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In this paper, we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous char-
acteristics depending on the values of a smoothness parameter. The oscillator is similar to the SD oscillator, originally introduced
in Phys Rev E 69(2006). The equilibrium stability and the complex bifurcations of the unperturbed system are investigated. The
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1 Introduction

Classical mechanical oscillators play an important role in
modern science and technology and they have been exten-
sively applied in engineering [1–5], molecular biology [6,7],
lattice dynamics [8,9] and quantum mechanics [10]. In the
past few decades, much attention has been paid to nonlinear
systems which are used to model and analyze the practical
systems. For example, Dupac et al. [11] modeled an electro-
magnetically levitated droplet as a three-dimensional system
with lumped masses and elastic springs where its nonlinear
behaviour was investigated. Kaper et al. [12] studied the be-
haviour of an oscillator having a discontinuous dynamic vi-
bration absorber. Boubaker et al. [13] investigated the meso-
scopic fabric models by employing a discrete mass-spring ap-
proach. Terumichi et al. [14] proposed a mass-spring system
attached at the lower end to a time-varying length string and
the nonstationary vibrations were investigated.

*Corresponding author (email: Q.J.Cao@hit.edu.cn)

Recently, Cao et al. [15–21] have proposed and investi-
gated a smooth and discontinuous (SD) oscillator to study
transitions from smooth to discontinuous dynamics being
controlled by a parameter α. The oscillator is an example of a
conservative nonlinear oscillatory system in which the restor-
ing force can have an irrational form. The generalized com-
plete elliptic integrals of the first and the second kind have
been introduced in ref. [20] to investigate the Hopf bifur-
cations of the system, where the details of this work can be
found. A highly accurate solution for the SD oscillator was
obtained by a generalized Senator-Bapat perturbation tech-
nique in ref. [22]. It is worth pointing out that the restor-
ing force in the SD oscillator is a single irrational nonlinear-
ity having one switch point for the snap-through buckling at
which a transition occurs from single well to double well dy-
namics, as can be seen in ref. [15]. This switch point itself is
degenerate singular having codimension two bifurcation be-
haviour, which has been investigated by Tian et al. in ref.
[21].
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The motivation of this paper is to propose a novel oscillator
with a pair of irrational nonlinearities, which implies the tran-
sition from smooth to discontinuous dynamics. The proposed
system can be regarded as a rigid coupling of two separate
SD oscillators vibrating horizontally. This simple system has
multiple well dynamics [23], high order degenerate singular-
ities [24] and also the transitions between the multiple wells,
which imply the multiple stability or from mechanics point
of view multiple snap-through bucklings [25,26]. Strong ir-
rational nonlinearities in the presented system may stimulate
more research interest in this area, further developments of
new methods and also more results in applications in science
and engineering. This would enable one to get more insight
into the complex dynamics of such nonlinear systems.

2 Mathematical model

In this section, we propose a new nonlinear oscillator which
comprises a lumped mass, m, linked by a pair of inclined
elastic springs of stiffness k, being capable of resisting both
tension and compression and which are pinned to their rigid
supports, as shown in Figure 1. Although each of the springs
provides linear restoring resistance, the resulting force has a
strong irrational nonlinearity due to the geometric configu-
ration. This mechanism is widely found in engineering and
physics to model buckled beams [27], folding structures [28]
and crystal lattices [9].

The governing equation of this system, which we name as
a coupled SD oscillator, can be obtained by employing La-
grange method (see details in Appendix A):

mX′′ + k(X + a)

⎛
⎜⎜⎜⎜⎜⎝1 −

1
√

(x + a)2 + β2

⎞
⎟⎟⎟⎟⎟⎠

+ k(X − a)

⎛
⎜⎜⎜⎜⎜⎝1 −

1
√

(x − a)2 + β2

⎞
⎟⎟⎟⎟⎟⎠ = 0, (1)

where the prime denotes the derivative with respect to time t,
m is the lumped mass, X is mass displacement. Each spring
is provided with stiffness k and the free length L. a is the
half distance between the rigid supports and h is the vertical
height.

Eq. (1) can be made dimensionless by letting ω2
0 = 2k/

m, x = X/L, α = a/L, β = h/L and τ = ω0t, written as:

ẍ + (x + α)

⎛
⎜⎜⎜⎜⎜⎝1 −

1
√

(x + α)2 + β2

⎞
⎟⎟⎟⎟⎟⎠

+ (x − α)

⎛
⎜⎜⎜⎜⎜⎝1 −

1
√

(x − α)2 + β2

⎞
⎟⎟⎟⎟⎟⎠ = 0, (2)

where the dot denotes the derivative with respect to τ. The
irrational restoring force

F(x, α, β) = (x + α)

⎛
⎜⎜⎜⎜⎜⎝1 −

1
√

(x + α)2 + β2

⎞
⎟⎟⎟⎟⎟⎠

+ (x − α)

⎛
⎜⎜⎜⎜⎜⎝1 −

1
√

(x − α)2 + β2

⎞
⎟⎟⎟⎟⎟⎠ ,

models transitions from smooth (β > 0) to discontinuous
(β = 0) dynamics. It is worth noting that if β = 0, eq. (2)
becomes a discontinuous oscillator:

ẍ + 2x − sign(x + α) − sign(x − α) = 0. (3)

The potential energy of system (2) is written as:

V(x) = x2 −
√

(x + α)2 + β2 −
√

(x − α)2 + β2

and the associated Hamiltonian of system (2) has the follow-
ing form

H(x, y) =
1
2

y2 + x2 −
√

(x + α)2 + β2 −
√

(x − α)2 + β2.

Both smooth and discontinuous resistance forces and their
respective potentials are plotted in Figure 2. Figures 2(a)
and 2(b) depict the smooth, where Figures 2(c) and 2(d) the
discontinuous forces and potentials, respectively. Details re-
garding the system parameters are given in the corresponding
figure caption. It can be seen from Figure 2 that the smooth
and discontinuous single, double and triple well potentials
can be obtained by varying parameters α and β in system (2).

3 Unperturbed dynamics

In this section, we discuss the complex phase portraits by
investigating the equilibrium stability and the bifurcations.
System (2) can be rewritten in the following form by letting
ẋ = y,

{
ẋ = y,

ẏ = −F(x, α, β).
(4)

Figure 1 Novel oscillator comprising a lump mass and a pair of linear

springs which are obliquely set up.
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Figure 2 (Color online) Nonlinear restoring forces for the smooth and the discontinuous cases ((a) and (c)), and their corresponding potentials ((b) and (d)).
Parameters in (a) and (b) are α = β = 0.25, 0.45, 0.5 and β = 0, α = 0, 0.25, 0.5 in (c) and (d). The curves marked with solid red, dashed blue and dotted green
represent single, double and triple well dynamics.

3.1 Equilibria bifurcations

It can be seen that the equilibrium set {(x, 0)|F(x, α, β) = 0}
of system (4) is a two-dimensional surface in (x, α, β) space,
as shown in Figure 3(a). Even if we can not find the analyt-
ical form for x = x(α, β) explicitly in terms of α and β, we
can investigate the structure of the surface by introducing a
plane, β = μα, marked in blue, in order to cut the equilib-
rium surface and intersections are obtained as shown in the
following:

Σ1 = {(x, α, β)|x ∈ R, β = μα, μ � 2},
Σ2 = {(x, α, β)|x ∈ R, β = μα, μ ∈ (0, 2)}, (5)

Σ3 = {(x, α, β)|x ∈ R, α = 0, β > 0},
which are the subcritical pitchfork and hysteretic bifurcations
and the discontinuous bifurcation diagrams, plotted in Fig-
ures 3(b)–(d), respectively. The ridge and valley curves of
the equilibria surface can be constructed by projecting the
surface onto the parametric α-β plane. The transition sets
Σ′ = C ∪B1 ∪B2 ∪B3 are obtained and plotted in Figure
4(Σ), where

Σ′ = {(α, β) |F = 0, Fx = 0, x ∈ R, α, β > 0},
B1 = {(α, β)| ∃(x, α), β > 8

√
5/25, s.t. F = Fx = 0},

B2 = {(α, β)| ∃(x, α), β < 8
√

5/25, s.t. F = Fx = 0},
B3 = {(α, β)| ∃(xi, α), s.t. F = Fx = 0, i = 1, 2}.

Here Σ′ bifurcates at the catastrophe point C(α0, β0) =
C
(
4
√

5/25, 8
√

5/25
)

into three branches of a subcritical
pitchfork bifurcation marked as B1, a supercritical pitchfork
bifurcation marked as B2, and a double saddle-node bifurca-
tion branch denoted by B3. The transition set Σ′, on which

the system is structurally unstable, divides the parameters α-
β plane into three distinct regions for marked by I, II, and III,
as shown in Figure 4(Σ). In each of these regions, the system
is structurally stable.

The phase portraits for parameters taken all over the space
are plotted in Figure 4 using the Hamiltonian function, H,
marked the same as on the corresponding parameter set in the
transition sets, Figure 4(Σ). The blue dots are the centres and
saddles; the tangent saddle and the centre-saddles connecting
the corresponding homoclinic, homo-heteroclinic, tangent
homoclinic and degenerate heteroclinic orbits are marked
with red, as shown in the corresponding plots in Figure 4,
where the small circles are the equilibria points of saddle like
and centre-saddle like points connecting the homoclinic like,
homo-heteroclinic like and heteroclinic like orbits marked
with red.

The bifurcation diagram Figure 4(Σ) shows the transitions
from single, double and triple well dynamics, the equilib-
rium bifurcations of subcritical and supercritical pitchforks
and also the transitions of non-buckling to single and dou-
ble snap-through bucklings. Suppose that a point M(α, β)
in the parameter plane starting from region I travels anti-
clockwise along a circumference of a small radius centred
at C(α0, β0) into regions II, II, and finally comes back to I
crossing branches B1, B2 and B3 successively. The system
behaviour changes dramatically through equilibrium bifurca-
tions, the transitions of multiple well dynamics and singular
closed orbits. System (4) bifurcates from a single stable well
into a bistable one when M(α, β) moves into region II cross-
ing branch B1 with the subcritical pitchfork, marked with I,
B1 and II, respectively. When M(α, β) travels across branch
B2 into region III, system (4) bifurcates into a triple stable
well, with the transition from a single into a double snap-
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Figure 3 (Color online) Equilibrium surface in (x, α, β) space and its intersections (the solid and dashed curves represent stable and unstable branches). (a)
Equilibrium surface, (b) subcritical pitchfork bifurcation, (c) hysteresis bifurcation and (d) the discontinuous bifurcation of ’M’ shape.

2

1

0

−1

−2
−1

−1

−1

−1

−1

−1−2 −1 −1 −1−2 −2 −2

−2
−1

−1

−1.0

−1.0

−0.5

−0.5

−1.0 −0.5

−0.4

−1−2

−1

−1

−1

−1−2

0 1

0 1 2

1

0

2

1

0

1

0

0

1

0 1

1

0

0 1 2 0 1 2

0

1

0

1

0 1 2 0 1 2

0

2

0 0.5 1.0

0

1

0 0.5 1.0

0

1

0 0.5 1.0

0

0.4

0 1 2

0

1

1.0

0.5

0
0 0.5 1.0

II

O DIII DD DI

III

IC

C I

II

III

DIII DD DIO

B1

B2

B2

B3

B3

B1

(Σ)

β

α

Figure 4 (Color online) Bifurcation diagram and phase portraits.
∑′ transition sets divide parameter (α, β) space into three persistent regions, marked I,II

and III, for which the corresponding phase portraits I, II, III for persistent, B1 ,B2 ,B3 for nonpersistent, C for catastrophe point, while O, DI, DD, DIII for
discontinuous.
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through buckling via a tangent saddle point, which leads to
a supercritical pitchfork, as shown in the corresponding pic-
tures, marked with II, B2 and III respectively. Finally, when
M(α, β) travels back into region I across B3, the system be-
comes again a single stable well via a pair of saddle node
bifurcations, as shown in the corresponding pictures, marked
with III, B3 and I, respectively. The phase portrait at the
catastrophe point C is also plotted in the top middle panel of
Figure 4. Moreover, the discontinuous (β = 0) phase por-
traits are presented to show the discontinuous multiple well
dynamics, which are marked as O, DIII, DD and DI, respec-
tively.

3.2 Equilibrium stability and singular closed orbits

The main characteristic of the investigated system is strong
nonlinearity of irrational type, which possesses both smooth
and discontinuous phases depending on the values of the con-
trol parameters. There is little possibility to obtain the analyt-
ical expressions for both the equilibria and the separatrixes in
the smooth regime, as can be seen in ref. [18]. In this subsec-
tion, both the equilibrium stability and separatrices are inves-
tigated topologically in the smooth regime near the catastro-
phe point C. A Taylor expansion of the nonlinear resistance
force in the neighbourhood of point C is given results in

F(x, α, β) = 2x −
∞∑

n=0

[Pn(α)
βn+1

(x + α)n+1

+
Pn(−α)
βn+1

(x − α)n+1
]

, (6)

where

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n], n = 0, 1, 2, 3, · · · .

Truncating this series to the fifth order (see ref. [35] for de-
tails) leads to the topologically equivalent to system (4) near
the catastrophe in the smooth regime, which can be written in
the following form:

{
ẋ = y
ẏ = −C1x −C3 x3 −C5 x5, (7)

where

C1 = P1(α) + P1(−α) = 2 +
2α2

(α2 + β2)
3
2

− 2

(α2 + β2)
1
2

,

C3 = P3(α) + P3( − α)

=
1

(α2 + β2)3/2
− 6α2

(α2 + β2)5/2
+

5α4

(α2 + β2)7/2
,

C5 = P5(α) + P5(−α) = −3
4

1

(α2 + β2)5/2
+

15α2

4(α2 + β2)7/2

− 105α4

4(α2 + β2)9/2
+

63
4

α6

(α2 + β2)11/2
.

It is not difficult to obtain the transition sets of subcriti-
cal B1, supercritical B2, and double saddle-node B3 bifur-
cations, which model accurately system (4) for the smooth
regime. Figure 5(Σ) shows the bifurcation diagram and the
corresponding persistent and nonpersistent phase portraits for
system (7).

Figure 5 (Color online) Bifurcation diagram and phase portraits of system (7) which is topologically equivalent to system (4) near the catastrophe C. The
detailed explanation is the same as in the caption of Figure 4.
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The Jacobian of system (7) is obtained and can be written
as follows:

J(x,y) =

(
0 1

−C1 − 3C3 x2 − 5C5x4 0

)

,

which will be used to investigate the stability in the follow-
ing discussion. By letting ẋ = 0, ẏ = 0, we can obtain five
equilibria:

P0 = (0, 0), P−1 = (−x1, 0), P+1 = (x1, 0),

P−2 = (−x2, 0), P+2 = (x2, 0),

where

x1 =

√

(−C3 −
√

C2
3 − 4C1C5)

/

2C5,

x2 =

√

(−C3 +

√

C2
3 − 4C1C5)

/

2C5.

The equilibrium stability of system (7) can be obtained by
considering the following six cases, which correspond to the
respective sets, I, B1, II B2, III, and B3 for different values
of parameter α and β.

(1) C3 > −2
√

C1C5 and C1,C5 > 0
It can be proved that P0 = (0, 0) is the unique equilibrium

point of system (7) with the Jacobian

J(0,0) =

(
0 1−C1 0

)

,

whose eigenvalues are λ = ±i
√

C1, which implies that (0, 0)
is a centre.

(2) C1 = 0,C3 � 0 and C5 > 0
It can be seen that if (α, β) ∈ B1 for C1 = 0,C3 � 0

and C5 > 0, the subcritical pitchfork bifurcation set, and
P0 = (0, 0) is also the unique equilibrium with the Jacobian

J(0,0) =

(
0 1
0 0

)

,

which implies that (0, 0) is a high order degenerated centre
(for details see Appendix B). It is worth noting that C3 = 0
implies that at C

(
4
√

5/25, 8
√

5/25
)

is a catastrophe.
(3) C1 < 0,C3 ∈ R and C5 > 0
This condition for (α, β) ∈ II, results with three equilibria

at
P−2 , P0 , P+2 ,

with the Jacobian at (0, 0)

J(0,0) =

(
0 1−C1 0

)

,

whose eigenvalues are λ = ±√−C1. This means that (0, 0) is
a saddle, while P−2 , P+2 are centres. The proof can be found
in Appendix B.

It can also be seen that system (7) has a homoclinic orbit
which can be expressed as follows:

Γ± : (xhom
± (t), yhom

± (t)) = (±3x2
2e−2x2

2t2
,∓6x4

2te−2x2
2 t2

). (8)

(4) C1 = 0 ,C3 < 0 and C5 > 0
This condition for (α, β) ∈B2 gives the supercritical pitch-

fork bifurcation set, which implies that its equilibria are

P−2 , P
−
1 = P0 = P+1 , P

+
2 ,

and the Jacobian at (0, 0) reads as

J(0,0) =

(
0 1
0 0

)

.

This indicates that (0,0) is a tangent-saddle (see Appendix B
for details).

Similarly, the Jacobian of equilibria P−2 and P+2 is obtained
and can be written as:

JP±2 =

(
0 1
−2x4

2 0

)

,

of which the eigenvalues are λ = ±i
√

2x2
1, which implies that

P−2 and P+2 are centres.
The degenerate homoclinic orbit connecting the tangent

saddle can be found, given by

Γ± : (xhom
± (t), yhom

± (t))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
±

√
6x2

√

3x4
2t2 + 4

,∓
√

6x5
2t

√

(3x4
2t2 + 4)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

(5) C1,C5 > 0 and C3 < −2
√

C1C5

In this case for (α, β) ∈ III , system (7) is triple well stable
and five distinct equilibria can be found:

P−2 , P
−
1 , P0 , P

+
1 , P

+
2 .

It is easy to see that P0 and P±2 are centres and P±1 are sad-
dles, which are connected by a homo-heteroclinc [29,30] or-
bit, whose branches have the following form:

Γ± : (xhet
± (t), yhet

± (t))

=

⎛
⎜⎜⎜⎜⎜⎝±
√

2x1 sinh(T1t/2)
√−ξ + cosh(T1t)

,±
√

2x1(1 − ξ)T1 cosh(T1t/2)

2(−ξ + cosh(T1t))3/2

⎞
⎟⎟⎟⎟⎟⎠ ,

Γ± : (xhom
± (t), yhom

± (t))

=

⎛
⎜⎜⎜⎜⎜⎝±
√

2x1 cosh(T1t/2)
√
ξ + cosh(T1t)

,∓
√

2x1(1 − ξ)T1 sinh(T1t/2)

2(ξ + cosh(T1t))3/2

⎞
⎟⎟⎟⎟⎟⎠ ,

(10)

where T1 = x2
1

√
2C5(ρ2 − 1), ξ = 5−3ρ2

3ρ2−1 , ρ2 =

−C3+
√

C2
3−4C1C5

−C3−
√

C2
3−4C1C5

.

(6) C1,C5 > 0 and C3 = −2
√

C1C5

It follows that parameters (α, β) are located in the double
saddle-node bifurcation set, B3, and the equilibria are

P−2 = P−1 , P0 , P
+
1 = P+2 ,
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with the Jacobian at (0, 0)

J(0,0) =

(
0 1−C1 0

)

,

of which the eigenvalues are λ = ±i
√

C1. This yields (0, 0)
as a centre.

In the same way, the Jacobian of equilibria P−2 = P−1 , P
+
1 =

P+2 can also be obtained and written as:

JP±1,2 =

(
0 1
0 0

)

,

which implies that the pair of equilibria are centre-saddles
(see Appendix B), which are connected by a double cuspidal
heteroclinic orbit, whose branches are obtained and given by

Γ± : (xhet
± (t), yhet

± (t))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
± x3

1t
√

x4
1t2 + 3

,±
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3
1

√

x4
1t2 + 3

− x7
1t2

√

(x4
1t2 + 3)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)

In summary, the equilibrium stabilities of system (7) are
listed in Table 1.

4 Perturbed chaotic thresholds

In this section the chaotic thresholds for system (1) are per-
turbed by a viscous damping force δX′, and an external har-
monic excitation of amplitude F and frequency Ω are inves-
tigated. The perturbed equation is written as follows:

mX′′ + δX′ + k(X + a)

⎛
⎜⎜⎜⎜⎜⎝1 −

L
√

(X + a)2 + h2

⎞
⎟⎟⎟⎟⎟⎠

+ k(X − a)

⎛
⎜⎜⎜⎜⎜⎝1 −

L
√

(X − a)2 + h2

⎞
⎟⎟⎟⎟⎟⎠ = F cosΩt, (12)

which can also be made dimensionless by letting x =

y/L, ω2
0 = k/m, α = a/L, β = h/L, n = δ/(2mω0), f =

F/(kL), ω = Ω/ω0, τ = ω0t, and written as:

ẍ + 2nẋ + F(x, α, β) = f cosωτ, (13)

where the dot denotes the derivative with respect to τ.
Eq. (13) can be re-written in the following form by letting

ẋ = y, {
ẋ = y,
ẏ = −2nẋ − F(x, α, β) + f cosωτ, (14)

for which it is impossible to get the analytical thresholds for
the perturbed separatrices (see details in ref. [19]).

In the following subsections, we carry out the chaotic anal-
ysis for the perturbed system (7) by truncating F(α, β) to the
fifth order:.

{
ẋ = y,
ẏ = −2nẋ −C1x −C3 x3 −C5 x5 + f cosωτ, (15)

based upon which Melnikov method can be employed to an-
alyze the chaotic criteria for the singular closed orbits in the
following subsections.

4.1 Homoclinic criterion

For a homoclinic orbit of system (7) described in (8) when
C1 < 0,C3 ∈ R and C5 > 0, the chaotic threshold of system
(15) can be detected by introducing the Melnikov function
written as:

Mhom
± (τ) =

∫ +∞

−∞
−2n(ẋhom

± (t))2dt

+

∫ +∞

−∞
f cosω(t + τ)ẋhom

± (t)dt. (16)

Omitting the tedious calculations leads to

Mhom
± (τ) =

∫ +∞

−∞
−2n(ẋhom

± (t))2dt

+ f cosωτ
∫ +∞

−∞
cos(ωt)ẋhom

± (t)dt

− f sinωτ
∫ +∞

−∞
sin(ωt)ẋhom

± (t)dt.

Let us define

R0(ω) =

∫ +∞
−∞ (ẋhom± (t))2dt

∫ +∞
−∞ cosω(t + τ)ẋhom± (t)dt

, (17)

which provides a way to detect chaotic motion for a homo-
clinic orbit which is similar to the standard Duffing homo-
clinic orbit by using the condition: f /2n > R0(ω) (see [30]
for details). This implies that the roots of Mhom± (τ) are simple,
which enables transverse intersections between stable and un-
stable manifolds of a tangent saddle to possibly occur and
system (15) can be chaotic. The detected chaotic threshold is
presented in Figure 6(a).

In order to verify the criterion obtained in this subsection,
a numerical simulation was carried out by fixing parameter

Table 1 Stability analysis for equilibria of system (7)

α, β C1 ,C2,C3 Equilibrium Singularity

I C1,C5 > 0 and C3 < −2
√

C1C5 P0 P0 centre
B1 C1 = 0, C3 � 0 and C5 > 0 P0 P0 centre

II C1 < 0, C3 ∈ R and C5 > 0 P−2 , P0, P+2 P0 saddle, P±2 centre
B2 C1 = 0, C3 < 0 and C5 > 0 P−2 , P

−
1 = P0 = P+1 , P

+
2 P−1 , P0, P+1 saddle, P±2 centre

III C1,C5 > 0 and C3 < −2
√

C1C5 P−2 , P
−
1 , P0, P+1 , P

+
2 P0, P±2 centre,P±1 saddle

B3 C1,C5 > 0 and C3 = −2
√

C1C5 P−2 = P−1 , P0, P+1 = P+2 P0 centre, P±1=P±2 centre-saddle
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Figure 6 (a) Homoclinic orbits chaotic boundary for system (15) in the (ω, f /n) plane, (b) bifurcation diagram of f versus y, (c) period three motion for
f=0.23 and (d) chaotic attractor for f=0.3.

α = 0.3, β = 0.6, n = 0.05, ω = 1.0. A bifurcation diagram,
y versus f , is given in Figure 6(b), from which periodic win-
dows and chaotic regions can be clearly seen as parameter f
changes. Figures 6(c) and 6(d) plot the phase portrait of a
period three solution for f = 0.23 and a chaotic attractor for
f= 0.3, respectively.

4.2 Tangent homoclinic criterion

The chaotic threshold of system (15) of the tangent homo-
clinic orbit described by (9) of system (7) when C1 = 0 C3 <
0 and C5 > 0 can be detected by introducing the following
Melnikov function (the Melnikovian)

Mhom
± (τ) =

∫ +∞

−∞
−2n(ẋhom

± (t))2dt

+

∫ +∞

−∞
f cosω(t + τ)ẋhom

± (t)dt,

and then

Mhom
± (τ) =

∫ +∞

−∞
−2n(ẋhom

± (t))2dt

+ f cosωτ
∫ +∞

−∞
cos(ωt)ẋhom

± (t)dt

− f sinωτ
∫ +∞

−∞
sin(ωt)ẋhom

± (t)dt.

As in subsect. (4.1), we define

R0(ω) =

∫ +∞
−∞ (ẋhom± (t))2dt

∫ +∞
−∞ cosω(t + τ)ẋhom± (t)dt

, (18)

which allows us to detect chaos for the pertgurbed homo-
clinic orbit with a tangent saddle by using the condition
f /2n > R0(ω). The Melnikovian detecting chaotic bound-
ary is shown in Figure 7(a).

Again numerical simulation was carried out to verify
the efficiency of the criterion, for parameters α = β =

0.3559, n = 0.005 and ω = 0.5 being fixed. A bifurcation
diagram y versus f is given in Figure 7(b), where chaotic be-
haviour and periodic windows are clearly seen. Figures 7(c)
and 7(d) dipict the chaotic attractor and period three motion.

4.3 Homo-heteroclinic criteria

Similarly as for the homo-heteroclinic orbit of system (7) de-
scribed by eq. (10) when C1,C5 > 0 and C3 < −2

√
C1C5, the

chaotic threshold of system (15) can be detected by introduc-
ing the Melnikov function

Mhet
± (τ; f , ω, n) =

∫ +∞

−∞
−2n(ẋhet

± (t))2dt

+

∫ +∞

−∞
f cosω(t + τ)ẋhet

± (t)dt,

which yields

Mhet
± (τ; f , ω, n) =

∫ +∞

−∞
−2n(ẋhet

± (t))2dt

− f sinωτ
∫ +∞

−∞
sin(ωt)ẋhet

± (t)dt

+ f cosωτ
∫ +∞

−∞
cos(ωt)ẋhet

± (t)dt.

The evaluation of this integral leads to the following Mel-
nikov function as in ref. [26]. We define

R0
het(ω) =

∫ +∞
−∞ −2n(ẋhet± (t))2dt

∫ +∞
−∞ f cosω(t + τ)ẋhet± (t)dt

=
T 2

1

8ωπ(ξ + 1)

[
(2ξ)

(1 − ξ2)1/2

(

arcsin ξ +
π

2

)

+ 2 + ξ

]

sinh
(2ω

T1

)

,

which determines a possible chaos if f /2n > R0
het(ω), which

is shown in Figure 8(a) by the dashed curve.
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Figure 7 (a) Melnikovian chaotic boundary for the degenerate homoclinic orbits with a tangent saddle for system (15) in the (ω, f /n) plane, (b) bifurcation
diagram of y versus f , (c) a chaotic attractor for f=1.8 and (d) a period three for f = 2.2.

Next we focus our attention on the homoclinic branches,
and the corresponding Melnikov integral has the following
form

Mhom
± (τ) =

∫ +∞

−∞
−2n(ẋhom

± (t))2dt

+ f cosωτ
∫ +∞

−∞
cos(ωt)ẋhom

± (t)dt

− f sinωτ
∫ +∞

−∞
sin(ωt)ẋhom

± (t)dt.

The calculation of the above integral leads to the Melnikov
function described in[27], where we define

R0
hom(ω) =

∫ +∞
−∞ −2n(ẋhom± (t))2dt

∫ +∞
−∞ f cosω(t + τ)ẋhom± (t)dt

=
T 2

1

32ωπ(ξ + 1)

[
(2ξ)

(1 − ξ2)1/2

(

arcsin ξ

− π

2

)

+ 2 + ξ

]

cosh
(2ω

T1

)

,

which allows to calculate the analytical chaotic threshold of
system (15) for f /2n > R0

hom(ω) plotted in Figure 8(a) with a
solid curve.

The parameters α = β = 0.4348, n = 0.01 and ω = 0.4 are
kept fixed in this numerical analysis. The bifurcation diagram
of system (13), x versus f , is shown in Figure 8(b). Examples
of a period two and a chaotic attractor are plotted in Figure
8(c) and Figure 8(d), respectively.

4.4 Cuspidal heteroclinic criterion

In the same way, the chaotic criterion for system (15) to deter-
mine the cuspidal heteroclinic orbit of system (7) described
by (11) for C1,C5 > 0 and C3 = −2

√
C1C5 can be obtained

by employing the Melnikov function as in the following.

Mhet
± (τ, f , ω, n) =

∫ +∞

−∞
−2n(ẋhet

± (t))2dt

+

∫ +∞

−∞
f cosω(t + τ)ẋhet

± (t)dt,

which can be integrated for both orbits, the upper one and
the lower to obtain the chaotic thresholds. Without loss of
generality, we only present the Melnikov function for the up-
per heteroclinic orbit, which is time-independent and depends
only on two parameters, f and n, respectively.

Mhet
± (τ, f , ω, n) =

∫ +∞

−∞
−2n(ẋhet

± (t))2dt

+ f cosωτ
∫ +∞

−∞
cos(ωt)ẋhet

± (t)dt

− f sinωτ
∫ +∞

−∞
sin(ωt)ẋhet

± (t)dt.

Let us define

R0(ω) =

∫ +∞
−∞ (ẋhet± (t))2dt

∫ +∞
−∞ cosω(t + τ)ẋhet± (t)dt

, (19)

which follows the analytical chaos criterion for the degener-
ate orbit for f /2n > R0(ω).

Numerical simulation was carried out to verify the effi-
ciency of the criteria for the parameters α = 0.4654, β =
0.4654, n = 0.005 and ω = 0.33 kept fixed. The bifurca-
tion diagram of system (13), x versus f , is plotted in Figure
9(b). When f increases beyond above the threshold value and
reaches f = 0.15, system (13) jumps to the area of chaotic
motion. As f increases, a period-doubling bifurcation starts
from f = 0.19 and other chaotic area starts from f = 0.22,
as be observed in Figure 9(b). It can also be seen from this
bifurcation diagram, that a period-five window occurs when
f takes values between 0.26 and 0.28. Figures 9(c) and 9(d)
plot a chaotic attractor for f = 0.252 and a phase portrait for
a period-five motion for f = 0.275, respectively.
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Figure 8 (a) Chaotic thresholds for the homo-heteroclinic orbits: the bold curves stand for the homoclinic branches and the dashed for the heteroclinic
branches of system (15) in the (ω, f /n) plane. The bold curves indicate the homoclinic and the dotted marks the heteroclinic Melnikov boundaries. (b)
Bifurcation diagram for f versus x, (c) period-2 solution for f = 0.42 and (d) chaotic attractor for f =0.47.

Figure 9 (a) Melnikov chaotic boundary for the double cuspidal heteroclinic orbits, ω − f /n curve for system (15), (b) bifurcation diagram, x versus f , (c)
chaotic attractor calculated for f = 0.252 and (d) period five motion calculated for f = 0.275.

5 Conclusions

In this paper, we have proposed a novel nonlinear oscilla-
tor with strong irrational nonlinearities, which demonstrates
s both standard (β > 0) and non-standard (β = 0) responses
of single, double and triple well dynamics. The equilibrium
stability and the bifurcation structure have been investigated
showing the subcritical, supercritical pitchforks and saddle-
node bifurcations. Phase portraits have also been plotted to
demonstrate the complex transitions from the multiple well
dynamics, singular closed orbits and the associated snap-
through bucklings as well for the unperturbed system. The
Melnikov method has been successfully employed to derive
the analytical chaotic criteria for the existing singular closed
orbits when the system is perturbed by viscous damping force
and external harmonic excitation.

The nonlinear oscillator proposed herein in this paper is
being actively studied in two main directions. First, the un-
known properties at the limit of β = 0 are analyzed to bet-
ter understand the bifurcation structure being perturbed by
damping and external forcing. The second direction is the
Hopf bifurcations and higher codimension [31,32] analysis
near the catastrophe point C.

Appendix A

Consider an oscillator which is composed of a lump mass of
m and a pair of linear springs of stiffness k, as illustrated in
Figure 1. The kinetic energy and the potential energy of the
system can be written as:

T = mX′2/2,
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and

V = k(
√

(X + a)2 + h2 − L)2/2 + k(
√

(X − a)2 + h2 − L)2/2,

which follows the Lagrangian formulation,

dL
dt

(
∂L
∂X′
)

− ∂L
∂X
= 0,

where L = T − V, and

∂L
∂X′
= mX′

∂L
∂X
= − k(X + a)

(

1 − L
√

(X + a)2 + h2

)

− k(X − a)
(

1 − L
√

(X − a)2 + h2

)

.

The equation of motion for the system can be obtained and
written as follows:

mX′′ + k(X + a)
(

1 − L
√

(X + a)2 + h2

)

+ k(X − a)
(

1 − L
√

(X − a)2 + h2

)

= 0.

Appendix B

Consider the differential equation:

ẍ + f (x) = 0, (a1)

or the first order equivalent system
{

ẋ = y,
ẏ = − f (x). (a2)

Here f (x) can be expanded into a Taylor series in the neigh-
borhood of x = 0,

f (x) = f (0) + f ′(0) +
f ′′(0)

2!
+

f ′′′(0)
3!

+ · · ·

+
f (n)(0)

n!
+ o(xn). (a3)

Substituting (a3) into system (a2) yields
{

ẋ = y,
ẏ = l0 + l1 x + l2x2 + l3x3 + · · · + ln xn + o(xn). (a4)

where ln = − f (n)(0)
n! is called the Lyapunov measure [33].

The degenerate equilibria (n > 1) of system (a2) can be
classified as follows:

(1) The equilibrium is a center-saddle if the first indica-
tor of non-zero Lyapunov measure (l2p � 0, p = 0, 1, · · · ) is
even, as shown in Figures A1(a) and (b); (2) The equilibrium
is a saddle or a tangent-saddle if the first non zero Lyapunov
measure is positive and the indicator is odd (l2p+1 > 0, p =
0, 1, · · · ), See Figure 10(c); (3) The equilibrium is a high or-
der degenerate centre if the first non zero Lyapunov measure
is negative and the indicator is odd (l2p+1 < 0, p = 0, 1, · · · ),
See Figure 10(d).

Figure A1 Phase portraits for different Lyapunov measures: (a) and (b)

centre-saddle for l2p � 0; (c) degenerate or tangent saddle for l2p+1 > 0, and

(d) l2p+1 < 0.
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