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By incorporating the contribution of solute atoms to the Helmholtz free energy of solid solution, a linear relation is derived 
between Young’s modulus and the concentration of solute atoms. The solute atoms can either increase or decrease Young’s 
modulus of solid solution, depending on the first-order derivative of the Helmholtz free energy with respect to the concentra-
tion of solute atoms. Using this relation, a closed-form solution of the chemical stress in an elastic plate is obtained when the 
diffusion behavior in the plate can be described by the classical Fick’s second law with convection boundary condition on one 
surface and zero flux on the other surface. The plate experiences tensile stress after short diffusion time due to asymmetrical 
diffusion, which will likely cause surface microcracking. The results show that the effect of the concentration dependence of 
Young’s modulus on the evolution of chemical stress in elastic plates is negligible if the change of Young’s modulus due to the 
diffusive motion of solute atomsis is not compatible in magnitude with Young’s modulus of the pure material. Also, a new 
diffusion equation is developed for strictly regular binary solid solution. The effective diffusivity is a nonlinear function of the 
concentration of solute atoms. 
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List of main symbols 

c     concentration of solute atoms
 

ireaction anodic or cathodic current density at 
the surface of the plate

 
n    number of participating electrons

 
ui (i=1, 2, 3)  components of the displacement vector

 Cijkl   stiffness tensor 
D0   diffusivity of solute atoms 
Deff   effective diffusivity of solute atoms  
E    Young’s modulus  
Fj (i=1, 2, 3)  components of body force 
J    vector of the diffusion flux 

M    mobility of the diffusing component 
R    gas constant 
S    entropy 
T    absolute temperature 
UI    internal energy

 
Ustrain   strain energy density

  charge transfer barrier for the anodic or 
cathodic reaction 

    Poisson’s ratio 
    chemical potential 
    activity coefficient 
    hydrostatic stress

 ij
 (i, j=1, 2, 3) components of stress tensor 

ij (i, j=1, 2, 3) components of strain tensor 
    Holmholtz free energy  
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 the coefficient of the volume change per mole of 
solute atoms 

  Faraday’s constant 

The migration of solute atoms or molecules in solid mate-
rials can cause distortion of local structure [1] and local 
solid reaction including formation of intermetallic com-
pounds [2–5], which creates local mechanical stress, re-
ferred to as diffusion-induced stress or chemical stress 
[6,7]. The effect of chemical stress on structural evolution 
and structural degradation can be observed in a variety of 
material systems and in electronic interconnects. For ex-
ample, the fast diffusion of Cu in Sn can lead to the for-
mation of intermetallic compound of Cu6Sn5 in the grain 
boundaries of Sn-Cu alloy, which can create local stress 
and cause spontaneous formation of Sn-whiskers. During 
electrochemical cycling, the insertion and de-insertion of 
Li-atoms into the active materials in Li-ion batteries, such 
as graphite and silicon, can cause volumetric change and 
lead to microcracking of negative electrode [8]. The 
chemical stress due to the doping of impurities in semi-
conductor materials can initiate generation of dislocations 
which affect distribution of solute atoms and electronic 
behavior of semiconductors [9] due to the interaction be-
tween dislocations and solute atoms.  

Prussin [6] was the first to analyze the phenomenon of 
diffusion-induced stress. Li [7] analyzed the evolution of 
diffusion-induced stress in elastic materials of simple ge-
ometries. Lee and co-workers [10–12] studied the evolution 
of chemical stresses in composite materials. Yang and Li 
[13] analyzed the bending of an elastic beam induced by the 
diffusion of solute atoms. Chu and Lee [14] used Li’s solu-
tion [7] to analyze the effect of chemical stresses on diffu-
sion without addressing the coupling effect. Zhang et al. [15] 
considered the effects of absorption and desorption and used 
the convection boundary condition in analyzing the evolu-
tion of chemical stress in a membrane. They revealed that 
the boundary conditions play an important role in the stress 
evolution. Kandasamy [16] considered the influence of 
self-induced stress on the temporal-spatial variation of con-
centration during the diffusion of hydrogen in a palladium 
and proposed a quadratic steady-state concentration profile. 
Considering the interaction between diffusion and chemical 
stress, Yang [17] derived a diffusion equation taking ac-
count of the effect of stress-induced diffusion and estab-
lished a relationship between hydrostatic stress and concen-
tration of solute atoms and obtained a general relation 
among the surface concentration of solute atoms, normal 
stress and surface deformation of a solid. Later, Zhang et al. 
[18] considered the effect of stress-induced diffusion and 
analyzed the intercalation-induced stress in Li-ion battery 
electrode particles. Kalnaus et al. [19] recently used the 
theory of diffusion-induced stress and a fracture damage 
parameter to analyze the fracture of silicon particles due to 
Li-ion intercalation. Most of these analyses have considered 
the diffusion-induced stress in homogeneous materials 

without considering the concentration-dependent elastic 
properties of materials. 

It is known that the presence of impurities in a solid can 
alter local structure and cause the change in local mechani-
cal response. Soma et al. [20] used the microscopic elec-
tronic theory to calculate the concentration dependence of 
the elastic moduli of Al-Si and Al-Ge solid solutions from 
the first principles. Their results showed that the elastic 
constants decrease with increasing the concentration of so-
lute atoms (Si and Ge). In contrast to the results for the sys-
tems of Al-Si and Al-Ge solid solutions, Soma et al. [21] 
also found that the elastic modulus of Al-Cu solid solution 
increases with increasing the concentration of Cu solute 
atoms. Recently, Qi et al. [22,23] used density functional 
theory to calculate the dependence of the elastic modulus of 
lithiated graphite, Li-Si amorphous and crystalline struc-
tures on lithium concentration and demonstrated the effect 
of Li-concentration on the elastic properties of the active 
materials used in Li-ion batteries. Using the results from Qi 
et al. [22,23], Deshpande et al. [24] numerically analyzed 
the effect of concentration-dependent elastic modulus on the 
diffusion-induced stress in an elastic cylinder.  

Considering the important role of diffusion-induced 
stress in controlling the structural and electrochemical in-
tegrity of Li-ion batteries, I present a thermodynamic model 
to describe the concentration-dependence of elastic proper-
ties of solid solutions. A general relationship between the 
Young’s modulus of a solid solution and the concentration 
of solute atoms is derived. The effect of the atomic/mo- 
lecular interaction in non-ideal solid solutions on the diffu-
sion equation is also discussed. 

1  Concentration dependence of elastic con-
stants 

Consider an elastic solid made of solid solution and sub-
jected to mechanical loading. The deformation and stress 
states of the solid are determined by a stress tensor, ij (i, 
j=1, 2, 3), and a strain tensor, ij. The increment of strain 
energy per unit volume, Ustrain, can be calculated by 
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from which the mechanical work per unit volume done to 
the solid is  
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Assume that the deformation occurs slowly and thermody-
namic equilibrium is established in the solid at every instant. 
The first and second laws of thermodynamics give 
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where UI is internal energy, T is absolute temperature, and S 
is entropy. From definition of the Helmholtz free energy, 
=UI–TS, there is 
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which gives 
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Using eq. (5), the stiffness tensor, Cijkl, can be calculated 
as: 
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The subscript  ij  means that all other ij remain constant 

when taking the derivative with respect to ij. For an elastic 
solid made of solid solution, one can expand the Helmholtz 
free energy of   in a Taylor series as: 
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where c is the concentration of solute atoms. Substitution of 
eq. (7) in eq. (6) yields 
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with 0
ijklC  being the elastic constants without the presence 

of solute atoms and Cijkl being the change of the elastic 
constants per unit concentration of solute atoms. To a first 
order of approximation, the elastic constants are a linear 
function of the concentration of solute atoms. Depending on 
the contribution of solute atoms to the solid solution, the 
elastic constants can either increase or decrease with in-
creasing the concentration of solute atoms. For isotropic 
materials, eq. (8) gives the concentration dependence of 
Young’s modulus to the first order of the solute concentra-
tion as: 

 0  E E c  (9) 

with E0 being Young’s modulus without the presence of 
solute atoms and  being the change of Young’s modulus 
per unit concentration of solute atoms. 

It is worth pointing out that the linear dependence of 
elastic constants on the concentration of second phase is 
well-known for particulate composites of diluent concentra-
tion [25–28]. The intrinsic elastic constants can also either 
increase or decrease with increasing the concentration of 
second phase, depending on the ratio of the elastic constants 

of matrix to those of particulate.  

2  Mathematical formula of the coupling problem 

2.1  Governing equation of mechanical equilibrium 

Assume that the local deformation induced by solute atoms 
is small and the material is isotropic. Thus the theory of 
linear elasticity can be applied to analyze the deformation 
induced by diffusion and migration of solute atoms as used 
by Prussin [6] and Li [7]. The relationships between the 
components of the strain tensor (ij) and the components of 
the displacement vector (ui, i=1, 2, 3) are 
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and the constitutive relations describing the diffusion-  
induced deformation are 
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[(1 ) ] .
3ij ij kk ij
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Here,  is the coefficient of the volume change per mole of 
solute atoms, and  is Poisson’s ratio of the material. The 
Young’s modulus E is a function of the concentration of 
solute atoms as given in eq. (9) and the Poisson’s ratio is 
assumed to be a constant independent of c.  

In general, the characteristic time for elastic deformation 
of solids is much smaller than that for atomic diffusion and 
migration. Thus, the elastic deformation induced by the dif-
fusion of solute atoms can be reasonably approximated as 
quasi-static process, and mechanical equilibrium is attained 
instantaneously. The equilibrium equations describing the 
elastic deformation of a solid are 
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where Fj
 ( 1,  2,  3)j  denote the components of body force 

along the corresponding direction. From eq. (10) to eq. (12), 
one can note that the diffusion-induced stress is analogous 
to thermal stress created by gradient of temperature in an 
otherwise stress-free solid. 

Using eq. (9), the constitutive equations of (11) and the 
relation between the components of the strain tensor and the 
components of the displacement vector of (10) in eq. (12), 
one has 
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where G and K are the shear and bulk moduli of the solid, 
respectively, related to Young’s modulus as: 
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G K  (14)  

Eq. (13) governs the diffusion-induced stress in inhomo-
geneous, elastic materials. Substituting eq. (9) into eq. (13) 
gives 
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Both the concentration and concentration gradient of solute 
atoms contribute to the evolution of local deformation in 
materials. For homogeneous materials with Young’s modu-
lus independent of the concentration of solute atoms, there 
is =0 and eq. (15) is reduced to the result given by Yang 
[17].  

To completely describe the problem, one needs the 
boundary conditions to obtain the deformation and stress 
fields from eq. (15) and the diffusion field. Depending on 
the loading and displacement conditions, both the stress and 
displacement can be pre-described on portions of the 
boundary similar to the theory of linear elasticity. 

2.2  Diffusion equation 

Based on thermodynamics, the chemical potential () in a 
solid solution can be written as: 

 0 ln ,      RT c  (16) 

where 0 is a constant, R is the gas constant,  is the activity 
coefficient, and  is hydrostatic stress. Using eq. (16), the 
diffusion flux being proportional to the gradient of chemical 
potential can be expressed as: 

 0 ln ,         
 

c
Mc D c c

RT
J      (17) 

where J is the vector of the diffusion flux, M is the mobility 
of the diffusing component, and D0 is the diffusivity of so-
lute atoms in a stress-free solid. Eq. (17) is reduced to the 
result for an ideal solid solution, i.e., =1 [17]. In contrast 
to ideal solid solutions, the diffusion flux is dependent on 
the interaction between solvent atoms and solute atoms for 
regular solid solution.  

For a strictly regular binary solution, there is [29] 

 2ln (1 ) .   c  (18) 

The factor  represents the difference in interaction between 
similar atoms and two dissimilar atoms in the solution. Sub-
stitution of eq. (18) in eq. (17) gives 
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If the hydrostatic stress is only a function of the concentra-
tion of solute atoms, one can define the effective diffusivity 
of solute atoms (Deff) in a stressed solid as: 
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The interaction between two dissimilar atoms introduces 
quadratic dependence of the effective diffusivity on the 
concentration of solute atoms even when the solid is at a 
stress-free state. Using the law of mass conservation: 
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the diffusion equation accounting for the effect of stress- 
induced diffusion can be written as 
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For the hydrostatic stress being proportional to the concen-
tration with the proportionality of the ratio , independent of 
spatial variables, eq. (22) can be written as 

2
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c
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Finally, one needs to have the boundary conditions, such 
as the concentration condition or the flux condition on por-
tions of the boundary in order to numerically or analytically 
solve the diffusion equation (23) for a given stress field. 

3  Evolution of chemical stress in an elastic thin 
plate 

In general, it is very difficult to obtain analytical solutions 
of chemical stress in elastic solids due to the coupling be-
tween diffusion and stress as given in eqs. (15) and (23). To 
obtain a closed-form solution of chemical stress, we assume 
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that the effect of stress on the diffusion of solute atoms is 
negligible and the solid solution is an ideal solution in the 
following analysis of the stress evolution in an elastic thin 
plate. Thus the diffusion of solute atoms in the plate can be 
described by the classical Fick’s second law. 

3.1  Concentration field 

Consider a conducting, elastic thin plate in the region 
0 , x L  ,   y  and .   z  The elastic plate 

functions as an electrode in an electrochemical environment; 
and solute atoms diffuse into the plate similar to the diffu- 
sion of lithium in electric anode in a Li-ion battery. To ob-
tain a closed-form solution, assume that the effect of stress 
on the diffusion of solute atoms in the plate is negligible. 
Thus, the diffusion of solute atoms in the plate satisfies 
Fick’s second law as: 

 
2

0 2 . 
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 
c c

D
t x

 (24) 

Initially, there are no solute atoms in the plate, i.e., the ini-
tial condition is 

 0,c  for 0  x L  at t=0. (25) 

The conducting plate is connected to the current collector at 
the end of x=0 and solute atoms cannot diffuse into the plate. 
Thus, the boundary condition at x=0 is  

 0,



c

x  
for 0t  at  x=0. (26) 

The polarization of an electrode supporting the electro-
chemical reaction at the electrolyte-electrode interface is 
given in the Butler-Volmer equation [30,31] as: 

 (1 ) / /
reaction 0[e e ],      n RT n RTi i  (27) 

where ireaction is the anodic or cathodic current density at the 
surface of the plate, i0 is the exchange current density,  is 
charge transfer barrier (symmetry coefficient) for the anodic 
or cathodic reaction, n is the number of participating elec-
trons, and   is Faraday’s constant. The surface overpo-
tential of  is equal to VU, where V is the applied surface 
potential of the plate and U is the equilibrium potential. For 

/ 1, n RT  eq. (27) can be approximated to the first 

order of /n RT  as: 

 0 0
reaction ( ).
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For t→, the electrochemical system approaches an equi-
librium state with the overpotential tending to zero and 
U→Us=V. Using the Taylor series expansion about the 
equilibrium state to the first order of (ccs), one has 
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Substituting eqs. (29) and (30) into eq. (28) yields  
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to the first order of (ccs). Here, the subscript s represents 
the equilibrium state with the current and overpotential ap-
proaching zero, i.e., reaction 0i , at which the solute atoms 

uniformly distribute in the plate. Thus, the diffusion flux of 
solute atoms at the electrolyte-electrode interface of the 
plate is 

 0reaction
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surface
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which gives the boundary condition as: 
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Using the separation of variables, one can obtain the 
temporal-spatial distribution of the solute atoms in the plate 
as: 
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where n’s are the positive roots of  

 tan  n n  (36) 

3.2  Chemical stress field 

Following the approach used in the analysis of thermoelas-
tic stress in an elastic thin plate with stress-free condition as 
| |y  and | |z  [32], one can express the chemical 

stress in the plate as: 

  .
3(1 )

  



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yy zz

E
c x  (37) 

The parameters of   and  are two constants to be deter-
mined. The condition of the plate being free from external 
loading requires 
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Assume that both  and  are constants. Substitution of  
eq. (37) into eqs. (38) and (39) yields 
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which is reduced to the result for constant elastic modulus. 
For Young’s modulus being a linear function of the concen-
tration of solute atoms as given in eq. (9), there are 
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Obviously, the chemical stress in the plate is dependent on 
the distribution of solute atoms as well as the solute con-
centration of cs. Using eq. (35), one can determine the 
temporal-spatial evolution of the chemical stress as induced 
by the diffusion of solute atoms.  

Consider the stress evolution as introduced by the inser-
tion of Li-atoms into a graphite plate of 1 m in thickness in 
a Li-ion battery during a charging process. The parameter of 
 is approximately equal to 3E0, as given by Deshpande et 
al. [24]. The other parameters used in the calculation are 
cs=0.05 and =0.05. The use of cs=0.05 means that the sol-
id solution can be treated as an ideal solution and the effect 
of stress-assisted diffusion is negligible, which is in accord 
with the use of Fick’s second law in analyzing the distribu-
tion of solute atoms in the plate as given in eq. (35).  

Figure 1 shows the distribution of the chemical stress in 
the graphite plate at various times. Most portion of the plate 
experience tensile stress. The position of the maximum 
tensile stress changes with time, which shifts from the 
near-surface position (x=L) to the center of the plate. It is 
interesting to note that both surfaces also experiences ten-
sile stress after short diffusion time in contrast to the evo-

lution of the chemical stress in an elastic plate induced by 
symmetrically diffusive motion of solute atoms into both 
surfaces. Such a tensile stress state is due to the asymmet-
rical feature of the diffusive motion of the solute atoms and 
reveals the possibility of creating surface microcracks dur-
ing the insertion of Li-atoms into active materials, since 
microcracking had been observed in Si-based electric an-
ode during the electrochemical cycling of thin film Li-ion 
battery [8]. 

The temporal evolution of the chemical stress in the 
graphite plate at two positions (x=L and x=L/2) is depicted 
in Figure 2. The center of the plate always experiences ten-
sile stress, while the surface of plate with the convection 
boundary condition of (33) first experiences compressive 
stress and then tensile stress with the increase of time. The 
change from the compressive stress state to the tensile stress 
state in the plate near the surface represents the effect of 
diffusion boundary conditions on the stress evolution in the 
plate. For asymmetrical diffusion motion of solute atoms, 
the non-zero parameter of  as given in eq. (41) alters local 
stress state and leads to the transition of the chemical stress  

 

 

Figure 1  Spatial distribution of the chemical stress in the elastic plate at 
various times (=3E0, L=1 m, cs=0.05 and =0.05). 

 

Figure 2  Time dependence of the chemical stress in the elastic plate at 
two positions of x=L/2 and x=L (=3E0, L=1 m, cs=0.05 and =0.05). 
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near the surface with the convection boundary condition 
from compressive stress state to tensile stress state. 

To examine if the concentration dependence of Young’s 
modulus plays a key role in the evolution of the chemical 
stress, we calculate the stress evolution in the graphite plate 
for =0 and 3E0. No significant difference in the tem-
poral-spatial evolution of the chemical stress among these 
three cases is observed, which suggests that, for =3E0 the 
evolution of chemical stress in the graphite plate is primari-
ly controlled by the diffusion of the solute atoms as deter-
mined by the boundary conditions. From eq. (9), one has 

 0 0(1 / ). E E c E  (48) 

To observe the effect of the concentration-dependence of 
Young’s modulus on the chemical stress, it generally re-
quires that 0/ (1) c E O , i.e., 
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
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L

E E

cc x L
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For dilute solid solution with c being 0.05, it needs 
~20E0 in order to have observable effect. In other words, 
the concentration-dependence of Young’s modulus gener-
ally has negligible effect on the evolution of chemical 
stress in solid solutions. However, such an effect may be-
come important when new phases are formed during the 
diffusive motion of solute atoms and the material becomes 
composite. 

4  Summary 

Understanding the diffusion-induced stress in solid materi-
als plays an important role in determining the structural 
durability in chemical and electrochemical environments. 
Taking account of the contribution of solute atoms to the 
Helmholtz free energy of solute solution, the dependence of 
Young’s modulus on the concentration of solute atoms is 
derived to the first order of the concentration of solute at-
oms. The solute atoms can either increase or decrease the 
Young’s modulus of solid solution, depending on the 
first-order derivative of the Helmholtz free energy with re-
spect to the concentration of solute atoms. The dependence 
of Young’s modulus on the concentration of solute atoms is 
then included in deriving the mechanical equilibrium equa-
tion. The result shows that both the concentration and con-
centration gradient of solute atoms contribute to the evolu-
tion of local deformation in materials.  

The effect of the concentration dependence of Young’s 
modulus on the evolution of chemical stress in an elastic 
plate is discussed. A closed-form solution of the chemical 
stress is obtained. Assuming that the diffusion behavior in 
the plate can be described by the classical Fick’s second law 

with convection boundary condition on one surface and zero 
flux on the other surface to mimic the electrochemical 
charging of a thin-film-based electric anode in a Li-ion bat-
tery, we have analyzed the temporal-spatial distribution of 
the chemical stress. The results show that the plate experi-
ences tensile stress after short diffusion time due to the 
asymmetrical diffusion, which will likely cause local struc-
tural degradation and lead to pre-mature failure of the plate 
during the charging process. In addition, it turns out that the 
effect of the concentration dependence of Young’s modulus 
on the evolution of chemical stress in elastic plates is negli-
gible if the magnitude of c is not compatible with E0. 

Considering the interaction between solute atoms and 
solvent atoms, a new diffusion equation is developed for 
strictly regular binary solid solution. The effective diffusiv-
ity is a nonlinear function of the concentration of solute 
atoms. Such a relation reveals the importance of the atomic/ 
molecular interaction in controlling the diffusive motion of 
atoms and molecules. 
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