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In this study, a theoretical model was established for predicting the equilibrium shape of the droplet on flat and spherical sur-
faces. The theoretical equilibrium shape of heavy droplets could be obtained once contact angle and volume of droplets were 
given. It showed that the predictions of the theoretical flat model were in good agreement with the shape obtained by Surface 
Evolver when the contact angle is below 120 and the droplet size is on the order of capillary length. This available range will 
decrease and increase when the heavy droplet is on convex and concave spherical surface, respectively, in contrast to that on 
flat surface. The available range will decrease more for higher curvature of convex spherical surfaces. 
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1  Introduction 

The shape of a droplet is critical to wetting and spreading 
behavior which has attracted considerable research because 
of its application in MEMS, medical equipment, electronic 
technology, chemistry, glass industry and biology [1–11]. 
The key parameters of droplets, including inner pressure, 
height and contact area on the surface, mainly depend on 
the equilibrium shape of the droplet. The inner pressure is 
an important factor to the wetting states (Wenzel state or 
Cassie-Baxter state) of the droplet on rough surfaces [12], 
and also a driving force for determining whether the droplet 
enters and wets the hole or not [13]. The contact area of the 
droplet is critical to its adhesion and spreading [14,15]. The 
inner pressure and surface tension can deform the solid ma-
terials, especially the soft materials, in the contact area and 
affects the dynamic wetting, spreading and transferring of 
the droplet [16–18].  

The equilibrium shape of the droplet could be considered 
as part of a spherical surface [12,15,19–21] when the drop 
size is much smaller than the well-known capillary length [5] 

which can be given by  c / ,l g  where,  is liquid-air 

interface energy,  is the density of liquid, g is the gravita-
tional acceleration. The effect of gravity should be taken 
into account when the drop size is larger than capillary 
length lc (heavy droplets) [22–28]. The shape of droplet is 
determined by Laplace’s equation,   02 ,H p gz  where 

H is the mean curvature, p0 the pressure of apex of the 
droplet, z the vertical position below the apex. The exact 
shape of the droplet can be solved by using boundary condi-
tions of a given volume of droplet and the contact angle . 
The exact shape is not readily determined because there is 
no analytical solution of the nonlinear differential governing 
equation. The equilibrium shape of heavy droplet is no 
longer a part of spherical surface on a flat or curved solid 
surface, but tends to become an oblate spheroid. The nu-
merical results reveal that the equilibrium shape of a droplet 
is almost the shape of an axisymmetric ellipsoidal cap with 
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Young’s contact angle below 120° [28].  
Several models for the approximate solution were estab-

lished recently. Erbil and Meric [23] studied the sessile 
drops on polymer surface by ellipsoid cap. Whyman and 
Bormashenko [25] established oblate spheroid droplet mod-
el to study the shape of heavy droplets. Other researchers 
analyzed the shape of droplet using an ellipsoidal cap shape 
which was obtained by free-energy minimization [28]. These 
models were established on a flat surface. However, the 
wetting behaviors of droplets on curved surfaces have also 
been investigated in recent decades, such as electrowetting 
on spherical surface [29], adjustable lenses [30], flexible 
paper-like substrates [31] and soft deformed membrane [17]. 
Therefore, we established axisymmetric ellipsoidal surface 
model with Young’s contact angle to further investigate the 
equilibrium shape of heavy droplets on flat solid surfaces 
and spherical surfaces.  

The static and quasi-static wetting phenomena can be 
well simulated by Surface Evolver (SE) [32]. Chou et al. 
[27] simulated the stable states of pendant droplets on fibers 
with gravitational effects and Chatain et al. [33] analyzed 
the shapes and energies of droplets on micro-patterned sub-
strates. Others studied the shape of contact line on the sur-
faces with micro-posts and the stability of a bubble on su-
perhydrophobic surfaces [34,35]. These studies reveal that 
the equilibrium shape of droplet can be obtained by SE 
simulation. We simulated the shape of droplet on flat, con-
vex and concave curved surfaces by SE in order to check 
the precision and available range of our theoretical model. 

2  Theoretical and numerical methods 

2.1  Theoretical method 

The coordinate origin is taken at the centre of ellipse, the x 
axis is along horizontal principle axis (a) of ellipse and the y 
axis along vertical principle axis (b). The point on ellipse 
can be represented as (acos, bsin), and the angle between 
the solid surface and the tangent of elliptical arc at the solid 
surface is Young’s contact angle () as shown in Figure 
1(a). The theoretical equilibrium shape of droplet can be 
predicted as the surface which is rotated by solid black 
curve along y axis. The solid black curve corresponds to the 
range of parameter   0( ,π / 2),  0 is the starting angle 

and depends on contact angle  and principle axes. Ac-
cording to this coordinate system, the mean curvature of 
ellipsoidal surface is 2b/a2 and 1/a + a/b2 at y=b and y=0, 
respectively. The balance equation of pressure can be given 
as: 

        
 2 2

1
2 .

b a
gb

aa b
 (1) 

The slope of elliptical arc at the solid surface is k=dy/dx=  

 

Figure 1  Ellipsoidal surface model with Young’s contact angle and co-
ordinate system. (a) Theoretical ellipsoidal model on flat surface; (b) theo-
retical ellipsoidal model on spherical surface. 

b/(atan0)=tan(). Thus the starting angle is 
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The volume of heavy droplet can be expressed as: 
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We can solve for a, b and 0 from simultaneous eqs. (1)–(3) 
depending on the volume of liquid V, liquid-air interface 
energy , density of liquid  and wetting property (contact 
angle ). Then the parameters, the height h of droplet and 
diameter of contact area d, can be obtained easily by: h= 
b(1sin), d=2acos.  

The contact angle also keeps constant when the droplet is 
on the convex spherical surface with radius R, as shown in 
Figure 1(b). The balance equation of pressure is the same as 
eq. (1). However, the slope of elliptical arc at the solid sur-
face depends on the position and radius of the sphere as 
k=dy/dx=b/(atan0)=tan[(+)], where  is the central 
angle. The starting angle is 
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The volume of heavy droplet on spherical surface can be 
expressed as: 
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And the geometric condition is 

  0cos sin .a R  (6) 

We can solve for a, b and 0 from simultaneous eqs. (1) 
and (4)–(6) in order to be used to predict the equilibrium 
shape of droplet on convex spherical surface. If the droplet 
is on concave spherical surface with the radius R, the radius 
R will have a negative value for eqs. (5) and (6). 

2.2  Simulation method 

The basic idea of SE is to minimize the free energy of sys-               

tem subject to the constraints. The stable shape of droplet 
with minimum free energy corresponds to the equilibrium 
shape. The total free energy of sessile droplet on surface 
includes solid-liquid (SL), solid-air (SA) and liquid-air () 
interface energy and gravitational energy. Simplifying the 
total free energy by the well-known Young’s equation 
cos=(SASL)/, it can be given as: 

         LA SL( ) ( cos ) ( ),i j k k

i j k

E A A gV z  (7) 

where LA
iA  and SL

jA  are liquid-air and solid-liquid inter-

facial areas, respectively. The Vk and zk are the volume and 
the centroid position of each liquid element, respectively.  

The initial model was established with calculating pa-
rameters density of liquid 1000 kg/m3, gravitational accel-
eration 9.8 m/s2, liquid-air interface energy 0.07275 J/m2, 
and the volume of liquid 60 L and contact angle of surface 
57° for Figure 2(a), the volume of liquid 100 L and contact 
angle of surface 106° for Figure 2(b), respectively. Two  

 

Figure 2  (Color online) Simulation results by SE in comparison with experimental results. (a) Initial model of a 60 L droplet on the surface with contact 
angle 57°; (b) initial model of a 100 L droplet and contact angle 106°; (c) and (d) simulation results corresponding to (a) and (b), respectively; (e) experi-
mental observation of a 60 L droplet on the surface with contact angle 57° by OCA 20 Device from Dataphysics (Germany); (f) experimental observation 
of a 100 L droplet and contact angle 106°. 
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constraints were used, the vertices and edges of the contact 
area were required to lie on the flat or spherical surface and 
the droplet volume was kept constant during iteration. The 
simulations were performed by SE to evolve the configura-
tion of liquid from the initial model to that with minimum 
system energy. Our calculation was performed until the 
total free energy difference converges to within the ac-
ceptable tolerance of 104 when we considered it is at min-
imum system energy. The results were shown in Figures 2(c) 
and (d) corresponding to the initial model as Figures 2(a) 
and (b), respectively.  

The shape of the droplet can be described through the 
coordinate of nodes on the liquid-air interface. The height 
and diameter of contact area of equilibrium droplet can also 
be obtained through these node data. 

3  Results and discussion 

We did simple wetting experiments at 20C temperature and  

55% humidity that a 60 L water droplet is stably on flat 
silicon wafer with a contact angle 57° (Figure 2(e)). A 100 
L water droplet is stable on the flat silicon wafer coating 
Octadecyltricholorosilane (OTS) with the contact angle 
106° (Figure 2(f)). The solid lines are the simulation shape 
(Figures 2(c) and (d)) by SE with the same volume and 
contact angle. It shows that the solid line edges fit the equi-
librium shape of water droplet consistently. This allowed us 
to confirm the correctness of the SE simulation, so that we 
can check the available range of our theoretical model 
through the simulation results. 

The shape of droplet with different liquid volumes and 
contact angles on flat surface had been theoretically ob-
tained as shown in Figure 3. The solid line is theoretical 
ellipsoidal surface. It reveals that the theoretical model can 
predict when the liquid with small volume is stable on the 
hydrophilic surface (Figures 3(a)–(d)). The errors increases 
on hydrophobic surfaces (Figure 3(e)) and theoretical result 
is inconsistent on superhydrophobic surfaces (Figure 3(f)). 
It is much complicated to compare every point on the equi-          

 
Figure 3  (Color online) Equilibrium shapes of heavy droplets and fitting elliptical surfaces (solid curves). a and b are the length of principle axes of fitting 
elliptical surfaces, respectively. (a) A 50 L droplet on the surface with contact angle 30; (b) a 50 L droplet and contact angle 60; (c) a 100 L droplet 
and contact angle 60; (d) a 100 L droplet and contact angle 90; (e) a 100 L droplet and contact angle 120; (f) a 100 L droplet and contact angle 150. 

 
Figure 4  (Color online) Theoretical predictions of the height and diameter of contact area in comparison with the simulation results. (a) Theoretical and 
simulation results of the height and diameter vs. contact angle with constant 100 L volume (errors changes as per the illustration); (b) theoretical and simu-
lation results of the height and diameter vs. dimensionless volume with constant contact angle 60 (errors changes as per the illustration). 
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librium shape with the theoretical results. We found that the 
theoretical ellipsoidal surface could fit the equilibrium 
shape of droplet by SE simulation when the height and di-
ameter of contact area both are consistent to the simulation, 
respectively. These two parameters are selected to analyze 

the errors in this paper. The theoretical and simulative 
height and diameter are shown in Figures 4(a) and (b) with 
different contact angles and volumes, respectively. The re-
sults show that the available range of our model (errors < 
5%) for the contact angle is below 120° and the dimen-          

 

Figure 5  Simulative equilibrium shapes of heavy droplets on convex and concave surface by SE. The solid red lines are theoretical results. (a) Fitting is 
consistent in the available range; (b)–(d) fitting is not consistent with high volume liquid, large contact angle and high curvature, respectively, on convex 
surface; (e) fitting is not consistent until the contact angle is 150 on concave surface. 

 
Figure 6  Theoretical and simulative results of the height and diameter on convex and concave surface. (a) Changes with contact angle; (b) changes with 
dimensionless volume; (c) changes with dimensionless curvature. 
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sionless volume of droplet (V/lc
3) is less than 12, as the il-

lustration in Figures 4(a) and (b) shows. This available 
range of our model is very similar to the results of Lubarda 
and Talke [28] in that the contact angle is below 120° and 
the droplet size is on the order of capillary length. Our 
model has the characteristic that the contact angle is con-
stant (keeping the inherence wetting property of materials), 
the calculations are simple and the precision is good in 
available range. Our predictions are not as consistent as that 
of Lubarda and Talke [28] when the parameters are beyond 
available range. The model suggested by Lubarda and Talke 
[28] is based on the principle of free energy minimization, 
but the contact angle can not be kept constant on the solid 
surface. The calculation of free energy minimization was 
more complex than that of our model.  

The equilibrium shape of droplet on spherical surfaces 
were theoretically obtained and compared with simulation 
results as illustrated in Figure 5. Only the nodes of surface 
of equilibrium shape are shown so that the solid spherical 
surface can be seen (the edges of spherical surface were 
marked by dash line). It reveals that the theoretical result is 
in good agreement when the parameters used in the available 
range (Figure 5(a)), but is inconsistent with a high volume 
of liquid (Figure 5(b)), large contact angle (Figure 5(c)) and 
small radius of convex spherical surface (high curvature, 
Figure 5(d)). It is more consistent for the droplet on concave 
spherical surface than on flat or convex spherical surface 
with the same volume and contact angle (Figure 5(e)).  

The two parameters (height and diameter of contact area) 
are also used to check the available range of convex spheri-
cal model and concave spherical model as illustrated in 
Figure 6. The available contact angle ranges of the convex 
(R=10 mm) and concave (R=10 mm) surface model are 
below 100° and 140° (Figure 6(a)), respectively using a 100 
L droplet. The available dimensionless volume ranges of 
convex (R=10 mm) and concave (R=10 mm) surface mod-
el are less than 5 and 20 (Figure 6(b)), respectively, with the 
contact angle at 60°. It indicates that the available range 
changes are smaller for convex surface model and larger for 
concave surface model, in contrast to that of the flat surface 
model. The curvature of spherical surface certainly has an 
effect on available range. The available range of contact 
angle will be below 60° with 100 L droplet when the di-
mensionless curvature (1/R)/(1/V1/3) is more than 0.8. That 
is, the radius of convex spherical surface is less than 6 mm 
(Figure 6(c)). The droplet will be trapped in the concave 
spherical surface with the radius near to the characteristic 
length of droplet (~V1/3), so that the theoretical prediction 
and simulation is terminated.  

Currently, the theoretical ellipsoid model can not 
properly predict the shape of heavy droplet on hydrophobic 
surface on flat surface and spherical surface because the 
theoretical model has upper-lower symmetric, but the true 
shape of the heavy droplet does not. This new theoretical 
asymmetric model will be carried out for improving the 

model on hydrophobic surface in the future work.  

4  Conclusion 

Theoretical model of equilibrium shape of heavy droplet on 
flat and spherical solid surfaces were established and the 
equilibrium shape of droplet was simulated by SE. The con-
trasting results show that the flat surface model with 
Young’s contact angle fit the equilibrium shape of heavy 
droplet consistently. The available range of our theoretical 
model was quantitatively analyzed by the characteristic pa-
rameters including height of droplet and diameter of contact 
area. The available range of this simply model does not de-
crease in contrast to the model of Lubarda and Talke. The 
model has the characteristic that the contact angle is con-
stant, calculations are simple and the precision is in good 
agreement within the available range. 

The theoretical model on spherical surface also fits the 
equilibrium shape of heavy droplets within the available 
range. It shows that the available range will decrease and 
increase on convex and concave spherical surface, respec-
tively, in contrast to that of flat surface. The more the 
available range decreases, the higher curvature the convex 
spherical surface becomes.  
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