of the perfor-
mance functions. The last case was SA based line sampling 
as a numerical simulation method, which could obtain the 
estimate of system failure probability considering the influ-
ence of nonlinearity of limit state function. This could be 
acceptable for the structural system with multiple failure 
modes. These potential advantages can ensure that the SA 
based line sampling method may have wide application, not 
only in the stochastic context, but also in the fuzzy reliabil-
ity analysis to replace the direct Monte Carlo method [37]. 

The importance sampling method is widely used for fail-
ure probability computation, which can improve the sam-
pling efficiency and reduce the estimate variance of failure 
probability by using an importance sampling density func-
tion. As the selection of importance sampling density func-
tion would greatly affect the sampling efficiency, one of the 
methods for constructing sampling function is using the 
kernel density estimator method. By initial sampling for the 
failure region, the optimal importance sampling density can 
be approximated by fitting the initial sample data. Dai et al. 
[38] introduced an adaptive Markov chain simulation 
method for initial sampling, which was based on adaptive 
Metropolis algorithm as a replacement of classic Metropolis 
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algorithm for sampling regions with high likelihood of fail-
ure. The importance sampling density function was con-
structed by support vector density, which can approximate 
the sampling density with fewer samples in comparison 
using the conventional kernel density estimation. 

To deal with the problems with limited information on 
uncertainty, numerous studies based on non-probabilistic 
reliability models have been developed. In recent years, 
researchers have focussed on introducing some well-estab- 
lished techniques from traditional probability-based reliabil-
ity analysis into the non- probabilistic reliability analysis. 
Some effective methods with better practicability have been 
developed and successfully applied to some industrial prob-
lems. The classical methods such as the Monte Carlo simu-
lation, the first order and second order approximation are 
the most commonly used [39,40]. Nevertheless, it must be 
pointed out that the probability model and non-probabilistic 
model are effectively two types of completely different 
means of dealing with the uncertainty, as the former is 
based on the detailed distributions of the parameters while 
the latter does not need the precise probability distributions 
information of the uncertain domain. Therefore, some se-
vere problems will be inevitably caused when the probabil-
istic reliability-based analysis techniques are introduced into 
solving the non-probabilistic model problems, such as the 
application field of the existing methods, computational 
efforts and accuracy. 

3.2  Reliability sensitivity analysis approaches 

In the traditional structural reliability analysis, the reliability 
is indicated by a reliability index, which is defined as ob-
taining a minimum distance from the failure surface to the 
origin in the standard parameter space. Therefore, reliability 
analysis can be formulated as an optimization problem, and 
the reliability sensitivity refers to the partial derivative of 
the failure probability Pf with respect to the distribution 
parameter of the basic random variables x, that is, 

, fP x  which measures the effect of basic variable dis-

tribution parameters on the failure probability. In general, 
the reliability sensitivity analysis can be divided into local 
sensitivity analysis and global sensitivity analysis, the latter 
also being termed the important measure analysis. Similar 
to the reliability assessment, reliability sensitivity analysis 
approaches are based on probabilistic model which may 
include three aspects as approximate analytical method, 
numerical simulation and equivalent function method such 
as the response surface method [33]. 

Researchers have generally focussed on the reliability 
sensitivity analysis problems with nonlinear and implicit 
limit state functions, and improvements on the traditional 
methods are used to solve problems. Zhang et al. [41] in-
troduced a modified perturbation method to improve the 
accuracy of reliability sensitivity analysis for systems with 
strong nonlinear performance functions. By combining the 

matrix differential method and the Kronecker algebra theory, 
the mathematical expression of reliability sensitivity based 
on the perturbation method can be modified to be suitable 
for the nonlinear problems.  

The traditional response surface method based on poly-
nomial approximation usually cannot obtain a high-quality 
equivalent model for the highly nonlinear limit state func-
tion. Zhao et al. [42] employed the support vector regres-
sion algorithm (SVR) to construct the equivalent limit state 
function. The SVR is an application of support vector ma-
chine (SVM) [43] in regression estimation, which is 
grounded in the framework of statistical learning theory and 
can overcome for the lack of the problems because of local 
minima, overfitting, and an inconveniently large number of 
tunable parameters in other learning algorithms. After scal-
ing the training set using neural networks, the support vec-
tor regression based response surface method has been de-
veloped to approximate the actual limit state function as: 

     *

1
( ) , , 



  
l

i
i i

i

g K by y y  (1) 

where i and *i  are Lagrange multipliers, K is a kernel 

function, and y(i) is the ith support vector obtained from the 
SVR training. As the SVM method is dependent on the op-
timization technology, the application to the reliability 
analysis would be converted into a nested optimization 
problem, and the computational cost would rise remarkably 
for a large scale structural reliability analysis. 

Lu et al. [44–46] summarized the existing importance 
measures which can be classified as three categories, that is, 
non-parameter techniques (correlation coefficient model), 
variance based methods, and moment independent model. 
The importance measure methods have been extended to the 
study of importance analysis in the presence of epistemic 
and aleatory uncertainties [47–49], that is, hybrid uncertain-
ties. The common importance measures are defined based 
on the expectation, variance and moment-independent of 
uncertain response Y, respectively. The conditional expecta-
tion, conditional variance and conditional probability den-
sity functions of the uncertain response Ycan be defined as 
E(Y|x), Var(Y|x) and fY|x(y), respectively. Thus the im-
portance measures of the random input variables can be 
expressed as: 

     2
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2
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where IMe, IMv and IMMI are the critical measures on ex-
pectation, variance and moment-independent of uncertain 
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response Y, respectively. For the fuzzy variables x, we 
know that both E(Y) and Var(Y) are fuzzy variables, which 
can be characterized by the membership functions. Then the 
unconditional membership function and the conditional 
membership function can be used to replace the first two 
moment functions in eqs. (2) and (3) for critical measures of 
fuzzy variables.  

4  Recent advances in reliability-based optimi-
zation 

RBDO is a methodology that allows solving optimization 
problems and explicitly modeling the effects of uncertainty. 
A RBDO problem can be defined by the following mathe-
matical formulation: 
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where E{f(d, x)} is the expectation of the cost function as an 
objective function, d∈D denotes the vector of design varia-
bles and x∈ denotes the vector of uncertain parameters, 
P(·) is an operator to denote the probability of occurrence, pj 
denotes the tolerable threshold that the j-th uncertain con-
straint should be satisfied. sm is the m-th determined con-

straint and ,   l ld d  denotes the design domain boundary 

interval of the l-th design variable. 
As discussed above, the reliability analysis is an optimi-

zation problem in itself, but sometimes is found as a nested 
optimization problem when SVM-based like approaches are 
used. Thus a RBDO problem is a double-loop problem, as 
shown in Figure 2. The reliability evaluation algorithm is 

nested within the optimization loop. The numerical costs are 
usually unaffordable for this type of problem. Therefore, 
how to simplify the double-loop optimization framework 
for numerical efforts reduction is a major difficulty for 
solving RBDO problems. Two main aspects of this type of 
problem will be discussed below. The first one is the relia-
bility constraints approximate method, and the second one 
is double-loop decoupling method. 

The performance measure approach is the most used ap-
proach to formulate reliability constraints in the RBDO 
problems. The reliability constraints in eq. (5) can be trans-
formed into equivalent constraints such that the minimum tar- 
get performance value should be non-negative, for example, 

   0, j d  (6) 

where the minimum target performance value j(d) is ob-
tained by the following optimal problem: 

 
  min ( , ) ( , ),

subject to .

   




d d x d x

x

j j j j

j

G b r

p
 (7) 

The equality constraint of the optimization problem in eq. 
(7) imposes the prescribed tolerable threshold by setting the 
norm of x equal to pj. Because it is much simpler to solve an 
optimization problem with an equality constraint, the per-
formance measure approach is numerically stable. Kang et 
al. [51–53] extended the performance measure approach to 
RBO problems with interval and probability-interval hybrid 
uncertainties. 

The decoupling methods are used to decompose the in-
trinsic relations of the two loops in RBDO problems, by 
which the reliability analysis is not necessary to be per-
formed each time for an optimization loop. The sequential 
approximate programming approach is the most commonly 
used decoupling method, which converts the nested RBDO 
problem to serial deterministic optimization problems. The 
deterministic optimization is performed using original ob- 

 

 

Figure 2  Schematic representation of a RBO problem [50]. 
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jective function and convented constraints to find new de-
sign variables. An iteration scheme is used to update the 
parameters x,j in constraints consistently with the values of 
the current design variables. These procedures will continue 
until the convergence criteria are satisfied [53]. Sometimes 
the linearization-based approach is used to approximate the 
minimum target performance value [52]. By approximating 
the limit-state function Gj with the first-order Taylor expan-
sion about ( )

, ,k
jx  which is the approximate solution of eq. 

(7) in the k-th iteration, we can rewrite eq. (7) such that  

 
      

   
,

,
,

min ( , ) ,
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
          



kk
j

jk k k
j j j

j

G
G

p

d x

d d x
x

x

 (8) 

5  Conclusion 

Herein we have presented a general overview of the recent 
advances in structural reliability analysis and reliabil-
ity-based design optimization. The methods for propagation 
of uncertainties, reliability modeling, reliability assessment, 
reliability sensitivity analysis and reliability-based optimi-
zation are discussed, which are not limited to problems with 
random uncertainties. 

The uncertainty propagation is the basis for many types 
of uncertain analysis. To deal with the problems of compu-
tational efforts, the parallel processing and model reduction 
are two of most effective techniques. The non-intrusive 
methods should be developed for parallel processing, by 
which uncertainity modeling can be transformed into a new 
set of models with deterministic parameters. The model 
reduction techniques are effective for problems with a large 
number of uncertain parameters. However the retained 
terms need be validated to be considered the most influenc-
ing factors. 

The hybrid reliability modeling is considered as an ap-
proach possessing both the merits of different two uncertain 
models as interval probabilities, fuzzy randomness and 
fuzzy interval. The hybrid reliability models are more con-
sistent to actual conditions, which has an important supple-
mentary role in structural reliability design. 

The approaches for reliability assessment and reliability 
sensitivity analysis are similar, which can be divided into 
three parts as approximate analytical method, numerical 
simulation method and equivalent function method. The last 
type of methods like SVM may obtain the most accurate 
results, particularly for problems with non-linear limit and 
implicit state function. The reliability-based optimization is 
a nested optimization problem, and researchers have fo-
cussed on how to simplify the double-loop optimization 
framework for the reduction of numerical efforts.  

For the strong demand for structural reliability design 

technology, this review paper, together with the collection 
of approaches in this special issue, may help to highlight the 
benefits of structural reliability design methods not only in 
academia, but also in practical engineering conditions.  
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