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Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for
investigating diffusion properties in equilibrium systems is discussed. With this method, we demonstrate that for one-dimensional
systems, using the indices of particles as the space variable, which has been accepted as a convention, may lead to misleading
conclusions. We then show that though in one-dimensional systems there is no general connection between energy diffusion and
heat conduction, however, a general connection between heat diffusion and heat conduction may exist. Relaxation behavior of local
energy current fluctuations and that of local heat current fluctuations are also studied. We find that they are significantly different,
though the global energy current equals the globe heat current.
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1 Introduction

By definition, it is clear that heat and internal energy are con-
ceptually different. Internal energy is referred to as the total
kinetic and potential energy of a system, which is a function
of the system state, while heat is a quantity that character-
izes a process. For one-dimensional (1D) systems, combin-
ing the continuous equations of energy and mass, such that:
∂e(x,t)
∂t +

∂
∂x je(x, t) = 0 and ∂ρ(x,t)

∂t +
∂
∂x p(x, t) = 0, one can obtain

∂

∂t

[
e(x, t) − (e + P)ρ(x, t)

ρ

]
+
∂

∂x
jq(x, t) = 0, (1)

and thus introduce the heat density function [1–4] as:

q(x, t) = e(x, t) − (e + p)ρ(x, t)
ρ

. (2)
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Here e(x, t), ρ(x, t), p(x, t), je(x, t), and jq(x, t) represent, re-
spectively, the density of energy, mass, momentum, energy
current, and heat current; e (ρ) and P represent, respectively,
the spatially averaged energy (mass) density and the internal
pressure of the system at the equilibrium state. The local heat
current is related to the local energy current as:

jq(x, t) = je(x, t) − e + P
ρ

p(x, t). (3)

Therefore, the physical meaning of the change rate of q(x, t)
is definite: it represents the divergence of the local heat cur-
rent. Conversely, the value of q(x, t) itself lacks specific
meaning. Usually q(x, t) is negative, because P > 0 and
〈ρ(x, t)/ρ〉 = 1. Indeed, following eq. (1), the heat density
can be defined as q(x, t) + c with an arbitrary constant c. En-
ergy contains two parts, corresponding to regular and irreg-
ular motions, respectively, but heat is consistently related to
thermal processes that feature random motions.

However, in some previous studies energy and heat are
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not distinguished. An example is in the study of the rela-
tion between anomalous diffusion and transport properties in
low-dimensional (one- and two-dimensional) systems [5,6].
It is well known that in bulk (three-dimensional) materials
the thermal conductivity κ and the heat diffusion coefficient
D can be generally related by κ = ρcPD, where cP is the con-
stant pressure specific heat. This relationship does not hold
in low-dimensional systems. In recent decades, stimulated by
the rapid progress in nanoscience [7–11], transport properties
of low-dimensional systems has attracted intensive research
efforts [5,6,12–16]. It has been found that in general diffu-
sion and transport are abnormal in low-dimensional systems.
In particular, in 1D momentum conserving systems, the heat
conductivity diverges with the system size L as κ ∼ Lα and
the heat diffusion coefficient diverges with time as D ∼ tβ−1

(α and β are constants). In some studies [17,18] the heat dif-
fusion behavior has been assumed, implicitly, to be the same
as the energy diffusion behavior, and the exponent β is calcu-
lated by tracing energy diffusion instead.

It has been conjectured that there exists a general relation
between exponents α and β. Two formulae, α = 2 − 2/β by
Li and Wang [19] and α = β − 1 by Denisov et al. [20],
have been proposed. It is worth noting that in these studies
[19,20] the researchers did not distinguish heat diffusion and
energy diffusion and treated them identically. Though this
is valid for the specific example systems they studied where
energy and heat are coincidentally the same, we emphasize
that in principle β involved in these two formulae should be
the exponent that characterizes heat diffusion, rather than that
of energy diffusion. This is particularly critical for clarifying
which one of these two formula is correct. In our very recent
study [21], it has been shown that the diffusion behaviors of
energy and heat can be qualitatively different, suggesting that
there should be no general relation between energy diffusion
and heat conduction, but a general relation between heat dif-
fusion and heat conduction may exist and can be established.

This paper is an effort to verify this conjecture. We will
attempt to first ascertain a correct way for calculating the ex-
ponent β, so as to validate the study. So far there are two
classes of methods for probing diffusion processes, that is,
the equilibrium [18,21,22] and non-equilibrium [17,23–27]
methods. With both methods, the probability density func-
tion (PDF) of local fluctuations of interested physical quan-
tities are calculated. The space variable of the PDF should
correctly give the positions of local fluctuations, but in prac-
tice the indices of particles are often taken as the space vari-
able as substitute to facilitate the simulations [17,18]. In do-
ing so, the underlying idea is that the index of a particle is
equivalent to the position in 1D systems, as the particle sim-
ply moves around the equilibrium position. As we herein
demonstrate, this is not the case: Using the index variable
may result in not only quantitative but also qualitative devia-
tions, which may be responsible for the confusing results of β
reported previously. By taking the correct space variable and
the equilibrium method (which has been shown to be more

efficient and accurate [21,22]), we can calculate the exponent
β of heat diffusion with high precision in a 1D hard-point gas
model [17,28–30]. By comparing it with the values of the ex-
ponent α obtained in previous studies [30–33] we will show
that the anomalous heat diffusion and heat conduction can be
accurately connected by the formula α = 2 − 2/β.

In addition, we also discuss the behaviors of the local heat
current and the local energy current. By properly setting the
coordinate system to guarantee the system has a vanishing to-
tal momentum, we find that although the total heat current is
always equal to the total energy current, the relaxation behav-
iors of local currents of energy and heat can be remarkably
different.

Herein, the model to be studied will be described and the
methods for probing energy and heat diffusion will be de-
tailed.

2 Models

We consider two paradigmatic 1D models extensively em-
ployed for studying transport properties of low-dimensional
systems. Each model is composed of N point particles ar-
ranged in order. We denote by mk, xk, vk, and pk, respectively,
the mass, the position, the velocity, and the momentum of the
kth particle.

The first model is a 1D hard-point gas [17,28–30] with
alternative mass mo for odd-numbered particles and me for
even-numbered particles. We set mo = 1 and me = 3, the
same as used by Cipriani et al. [17] for comparison. The par-
ticles travel freely except for elastic collisions with the near-
est neighbors. After a collision between the kth particle and
the (k + 1)th particle, the velocities change to

v′k =
mk − mk+1

mk + mk+1
vk +

2mk+1

mk + mk+1
vk+1, (4)

v′k+1 =
2mk

mk + mk+1
vk − mk − mk+1

mk + mk+1
vk+1. (5)

Another model is a 1D lattice; i.e., the well known Fermi-
Pasta-Ulam (FPU) model defined by the Hamiltonian:

H =
∑

k

p2
k

2mk
+

1
2

(xk − xk−1 − 1)2 +
1
4

(xk − xk−1 − 1)4, (6)

where the masses of all particles are set to unity.
In our simulations the periodic boundary condition is ap-

plied and the system size L is set to be the same as the parti-
cle number N, so that the averaged particle number density is

unity. The local temperature is defined as Tk ≡ 〈p2
k 〉

kBmk
, where kB

(set to be unity) is the Boltzmann constant and 〈·〉 stands for
the ensemble average. For both models the average energy
per particle is fixed to be unity, corresponding to a system
temperature T = 2 in the gas model and T ≈ 1.2 in the FPU
model.
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3 Methods

In principle, one can probe the diffusion behavior directly
by adding an external perturbation to the equilibrium sys-
tem and observing the ensuing relaxation process [24–26].
This method requires demanding computing resource, so that
a satisfactory precision is usually difficult to attain [22]. A
more effective method [18,21] is instead to study the prop-
erly rescaled spatiotemporal correlation functions of fluctua-
tions in the equilibrium state. The basic idea of this method
is detailed in the following.

Let A(x, t) represents the density distribution function of
a physical quantity A. In numerical simulations, in order
to calculate the spatiotemporal correlation function of fluc-
tuations of A, we have to discretize the space variable ini-
tially. Thus, we divide the space occupied by the system
into Nb = L/b bins of equal size of b. The total quan-
tity of A in the kth bin, denoted by Ak(t), is defined as
Ak(t) ≡ ∫

x∈kth bin
A(x, t)dx. As such Ak(t)/b gives the coarse-

grained density ofA in the kth bin. The fluctuations ofA are
therefore captured by ΔAk(t) ≡ Ak(t) − 〈A〉, where 〈A〉 repre-
sents the ensemble average of Ak(t). The positions of the bin
centers can then be used as the coarse-grained space variable.

For a conserved physical quantity A, it has been derived
elsewhere [21] that the PDF corresponding to a local fluc-
tuation initially located in the kth bin, which is specified by
ΔAk(0), can be calculated as:

ρA(Δxk,l, t) =
〈ΔAl(t)ΔAk(0)〉
〈ΔAk(0)ΔAk(0)〉 +

1
Nb − 1

(7)

if the microcanonical ensemble is considered, and

ρA(Δxk,l, t) =
〈ΔAl(t)ΔAk(0)〉
〈ΔAk(0)ΔAk(0)〉 (8)

if the canonical ensemble is considered. Here Δxk,l denotes
the displacement from the kth bin to the lth bin, that is,
Δxk,l ≡ (l − k)b. For consistency, in the following we will
use x to denote Δxk,l without confusion. The spatiotemporal
correlation function defined above gives the causal relation
between a local fluctuation and the effects it induces at an-
other position and at a later time, thus effectively equivalent
to the PDF that describes the diffusion process of the fluctua-
tion. In order to facilitate numerical simulations, we suggest
considering the microcanonical ensemble where all systems
are isolated from the environment. Hence one does not have
to simulate the environment, which reduces simulation time.

In previous studies [17,18,25–27], the authors constantly
use the indices of particles to represent the space variable.
In particular, the value of A of the kth particle, denoted by
Aind

k (t), is adopted to represent the density distribution of A
at the position of kL/N, and 〈ΔAind

l (t)ΔAind
k (0)〉 is assumed

to represent the correlation between two positions with a dis-
tance of x = (l−k)L/N and a time delay of t. In the following,
we will refer to this coordinate as the index variable. Al-
though the index represents the mean position of a particle in

the equilibrium state, it by no means gives the position of the
particle at instant times that is critical for correctly calculat-
ing the spatiotemporal correlation functions. For this reason,
Dhar [34] questioned the effectiveness of the index variable
because it may result in large position fluctuations. We find
that it is more pronounced: the deviations caused by using the
index variable is not only quantitative, but also qualitative.

Taking the energy fluctuations as an example, we show that
indeed the index variable may lead to qualitatively incorrect
results. We denote the spatiotemporal correlation function
obtained by using the coarse-grained space variable and the
index variable as ρe(x, t) and ρind

e (x, t), respectively. The 1D
gas model is considered first. To prepare an equilibrium gas,
the system is efficiently simulated for a sufficient time by us-
ing the event-driven algorithm that employs the heap data
structure to identify the collision times [30]. Then ρe(x, t)
and ρind

e (x, t) are calculated with N = 4000 and b = 1. Fig-
ures 1(a) and (b) show the results. One can see that they are
remarkably different: with the coarse-grained space variable,
the spatiotemporal correlation function has two peaks, while
with the index variable it has three peaks. The two peaks of
ρe(x, t) move outwards with a constant speed v = 1.75, which
can be readily shown to be the sound speed [21]. The two
side peaks of ρind

e (x, t) move outwards with the same speed.
The center peak of ρind

e (x, t) does not move but broadens as
Δw ∼ t0.67, where Δw represents the half-height width. It can
be thought that the two side peaks represent the sound mode
and the center peak represents the heat mode, as in the case of
the mass fluctuations that gives the dynamic structure factor
of the system [4]. However, we find the ratio of the area of
the center peak to that of the two side peaks equals 1/2, while
it should equal 2, that is, the Landau-Placzek ratio [35,36] of
an ideal gas, if it characterizes the dynamic structure factor
[4]. As will be discussed in the next section, the decaying be-
havior of the center peak is also different from the heat mode.
Therefore, ρind

e (x, t) fails to capture the properties of the heat
mode. It can be noted that the three peak structure has also
been reported in other studies of the gas model by using the
index variable [17,26,27].

As mentioned above, diffusion properties can also be in-
vestigated directly by observing the evolution of an added
perturbation to the system. We find that by applying this
method, one can obtain the same results (See Figures 1(c) and
(d)). In addition, we find that in the 1D FPU model (see Fig-
ures 1(e) and (f)), the qualitative difference between ρe(x, t)
and ρind

e (x, t) is also readily apparent [21]. These results sug-
gest clearly that the position of a particle at instant times can-
not be approximated by the equilibrium position in order to
correctly calculate spatiotemporal correlation functions.

4 Results and discussions

In Figure 1(a), it is clearly shown that the energy fluctuations
transport ballistically in the 1D gas model, implying that the
mean square displacement of the transported energy increases
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in time as 〈x2(t)〉 ∼ t2. And the heat conduction properties
of this model have been extensively studied [28–30]. It has
been found that the heat conductivity κ diverges with the sys-
tem size L as κ ∼ Lα with α = 1/3 [30–33], suggesting that
heat diffuses in a supperdiffusive manner rather than ballis-
tically. Therefore, energy diffusion and heat conduction do
not fall into the same anomalous class. We then calculate the
PDF of heat fluctuations, that is, ρq(x, t), following eq. (2)
and present the results in Figure 2. It can be seen that the
profile of ρq(x, t) differs completely from that of energy fluc-
tuations, ρe(x, t) (see Figure 1(a)), the former having only one
single peak. This feature has been reported elsewhere [21],
but here we perform the simulation with a larger system size
of N = 4096 which allows us to measure the decaying rate of
ρq(x, t) more accurate. As presented in Figure 2(b), we ob-
tain that the height of the peak of ρq(x, t) is h = ρq(0, t) ∼ t−λ
with λ = 0.60. As heat is a conserved quantity, the peak of
ρq(x, t) must keep the area unchange, and as a consequence
the half-height width should broaden as Δw ∼ t−0.60. As
such ρq(x, t) at different time may be rescaled onto a common
function. This is confirmed by our study presented in Figure
2(c): ρq(x, t) is indeed invariant upon rescaling x → tλx so
that tλρq(x, t) = tλ0ρq(x0, t0) for x = (t/t0)λx0 with scaling fac-
tor λ = 0.60.

This result confirms for the first time that the relaxation
of the heat mode follows the scaling law with λ = 3/5 as
predicted by the hydrodynamic mode-coupling theory [37].
This scaling property implies that ρq(x, t) relaxes as 〈x2(t)〉 =
〈x2

0(t0)〉( t
t0

)2λ; that is, heat fluctuations diffuse in a power law
〈x2(t)〉 ∼ tβ with the diffusion exponent β = 2λ [21]. We
obtain β = 1.20 accordingly, suggesting that heat diffusion is
superdiffusive, in clear contrast with energy diffusion which
is ballistic. Also, by combining β = 1.20 obtained here and
α = 1/3 obtained in previous analytical and numerical studies
[30–33], we find they follow consistently the general formula
proposed by Li and Wang [19] attempting to connect energy
diffusion (should be heat diffusion instead) and heat conduc-
tion in 1D systems.

Note that the center peak of ρind
e (x, t) (see Figure 1(a)) is

also invariant upon the rescaling but with λ = 0.67 instead,
which implies β = 1.34. Also note that the formula α = β− 1
correctly describes the relation of energy diffusion and heat
conduction in this case [17,18]. We can therefore conclude
that this is a consequence by improperly replacing the space
variable with the particle indices.

Finally, we study the relaxation behavior of local energy
current and local heat current. We set the total momentum of
the system to be zero. The global energy current always equ-

Figure 1 (Color online) Probability density distribution function of energy obtained by using correlation function method and perturbation method with space
variable being, respectively, coarse-grained space variable and particle indices. (a)–(d) are for gas model at t = 400, obtained by (a), (b) correlation function
method and (c), (d) perturbation method. (e), (f) are for FPU model at t = 600 by using correlation function method.

Figure 2 (Color online) Simulation results of spatiotemporal correlation function of heat fluctuations, ρq(x, t), for 1D gas model. (a) presents a snapshot of
ρq(x, t) at time t = 400, and (b) shows time dependence of height of center peak of ρq(x, t). Solid line in (b) is best linear fitting of data for revealing asymptotic
characteristics, suggesting that ρq(0, t) ∼ t−0.60. In (c) ρq(x, t)tλ versus x/tλ at three different times are compared with rescaling factor λ = 0.60 obtained via
best linear fitting in (b). These three curves overlap perfectly verifies the scaling property of ρq(x, t).
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Figure 3 (Color online) Spatiotemporal correlation function of local energy current Ce(x, t) (a) and of local heat current Cq(x, t) (b) at time t = 400 for 1D gas
model N=3000. In (c), autocorrelation function of globe energy current 〈Je(t)Je(0)〉 (solid line) is compared with

∫
Ce(x, t)dx (open squares) and

∫
Cq(x, t)dx

(solid triangles). These three sets of data fall onto the same curve upon proper shifts in vertical direction, N=512.

als the globe heat current, but this fact does not imply the
properties of local heat current and local energy current are
identical. Figures 3(a) and (b) show the spatiotemporal corre-
lation functions of local energy current Ce(x, t) = 〈 jel (t) jek(0)〉
and that of local heat current Cq(x, t) = 〈 jql (t) jqk(0)〉. Here
x = (l − k)L/N, ( the size of a bin is b = L/N ), the local
energy current is defined as jel (t) =

∑
k:xk∈lth bin mkv3

k/2, and
the local heat current is obtained by substituting jel (t) into eq.
(3). It can be seen that Ce(x, t) and Cq(x, t) have remarkably
different features: the former has a global negative bias, and
the two peaks moving oppositely at the sound speed. The
latter is more complex. There are two pulses which appear
as a negative Mexican hat wavelet and move outwards at the
sound speed, but there is no global bias. Instead, there is a
dip at the origin. Therefore, the properties of Cq(x, t) can not
be probed by studying Ce(x, t), and vice versa.

The globe energy current Je(t) =
∑

k jek(t). One has
〈Je(t)Je(0)〉 = 〈∑k jek(0)

∑
l jel (t)〉 ∝ 〈 jek(0)

∑
l jel (t)〉 for any

index k because of the homogeneity of the system. Thus,
〈Je(t)Je(0)〉 ∝ ∫ Ce(x, t)dx. Because Je(t) = Jq(t) as a re-
sult of the null total momentum, we have

∫
Ce(x, t)dx ∝∫

Cq(x, t)dx. This result implies that though the relaxation
behaviors of local heat current and local energy current are
different, the integrals decay in the similar way, which is also
confirmed by direct simulation results shown in Figure 3(c).

5 Conclusions

We demonstrate herein that in 1D systems, using the particle
indices as the space variable may result in qualitative devi-
ations in probing the diffusion properties, and hence should
be abandoned. Instead, the coarse-grained space variable is a
correct and practical choice. By taking advantage of this, we
have verified that in the 1D gas model, heat diffusion and heat
conduction, rather than energy diffusion and heat conduction,
can be connected by the formula α = 2− 2/β [19] accurately,
rather than by that proposed elsewhere [20]. Our analysis has
also shown that energy diffusion and heat conduction follows
α = β − 1 as observed [17,18] may be a misunderstanding
caused by misusing the particle indices as the space variable.
We emphasize that the position of a particle at instant times
cannot be approximated by the equilibrium position in prob-
ing spatiotemporal correlation functions of a system.

In addition, in the case of null total momentum, though the
globe energy current equals to the globe heat current, the lo-
cal energy currents differ from the local heat currents. The re-
laxation behavior of the former is significantly different from
that of the latter as well. We conclude that in general, the re-
laxation and transport properties of heat can not be identified
with those of energy.
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