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Recently, some blind quantum signature (BQS) protocols have been proposed. But the previous schemes have security and ef-
ficiency problems. Based on the entangled Greenberger-Horne-Zeilinger (GHZ) states, a new weak BQS protocol is proposed.
Compared with some existing schemes, our protocol has 100% efficiency. Besides, the protocol is simple and easy to implement.
The security of the protocol is guaranteed by the correlation of the GHZ particles held by each participant. In our protocol, the
signatory is kept blind from the content of the message. According to the security analysis, the signatory cannot disavowal his/her
signature while the signature cannot be forged by others.
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1 Introduction

Digital signature, which was independently introduced by
Diffie and Hellman [1] and Merkle [2], provides a means for
an entity to bind its identity to a piece of information. As a
primitive of cryptograph, digital signature plays a fundamen-
tal role in authentication, authorization and non-repudiation.
However, the security of conventional signature is based on
some unproven assumptions of computational complexity,
like hardness of factoring large integers or solving discrete
logarithms. With the development of quantum computation,
especially Shor’s algorithm for factoring large integers [3],
conventional signature schemes face serious security chal-
lenges.

In the past decades, quantum cryptography has attracted
much attention and applications like quantum key distribu-
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tion (QKD) [4–6], quantum secure direct communication
(QSDC) [7–10] and quantum secret sharing (QSS) [11–13]
have been developed. The striking properties of quantum me-
chanics can also be applied to provide unconditionally secure
digital signature. Gottesman and Chuang [14] proposed the
first quantum signature scheme based on quantum one-way
functions in 2001. After that, many applications have been
studied. Zeng et al. [15–17] proposed an arbitrated quantum
signature (AQS) scheme by using GHZ states and quantum
one-time pad. Li et al. [18] simplified the scheme by us-
ing Bell states and Zou and Qiu [19] further improved the
protocol without utilizing entangled states. However, Gao
et al. [20] analyzed the security of the AQS protocols and
pointed out that those AQS protocols are insecure. In 2004,
Lee et al. [21] presented two quantum signature schemes with
message recovery. Furthermore, Yang et al. [22] proposed an
arbitrated quantum signature protocol with an untrusted arbi-
trator.
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The blind signature is a specific type of digital signature
where the content of a message is disguised to the signatory
for privacy protection before it is signed [23]. Applications
of blind signature include E-cash system [23] and E-voting
system [24], etc. Usually, there are two types of blind sig-
nature: weak blind and strong blind. A weak blind signature
scheme has the ability to trace some illegal behaviors of par-
ticipants. For example, in the E-cash system, a weak blind
signature can enable the bank to trace the misuse of the E-
cash. While a strong blind signature scheme has the feature of
untraceability, which is suitable for anonymous voting where
a voter does not want to be traced by anyone. Recently, some
quantum protocols of blind signature have been proposed. In
2009, Wen et al. [25] presented the first weak BQS scheme
based on EPR pairs and one-time pad. However, Naseri [26]
has shown that the scheme in its original form does not com-
plete the task of a blind signature fairly. Soon after that, Su
et al. [27] also proposed a BQS scheme based on Two-State
Vector Formalism (TSVF) and their scheme has 100% effi-
ciency, which is different from the scheme of Wen et al. [25].
But Yang et al. [28] pointed out some possible attacks against
Su et al. [27] BQS scheme. In 2011, Xu et al. [29] proposed
a quantum group blind signature scheme using single-qubits.
In their scheme, anonymous communication technology is
used to provide anonymity for voters, and a hash function
is used to blind the message. Very recently, Yin et al. [30]
proposed a BQS scheme with χ-type entangled states.

Following some ideas of refs. [25,27,29,30], we propose a
new and efficient weak BQS scheme utilizing the GHZ states
as message carriers. Compared with previous BQS protocols,
the proposed protocol is more efficient, simpler and easier to
implement. The security of the protocol is guaranteed by the
correlation of the entanglements and we will show that the
protocol is secure in details.

The rest of this paper is organized as follows. In sect. 2,
we give some preliminaries related to the protocol. In sect.
3, we present the blind signature scheme. The security of the
protocol is analyzed in sect. 4. And we conclude the paper in
sect. 5.

2 Preliminaries

The entanglement used in the blind signature protocol is the
three-partite GHZ state which has the following form

|φ〉 = 1√
2

(|000〉 + |111〉)123. (1)

And two well-known measurement bases X and Y are given
for security check where their eigenstates are

|x±〉 = 1√
2

(|0〉 ± |1〉), |y±〉 = 1√
2

(|0〉 ± i|1〉). (2)

Suppose a GHZ triplet is shared among three parties Al-
ice, Bob and Charlie. Each of them has one particle of the
GHZ state and chooses to measure their particle in the X ba-
sis or the Y basis randomly. As is pointed out by Hillery et
al. in ref. [11], if two parties use the same basis, then the
GHZ qubit held by the third party becomes an eigenstate of
the Pauli X operator; otherwise, it is an eigenstate of the Y
operator, which can also be seen in the following equation

|φ〉 = 1
2

( |x+〉|x+〉|x+〉 + |x+〉|x−〉|x−〉
+ |x−〉|x+〉|x−〉 + |x−〉|x−〉|x+〉 )123

=
1
2

( |x+〉|y+〉|y−〉 + |x+〉|y−〉|y+〉
+ |x−〉|y+〉|y+〉 + |x−〉|y−〉|y−〉 )123

=
1
2

( |y+〉|x+〉|y−〉 + |y+〉|x−〉|y+〉
+ |y−〉|x+〉|y+〉 + |y−〉|x−〉|y−〉 )123

=
1
2

( |y+〉|y+〉|x−〉 + |y+〉|y−〉|x+〉
+ |y−〉|y+〉|x+〉 + |y−〉|y−〉|x−〉 )123 . (3)

3 Quantum blind signature protocol

3.1 Security requirements

Three participants are involved in the weak blind signature
scheme, the message owner, the signatory and the verifier.
In general, there are some basic security requirements for a
weak blind signature protocol.

(i) No forgery. Nobody can counterfeit the valid signature
except for the signatory.

(Ii) No disavowal of original. The signatory who has
signed a message cannot deny having signed it at a later time.

(iii) Blindness. The signatory cannot know the content of
the message he/she has signed.

(iv) Traceability. Once a disagreement happens, the signa-
tory is able to trace the message owner.

3.2 Our BQS protocol

In our protocol, three characters are defined as follows.
Alice: Alice is the message owner who wants her message

m to be signed while keeping the content secret.
Bob: Bob is the signatory who should sign the blind mes-

sage without knowing it.
Charlie: Charlie is the verifier who can test whether the

signature is legal. Similar to refs. [27,29], Charlie is trusted.
The signed message is m = {m1,m2, . . . ,mi, . . . ,mn}where

mi ∈ {0, 1} with i ∈ {1, 2, . . . , n}. Our scheme can be de-
scribed as follows.

Step 1. Initial phase
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(a) Alice and Charlie share a secret key KAC which can be
generated by performing the QKD protocol [4].

(b) Similarly, Bob and Charlie share a secret key KBC.

Step 2. Signing phase

(a) Charlie prepares a tri-qubit sequence where each tri-
qubit is in the state |φ〉. The (n+l)-length sequence is denoted
as

S = {P1(1, 2, 3), P2(1, 2, 3), . . . , Pn+l(1, 2, 3)}, (4)

where the subscript labels the order of entangled state in the
sequence. Charlie divides the sequence into three subgroups

S i = {P1(i), P2(i), . . . , Pn+l(i)}, (5)

with i = 1, 2, 3. Then Charlie sends S 1 and S 2 to Alice and
Bob, while he keeps S 3.

(b) After receiving the sequence, Alice and Bob return the
number of received particles to Charlie. If the number is n+l,
Charlie goes to the next step; or else, Charlie terminates the
protocol.

(c) Charlie randomly chooses a subset with length l in S 3

for eavesdropping check. Firstly, Charlie publishes the po-
sitions of these chosen sampling particles. Then Alice and
Bob measure the corresponding particles in S 1 and S 2 in the
X basis or the Y basis randomly. After that, Alice and Bob
declare their measurement outcomes to Charlie (The mea-
surement bases are included in the outcomes). Here, Alice’s
and Bob’s declaring order should also be random for each
position. For example, Alice declares firstly in one position
and then she declares secondly in another position. Accord-
ing to Alice’s and Bob’s measurement bases, Charlie chooses
the right bases to measure the remaining sample particles in
S 3. That is, if Alice and Bob have chosen the same basis in
one position, Charlie then chooses the X basis; otherwise, he
chooses the Y basis. Here Charlie can determine whether the
error rate is normal. When the error exceeds a certain thresh-
old, the protocol should be aborted. Otherwise, continue to
next step.

(d) After getting rid of the sampling particles, Alice mea-
sures the remaining n particles in S 1 according to the message
m. If mi = 0, she measures Pi(1) in the X basis. Otherwise,
she measures in the Y basis. The measurement results will be
in {|x+〉, |x−〉, |y+〉, |y−〉}, which are denoted as 2 cbits 00, 01,
10 and 11, respectively. Alice records her measurement out-
comes as m′i where m′i ∈ {00, 01, 10, 11}with i ∈ {1, 2, . . . , n}.
Then she encrypts m′ with one-time pad and KAC and gets the
cipertext M = EKAC (m′).

(e) Bob measures the remaining particles Pi(2) in S 2 and
each measuring basis is randomly selected from the X ba-
sis and the Y basis. Similarly, the measurement results are
recorded as b where bi ∈ {00, 01, 10, 11}with i ∈ {1, 2, . . . , n}.

Then he encrypts b with one-time pad and KBC and gets the
signature Sig = EKBC (b).

Step 3. Verification phase

(a) Alice sends M to Charlie, then Charlie decrypts M and
gets m′. Here, Charlie also gets the message m since m is con-
tained in m′. For instance, if m′ = 00011100, then m = 0010.

(b) Bob sends the signature Sig to Charlie and Charlie can
decrypt Sig to get Bob’s measurement results b.

(c) Charlie selects the right measurement bases to mea-
sure the remaining particles Pi(3) in S 3, i.e. he will choose
the X basis if Alice and Bob have chosen the same ba-
sis in the corresponding position, while he will choose the
Y basis if Alice’s and Bob’s choices are different. Simi-
larly, Charlie’s measurement results are recorded as c where
ci ∈ {00, 01, 10, 11}with i ∈ {1, 2, . . . , n}.

(d) Charlie accepts Sig as the valid blind signature for
message m if three parties’ measurement outcomes (m′, b, c)
satisfy the validation rules in Table 1 for all of the n bits. Oth-
erwise, he rejects it. For instance, if m′i = 00 (|x+〉), bi = 00
(|x+〉), then the valid ci must be 00 (|x+〉).

4 Security analysis

In the following, we will show that our blind signature pro-
tocol is secure against both the outside attacker and dishon-
est participants. First of all, the security of the two shared
keys KAC and KBC is guaranteed by the unconditionally se-
cure QKD protocol. It means that the outside attacker Eve
and the dishonest participant Alice cannot get KBC, while Eve
and Bob cannot get KAC.

Secondly, the qubit sequences S 1 and S 2 are transmitted
from Charlie to Alice and Bob in Step 2(a). If an attacker can
successfully intercept the signatory’s particles in S 2 without
introducing any error, then he/she has the chance to produce a
fake signature. To ensure the security, Charlie needs to check
the qubits transmission procedure in Step 2(c). If Eve or a
dishonest participant tries to perform some attacks during the
qubits transmission, like the attack and the ancilla attack, she
will be detected with nonzero probability. Let us take the
intercept-measure-resend attack performed by Eve into con-
sideration firstly. Suppose that Eve has intercepted sequences
S 1 and S 2 in Step 2(a). Since she has no idea of Alice’s and

Table 1 Validation rules of our blind signature protocol

Alice/Bob bi = 00 bi = 01 bi = 10 bi = 11

m′i = 00 ci = 00 ci = 01 ci = 11 ci = 10

m′i = 01 ci = 01 ci = 00 ci = 10 ci = 11

m′i = 10 ci = 11 ci = 10 ci = 01 ci = 00

m′i = 11 ci = 10 ci = 11 ci = 00 ci = 01
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Bob’s measurement bases, if Eve uses randomly the X basis
or the Y basis to measure the two particles that Charlie sends
to Alice and Bob, she will have 3/4 probability to choose the
wrong basis. For each of these wrong measuring bases that
Eve has chosen, there is 50% probability to make error in
public discussion in Step 2(c). So in each of the l checking
positions, the error rate introduced by Eve is pe =

3
4 × 1

2 =
3
8 .

On the other hand, if Eve has intercepted only one sequence,
e.g. Bob’s sequence S 2, and she still chooses the X basis or
the Y basis randomly to measure the particles, then Eve has a
probability of 1/2 to choose the wrong basis and a probabil-
ity of 50% to cause an error in the wrong basis. In this case,
Eve’s attack will be detected with probability pe =

1
2 × 1

2 =
1
4

in each of the checking positions.
Another possible attack performed by Eve will be the an-

cilla attack, where Eve entangles an ancilla with transmitted
particles of the GHZ state and then measures the ancilla af-
ter getting published information. For one thing, Alice and
Bob only perform measurement, no unitary operation is in-
volved. And there is not secret information in Alice’s and
Bob’s published messages. For another thing, as is discussed
in ref. [11], if Eve wants to introduce no error into the check-
ing procedure (i.e. pe = 0), then the combined quantum state
|Ψ〉 must be a product state of a GHZ triplet and the ancilla,
which means Eve will gain no information about the signa-
ture. This can be described as

|Ψ〉 =
1∑

j,k,n=0

| jkn〉123

∣∣∣R jkn

〉
E

pe=0−−−→ |Ψ〉 = |φ〉123|R〉E , (6)

where | jkn〉123 a three-qubit state and
∣∣∣R jkn

〉
E

is an ancilla
state.

Actually, our security check procedure is an improved ver-
sion of the security check of QSS protocol in ref. [11] where
its related security issues have been discussed extensively in
refs. [11,31,32]. Once the security check is passed in Step
2(c), it means that S 1 and S 2 have been securely sent from
Charlie to Alice and Bob.

Some special attacks like the Trojan horse attack [33,34]
or the photon-number splitting attack [35,36] may be carried
out by Eve. In this case, inserting a filter in front of every
reception device to wipe off the photon signals with an ille-
gitimate wavelength and setting a photon number splitter to
split the redundant photons will defeat such kind of attacks.

Now, we will discuss whether our protocol satisfies the se-
curity requirements of weak blind signature in details.

4.1 No forgery

The verifier Charlie is considered to be authentic in our
scheme, so we will consider the cases that Eve and Alice try
to forge Bob’s signature. The validation of the signature is

guaranteed by the correlations of participants’ measurements.
Under different measurement bases, the entanglement rela-
tionship of the GHZ state should always be consistent. Be-
cause of KBC and one-time pad, Eve and Alice cannot get the
measurement outcomes of the signatory Bob, which means
they will not get or forge Bob’s signature in Step 3(b).

Eve or Alice may try to intercept Bob’s sequence S 2 in
Step 2(a) to produce a fake signature. As is mentioned above,
such attack performed by Eve will be detected since she
does not know Bob’s measurement bases. But Alice’s at-
tack strategy is more complicated than Eve since she has one
of the GHZ particles and is fully participated in the discus-
sion procedure. Similar to the participant attack shown in
refs. [31,32], a dishonest Alice may try to intercept S 2, inter-
act them with her ancillas and then resend S 2 to Bob. After
Bob reveals his information in Step 2(c), Alice then measures
her corresponding qubits to get useful information. Besides,
Alice also needs to announce outcomes according to Bob’s
measurement basis to avoid introducing any error. It has been
pointed out that the order of declaring the testing bit is cru-
cial to the security of GHZ based protocol [31]. The reason
behind the success of this participant attack is that dishonest
Alice can always get Bob’s measurement bases before she an-
nounces her own outcomes. While in our scheme, Alice and
Bob’s declaring order is random for every position. In half
of the time, Alice has to declare her measurement outcomes
firstly. This implies that Alice’s attack strategy will not work
in our scheme.

4.2 Blindness

In our protocol, the signatory Bob cannot know the content
of the message m when he signs it. Also, he will not get m in
Step 3(a) because m is encrypted with one-time pad and KAC.
Bob may also try to perform ancilla attack to get Alice’s mes-
sage m, but this kind of attack will not work. On the one hand,
Bob’s attack will be detected by Charlie in the public discus-
sion in Step 2(c) since in half of the time he has to publish
his measurement outcomes firstly. On the other hand, even if
Bob has successfully entangled his ancillas with Alice’s se-
quence S 1 without being detected which rarely happens, he
can still get nothing meaningful since Alice only performs
measurements in the following step and she will not publish
anything about her measurements. This means the message
m is blind for the signatory Bob.

4.3 No disavowal of original

As is discussed above, nobody can counterfeit the valid sig-
nature except for the signatory. Since Bob does not know
Alice and Charlie’s measurement bases which is chosen from
two non-orthogonal bases X and Y, he cannot conclude all the
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consistent measurement results of Alice and Charlie. If a sig-
nature has passed the verification process, it is only possible
that the signature is created by Bob. This means the signatory
Bob cannot deny having signed the message.

4.4 Traceability

If a disagreement happens, the signatory Bob can trace the
message owner Alice with the help of the trusted verifier
Charlie. Here, by using the signature triple (m′, b, c) and the
shared keys KAC and KBC, Charlie is able to verify whether
the signature is valid and to trace Alice since KAC is only
known by Alice and Charlie.

5 Conclusions

In summary, we propose a new and efficient BQS protocol
based on the GHZ states. Our protocol has the following fea-
tures. For one thing, compared with some previous BQS pro-
tocols such as Wen et al.’s [25] and Yin et al.’s [30], the pro-
posed protocol has 100% efficiency since Charlie can always
select the right measurement bases and every single bit can
be used for verification. For another, our protocol is simpler
since no anonymous communication technology, hash func-
tion [29] or quantum one-way function [30] has been used.
Moreover, the protocol is easy to implement in practical situ-
ations based on current technologies [37,38].

In our protocol, Charlie can always choose the right bases
to measure his qubits, which means each tuple of the mea-
surement results in the protocol is correlated rather than ran-
dom in refs. [25,30]. Therefore, the security problem shown
in ref. [26] can be avoided. The security of the protocol
is guaranteed by the entanglement correlations of the GHZ
states, the secret keys KAC and KBC and the one-time pad
algorithm, all of which have been proven unconditionally se-
cure. According to the security analysis, neither the outside
attacker nor the dishonest participants can break the security
requirements of the blind signature.
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