
SCIENCE CHINA 
Physics, Mechanics & Astronomy 

© Science China Press and Springer-Verlag Berlin Heidelberg 2012  phys.scichina.com   www.springerlink.com 

                           
*Corresponding author (email: xuming@buaa.edu.cn) 

• Article • April 2012  Vol.55  No.4: 671–683 

 doi: 10.1007/s11433-012-4680-2  

Research on the transfers to Halo orbits from the view of  
invariant manifolds 

XU Ming1*, TAN Tian2 & XU ShiJie1 

1 Beijing University of Aeronautics and Astronautics, Beijing 100191, China;  
2 DFH Satellite Co. Ltd., Beijing 100094, China 

Received June 8, 2011; accepted September 20, 2011; published online March 8, 2012 

 

This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of ap-
plying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity 
are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré 
map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evo-
lutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. 
First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along 
the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all con-
trolled manifolds are captured because they lie inside the boundary of Earth’s gravity trap in the configuration space. The evo-
lutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the al-
titude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body 
problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate sin-
gle-impulse flyby trajectories. 
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The theory of space manifolds dynamics has drawn in-
creasing attention from astronautical scholars and industries 
worldwide. Some periodic solutions, such as Lagrange 
points and Halo orbits, have found important applications in 
deep-space missions since the ISEE-3 was successfully 
launched in 1978 [1,2]. Currently, there are several probes 
for missions involving libration points in the Sun-Earth/ 
Moon system. Some spacecrafts, such as ISEE-3, Wind, 
SOHO, ACE, and Genesis, are located at EL1 to survey so-
lar wind. Other probes, such as MAP, are located around 
EL2 to survey the outer space. 

The transfer trajectories from their parking orbits around 
the Earth to Halo orbits are common focuses of research 
because Lagrange points and Halo orbits are encompassed 
by astrodynamics. Farquhar [3] is the first to study the 
transfer trajectories from the Earth to the Halo orbit. A 
shooting method is employed to generate the trajectories for 
the ISEE-3 mission by a number of iterations. Gómez [4] 
has investigated trajectories from the view of dynamical 
systems, and discovered that stable manifolds of Halo orbits 
display hyperbolic dynamical behaviors which are con-
cluded to follow a heuristic methodology for designing the 
transfer trajectories from the Earth to the Halo orbit. Howell 
[5] has combined the theory of invariant manifolds with 
differential corrections to generate the transfer trajectories 
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in the real Sun-Earth/Moon system, and indicated the rela-
tionship between the magnitudes of Halo orbits and the ap-
proaches of their invariant manifolds. Halo orbits with lar-
ger magnitudes may have invariant manifolds closer to 
Earth. Xu [6] has referred to the trajectories inserting the 
Halo orbit from the Earth’s parking orbit only with an initial 
maneuver as single-impulse trajectories (SITs). Six types of 
SITs are obtained. Types A and B, which are adopted by the 
Wind and Genesis missions, are classified as direct transfer. 
On the other hand, types C, D, E, and F, which are always 
ignored by previous missions, are classified as indirect 
transfer. 

The low-thrust propulsion and maneuver technology by 
planetary-gravity assist is considered significant advances in 
astronautical engineering [7,8] and has found many applica-
tions in designing the trajectories for Halo orbits in the 
Sun-Earth/Moon system. Both the SOHO and WIND 
spacecrafts employed flyby (or swingby) trajectories under 
lunar gravity. The distance between the Halo orbit and the 
Earth is four times greater than that between the Earth and 
the Moon. Therefore, the spacecraft has enough temporal 
and spatial manifolds to modify its flight directions to insert 
Halo orbit by lunar flyby. Howell [9] has constructed un-
perturbed trajectories from patched-conic illustrations. The 
construction is an initial guess to generate the real flyby 
trajectories in an ephemeris model from the iterative routine 
based on the pseudo-state theory. The trajectories employ 
low-thrust propulsion to perform gradient-type transfer to 
Halo orbit. The low thrust imposes continuous acceleration 
(or deceleration) on the right hand of differential equations. 
The dynamical topologies of the system from Hamiltonian 
to dissipative are also modified, and controlled gradient 
manifolds for Halo orbits are created. Ren [10] modified the 
endings of invariant manifolds in the geocentric flight of an 
escaping segment. The spacecraft is led to insert the invari-
ant manifolds of Halo orbit after escaping from the Earth. 
However, Qin [11] has employed a solar sail to modify in-
variant manifolds and generate the transfer trajectories from 
the Earth to the Halo orbit. 

The current paper presents the evolutions of the invariant 
manifolds of Halo orbits in the circular restricted three-body 
problem (CR3BP), and the spatial bi-circular model 
(SBCM). The possible application of these manifolds in 
designing low-thrust transferring trajectories, and the pres-
ence of single-impulse trajectories under lunar gravity are 
explained. The relationship between the manifolds and the 
altitude of the perigee is investigated using a Poincaré map. 
Six types of SITs are attained from the geometry of the in-
variant manifolds. The evolutions of the controlled mani-
folds are indicated by the gradient law of Jacobi energy, and 
the following conclusions are drawn. First, the low thrust 
(acceleration or deceleration) near the libration point is very 
inefficient that the spacecraft free-flies along the invariant 
manifolds to increase its velocity and avoid stagnation near 
the libration point. Second, all the controlled manifolds are 

captured because they lie inside the boundary of Earth’s 
gravity trap in the configuration space. A turning on/off 
schedule for low-thrust propulsion is introduced for the 
controlled manifolds avoiding the stagnation on the libra-
tion points to measure the interception distance along the x 
axis. The evolutions of invariant manifolds under lunar 
gravity are indicated from the relationship between the lunar 
phasic angle as well as the altitudes of the perigee and per-
ilune. Third and last, most of the manifolds have preserved 
their topologies in the CR3BP, which are used to generate 
the transfer trajectories from the Earth or the Moon to Halo 
orbits. However, the perigee altitudes of some manifolds are 
quite non-continuous, which can be used to generate the 
single-impulse flyby trajectories. 

The present paper focuses on the evolutions of invariant 
manifolds of Halo orbit under low-thrust propulsion and 
lunar gravity. There are three main contributions: firstly, all 
invariant manifolds can be applied to design low-thrust 
transferring trajectories; secondly, there are remaining sin-
gle-impulse trajectories preserved under lunar gravity; 
thirdly, trajectories can be constructed from ergodic surveys 
of the parameters of the phasic angles of Halo orbit, and the 
relative phases of the Sun, the Earth, and the Moon. These 
constructed trajectories simulate the real transfer trajectories 
to the Halo orbit in the ephemeris model from the iterative 
routine. 

1  Dynamical system and Halo orbits 

1.1  Coordinate frames defined in the dynamical system 

Some coordinate frames referred to in the modeling are de-
fined as follows. First is the Geocentric Inertial Coordinate 
System (GI). The origin is fixed at the geocenter. The x axis 
is along the intersecting line of the ecliptic and lunar orbital 
planes. The z axis is perpendicular to the lunar plane and 
accordant with the rotational direction of the Moon. The y 
axis is determined by the right-hand rule. For a spacecraft 
flying near the Earth, the coordinate system is a very close 
approximation of the real inertial reference frame. 

Second is the Selenocentric Inertial Coordinate System 
(SI). The origin is fixed at selenocenter. All three axes are 
defined in the same way as those in the GI coordinate sys-
tem. Obviously, the coordinate system is also a very close 
approximation of the real inertial reference frame for a 
spacecraft flying near the Moon. 

Third is the Syzygy coordinate system of the Earth-Moon 
System (SEM). The origin is fixed at the centroid of the 
Earth-Moon system. The x axis points from the Earth to the 
Moon. The z axis is perpendicular to the lunar plane, and 
accordant with the rotational direction of the Moon. The y 
axis is determined by the right-hand rule. 

Fourth is the Syzygy Coordinate System of Sun-Earth/ 
Moon System (SSE+M). The origin is fixed at the centroid of 
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the Sun-Earth/Moon system. The x axis points from the Sun 
to the centroid of the Earth-Moon system. The z axis is per-
pendicular to the ecliptic plane, and accordant with the rota-
tional direction of the Earth and Moon. The y axis is deter-
mined by the right-hand rule. 

1.2  Circular restricted three-body problem 

The Sun and Earth/Moon system move in near-circular or-         
bits around their common center of mass. A massless space-          
craft moves under the gravities of the Sun and Earth/Moon 
(the Earth and Moon are considered the small mass point). 
This relationship between the spacecraft, the Sun and Earth/ 
Moon is referred to as CR3BP. To improve the efficiency 
and accuracy of calculation, we use normalized units (i.e., 
units of length, time, and mass) in CR3BP, as in LSE+M = 
1.4960  1011 m, TSE+M = 2/year, and MSE+M = 2  1030 kg.  
The Hamiltonian for CR3BP is as follows: 

  2 2 2
0

1 2

1 1
,

2 x y z y xH p p p xp yp
r r

 
        (1) 

where px , py , and pz are the generalized momentums; and ri 
(i = 1 and 2) are the distances from the spacecraft to the 
Sun , and the Earth/Moon system, respectively. 

1.3  Halo orbits 

Halo orbits bifurcating from the planar Lyapunov orbits are 
the periodic solutions of the CR3BP. Halo orbits are sym-
metrical to the plane x-z in the Syzygy reference frame. De-
termining the state of any point on a Halo orbit (with its 
period as TH) only needs the magnitude Ax and the phase 
angle , as in the equation: 

     H, , ,  2 ,  ,x xA A t t T     X Γ H R Z R Z  (2) 

where X is the state variable of the dynamical system, 

 T
.x y z x y zX     

There is no analytical solution to the CR3BP due to its 
non-integrability. The equivalence relation is defined as: 

  1 2 2 1~ , ,  X X X φ X  (3) 

where φ  is the flow. Any point 0X  can represent the 

whole flow from the equivalence relation of the time-inde-                    
pendent Hamiltonian system. Hence, the numerical position 
and velocity on the point need to be iteratively achieved to 
gain knowledge on the Halo orbit. 

If 0X  is laid on the symmetry plane of Halo orbit, i.e., 

 T

0 0 0 00 0 0 ,x z yX   the numerical algorithm 

for 0X  is achieved.  

Firstly, the approximate three-order analytical solution to 
the Halo orbit (called the Richardson Expansion [12], de-

veloped from the Lindstedt–Poincaré method) is employed 
to generate the approximation of 0X . 

Secondly, the approximation of 0X  is taken as the ini-

tiation to integrate the dynamical equation describing 
CR3BP until the flow arrives at the symmetry plane. Con-
sequently, the final value of the state variables is obtained 
as: 

 
T

0 .f f f f f fx z x y z   X     

Lastly, based on the Newton iteration, 0x  and 0y  are 

required to gradually yield fx  and fz  close to zero: 
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where ijΦ  is the element located in the ith row and jth col-

umn of the monodromy matrix Φ . Hence, 4–5 iterations 
are necessary to bring the position errors to less than 10km 
after a period. 

The phasic angle of Halo orbit at EL1 or EL2 is defined 
by the equi-time interval  1 , 1,..., ,i N i N     count-

ing from the symmetry point and in the negative direction 
around the z axis, as depicted in Figure 1. 

To analyze the stability of Halo orbits, we define the 

Poincaré map  P z  as: 

      
H

, .T   P z φ z z Γ  (5) 

According to the dynamical theory of the Hamiltonian sys-

tem, the differential matrix of  ,P z    zΦ D P z , is 

symplectic. The eigenvalues of Φ  are referred to as the 
characteristic exponents of the Poincaré map. Four eigen-

values lie on the unit circle, i.e., 1, 1,2,3, 4
i

i   , with 

two real eigenvalues 1,2 1,   and two complex eigenvalues 

3,4
1  . Other eigenvalues are both real with 1

5 6    

1, indicating the stability of Halo orbits. 
The maximal real eigenvalue 5  is called the Floquet 

multiplier. This term connotes the deflection of the periodic 
orbit from its nominal trajectory under perturbations at the 
exponential rate of 5 –1. Figure 2 reveals the relation be-

tween the magnitude Ax of Halo orbits and the function ln of 
the Floquet multiplier. From the view of stability, the Flo-
quet multiplier may stay near 1. However, it causes the 
magnitude of Halo orbit to become too large to finish as-
tronautical missions. For some cases, a smaller magnitude is 
preferred even at the cost of increased stationkeeping. 
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Figure 1  Phasic angle of the Halo orbit depicted in the x-y plane. 

 

Figure 2  Relation between the magnitude Ax (106 km) and the ln func-
tion of the floquet multiplier. 

In the present paper, the magnitude of the Halo orbit at 
EL1 is adopted as Ax=260000 km as the Genesis, with its 
Floquet multiplier as 1219.3, and its period as 5.8228 
months. On the other hand, the magnitude of the Halo orbit 
at EL2 is adopted as Ax = 350000 km, with its period as 
5.8657 months. 

1.4  Spatial Bi-circular model 

The motions of the Sun, the Earth, and the Moon are the 
true solutions to a general three-body problem, which are 
too complicated for modeling and analysis. Hence, the 
SBCM is introduced as an approximate model for the gen-
eral three-body problem, as shown in Figure 3. Accommo-
dating the inclination between the lunar and ecliptic planes, 
the SBCM assumes the Earth and the Moon as one celestial 
body to implement two-body motion with respect to the Sun. 
The Sun’s gravity is also assumed to have no influence on  

 

Figure 3  Profile of the SBCM Model. 

the two-body motion between the Earth and Moon. Hence, 
the SBCM has a higher accuracy because the distance from 
the Sun to the Earth or the Moon is much longer than that 
between the Earth and the Moon. Consequently, the torque 
of the Sun’s gravitation imposed on the Earth-Moon system 
can be ignored. However, the force acting from the Sun’s 
gravitation on the centroid of the Earth/Moon system cannot 
be ignored. 

In the real Sun-Earth/Moon system, the gravities of the 
Earth and the Moon impose short-term periodic perturba-
tions onto the CR3BP describing the Sun-Earth/Moon sys-
tem. The Sun’s gravity imposes long-term periodic pertur-
bations onto the CR3BP describing the Earth-Moon system. 
Therefore, the SBCM may have different canonical forms in 
the coordinate systems SSE+M and SEM. 

The Hamiltonian for the SBCM is formulated in the co-
ordinate system SSE+M as: 
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(6)
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The Hamiltonian for the SBCM is formulated in the coor-
dinate system SEM as [13]: 
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(7)

 

where r and R are the position vector of the spacecraft in 
SEM and SSE+M, respectively; S is the angular velocity of 
the Earth/Moon system with respect to the inertial reference 
system; i is the inclination between the lunar and ecliptic 
planes;  is the mass ratio of the Moon with respect to the 
Earth/Moon system; S is the mass ratio of the Earth/Moon 
system with respect to the full Sun-Earth/Moon system; mE 
and mM are the masses of the Earth and Moon, respectively, 
and are related as mE + mM = S; AS = [aS cosS, aS sinS, 0]T 
is the position vector of the Sun; aS is the mean distance 
between the heliocenter and the centroid of the Earth/Moon 
system; S and  are the solar and lunar phase angles, re-
spectively; r = [x, y, z]T is the position vector of the space-
craft projected in the SCSEM; and Rx as well as Rz are the 
element transformation matrices rotating around the x and z 
axes, respectively. 

The initial parameters for the SBCM are set as S0 = 00 
(t0 = 0), and 0 is determined by the relative phases of the 
Sun, the Earth, and the Moon. 

The dynamical model SBCMEM in the coordinate system 
SEM is integrated using the normalized units of the 
Earth/Moon system as LSE+M = 3.84401  108 m, TSE+M = 
2 /month, and MSE+M = 5.976  1024 kg. The purpose is to 
improve the computational efficiency when the evolutions 
of the invariant manifolds of Halo orbit under lunar gravity 
are investigated. 

2  SITs in the CR3BP 

For the stable and unstable manifold theorems of periodic 
orbits [14], an open subset nE R  contains a periodic 
orbit  : tΓ x P . If the characteristic exponents of  tP  

have a 0 1k n    modulus less than 1, i.e., 1,j   

1, , ,j k   and other exponents have a modulus greater 

than 1, i.e., 1, 1, , 1,j j k n      then there is a neith-                           

borhood nN R  near any point p Γ . In this neigh-                  

borhood, the stable manifold    , ,S d t  x N φ x Γ   

0,  t    is a (k + 1)-dimensional differentiable mani-                       

fold invariant under the flow φ . On the other hand, the 

unstable manifold    , , 0,N x d t x t     N φ Γ   

is a (n-k)-dimensional differentiable manifold. The stable 
and unstable manifolds of  transversally intersect in , i.e., 
S N   Γ . 

The symplectic matrix Φ  has the real eigenvalues 

5 >1 and 6 <1, suggesting that the Halo orbit has both 

stable and unstable manifolds. Each of these manifolds is a 
2-dimensional compact manifold. Its projection is on the 
position space R3, as shown in Figure 4. The length unit 
LSE+M is defined as the average distance between the Sun 
and the Earth/Moon system. 

The stable manifold has a significant application in the 
design of the transfer trajectories to the Halo orbit [5]. The 
dynamical behavior of a stable manifold near the Earth can 
be investigated from another Poincaré map defined by the 

Poincaré section  T
0.E  r r v  This section is a mapping 

of the 2-dimensional stable manifold into a 1-dimensional 
curve. The map can be expressed by the phasic angle of 
Halo orbit and the altitude of the perigee (shown in Figure 
5). 

Table 1 shows all launch locations satisfying no-cost in-
sertion into the Halo orbit distributed within the perigee 
distance from the ground (200 km at A, B, C, D, E, and F, 
respectively). The launch velocities and orbital altitudes of 
the parking orbit in the inertial coordinate system GI, the 
phasic angles of Halo orbit, and the flight durations are also 
shown therein. The 3-dimensional representation of SITs in 
the CR3BP is shown in Figure 6. 

Figure 5 demonstrates the geometrical properties of the 
stable manifolds integrating in a negative time arrow. The 
curve changes at C, D, E, and F are more dramatic than 
those at A and B. From the view of a dynamical system 
integrating in the positive time arrow, the trajectories allo-
cated by A and B are quite sensitive to the initial values in  

 
Figure 4  Stable manifold of the Halo orbit on the x-y position space. 
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Figure 5  Poincaré section map of the stable manifold of Halo orbit. 

the perigree altitudes, compared with those by C, D, and F. 
The sensitivity is due to the continuities of the solutions to 
the CR3BP with respect to the initial values [9,15]. 

3  Low-thrust trajectories transferring to Halo 
orbits 

The following is the design methodology for low-thrust 
transfer trajectories to Halo orbits. The spacecraft initially 
increases its Jacobi energy by the long-term effects of the 
low-thrust propulsion to acquire enough energy for escaping 
Earth’s gravity. The stable manifolds are then inserted after 
reaching the appropriate velocities to free-fly along the in-
variant manifolds into the Halo orbit. Previous research on 
low-thrust propulsion, such as the ION engine [8,10] and  

Table 1  Properties of single-impulse transfer trajectories 

Case V (km/s) Altitude of parking orbit (km) Phasic angle of Halo orbit () Flight duration (Month) 

A 3.2188 182 0.2193 8.7232 

B 3.2147 199 0.3337 8.8932 

C 3.2145 201 0.7433 12.3488 

D 3.2146 198 0.7599 12.7949 

E 3.2144 201 0.8025 12.9783 

F 3.2141 199 0.8224 12.4347 

 

 
Figure 6  Three-dimensional representation of single-impulse trajectories in the CR3BP. 
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solar sail [11], focused on guidance laws to escape from the 
Earth [10,11]. However, the open problem of whether all 
invariant manifolds can be applied in the design of low- 
thrust transferring trajectories has not yet been addressed. 

Low-thrust acceleration or deceleration does not preserve 
the Jacobi energy: 

 2 ,C   a R   (8) 

where C is the Jacobi energy, a is the acceleration or decel-
eration generated by the low-thrust propulsion, and R  is 
the velocity vector of the spacecraft in the frame of SSE+M. 

The control law for low-thrust propulsion is defined from 
the view of local optimization. The spacecraft has an extre-
mal increase in Jacobi energy when a  has the same direc-

tion as the velocity vector R , and vice versa. However, this 
control law does not endow global optimization, which de-
pends on path planning for flight directions. The section 
overcomes this general difficulty via the local optimal con-
trol law, instead of the global optimization for a turning 
off/on schedule and flight directions, whether all the invari-
ant manifolds can be applied to the design of low-thrust 
transferring trajectories. 

The ION engine excellently performs in high-specific 
impulse and continuous propulsion in spite of low thrust that 
a spacecraft has significant reduction in its mass. The 
spacecraft developed for the lunar mission, SMART-1, has 
an assembled PPS-1350 Hall (ION) engine. The gas jetting 
velocity of the engine is 16.434 km/s, and the thrust is 73.19 
mN. The total mass is 350 kg, including fuel mass of 74.994 
kg. This low-thrust engine undergoes fewer changes in ac-
celeration or deceleration during the flight of a spacecraft. 
So the ION engine is implemented as the average thrust of 
SMART-1, 4 2

0 2.3421 10 m/sa   , and fuel reduction and 

constant thrust in the engine is ignored in this section. 
By integration from the negative time arrow, low-thrust 

trajectories decelerate from high-energy (i.e., Halo orbits) to 
low-energy (i.e., gravity trap around Earth) regions. Decel-
erating trajectories are inserted into Halo orbits from the 
inverse transformation of 1, which is deduced from the 
dynamical symmetry in the CR3BP, 1 : ,t Y y     . 

Based on the control law aforementioned, the dynamical 
model for low-thrust propulsion in the CR3BP is described as: 
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where the control law is defined as:  
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In other words, the low-thrust propulsion is turned off only 
when the spacecraft has the velocity R  of 0 in the frame 
of SSE+M. 

Obviously, the dynamical system (9) has no Hamiltonian 
structure, whose topology is modified from conservative to 
dissipative systems. The topologies of the libration points 

, 1, ,5iL i    in the CR3BP are degenerated from hyper-

bolic to asymptotically stable equilibria. The gravity traps of 
the Sun and the Earth scale the infinite Jacobi energy C. The 
ultimate destination of a spacecraft stays at the equilibrium 

, 1, ,5,iL i    or in the gravity traps around the Sun and the 

Earth. 
The motions near the equilibrium , 1, ,5iL i    are rep-

resented by the following linear model: 
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 (10) 

where v is the relative velocity with respect to equilibrium, 
2 2 2 2 2 2 ;v x y z x y z              and kl  is the 

second-order partial derivative of the pseudo-potential func-
tion  with respect to k and l,    , , ,k l x y z . 

The relative position and velocity      [         x y z x y  

 T]z  approach zero when the spacecraft has access to the 

equilibrium. However, the relative acceleration or decelera-
tion remains at a constant a0: 

  , .O  R a R R   (11) 

The spacecraft moves in an opposite direction to the ve-

locity vector R , and  0 , .a O R R  Hence, the space-

craft may find its equilibrium within limited time. In other 
words, the oscillations near the equilibrium , 1,...,5iL i   

do not remain stabilized until such limited time is up. 
However, the duration may last longer. 

Figure 7 illustrates the dynamical stabilization by the 
low-thrust deceleration near EL1. All motions near EL1 par-
ticipate in periodic/quasi-periodic oscillations (i.e., Lya-         
punov, Halo, or Lissajous orbits), exponentially converging 
or diverging in position space (i.e., the stable and unstable 
manifolds). Therefore, low-thrust propulsion does not only 
eliminate divergent trends in an unstable manifold, but also  
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Figure 7  Stabilization near EL1 by low-thrust deceleration. 

endows asymptotical stability. 
The boundaries of the gravity traps of the Sun and the 

Earth are defined as zero velocity surfaces near EL1, i.e., 

    
1

, , 2 , , 0ELM x y z x y z C    . Hence, the different 

traps are separated by EL1: when the spacecraft has less 
Jacobi energy than EL1, there are transiting trajectories be-
tween the two gravity traps; when the spacecraft has more 
Jacobi energy than EL1, the trajectories are restricted inside 
the boundaries of the gravity traps, without any transit oc-
curring between the two traps. Hence, the spacecraft can be 
treated as a satellite or asteroid orbiting the Sun or Earth. 

Actually, the trajectory acceleration or deceleration im-
plemented by low-thrust propulsion is similar to the LEO 
satellite, with its opposite direction to the relative velocity 
between the satellite and atmospheric drag. This phenome-
non is referred to as the famous aerodynamic paradox. The 
deceleration implemented by the atmospheric drag causes an 
increase in the velocity of the satellite. The paradox occurs 
in the phase of the low-thrust deceleration implemented in 
the gravity trap of the Earth, instead of the transit phase be-
tween the gravity traps of the Earth and the Sun. 

With the stabilization for phasic angle 0 on the Halo orbit 
at EL1, inefficient deceleration is implemented by the 
low-thrust propulsion near a libration point. The ineffi-
ciency is attributed to the fact that a spacecraft snails from 
location  to location  (Figure 8) for one year (i.e., 
2TSE+M). The extremely slow movement of a spacecraft 
near EL1 is caused by the decrease in the velocity of the 
spacecraft in the frame of SSE+M due to low-thrust decelera-
tion. Therefore, the paradox enhancing the velocity is re-
placed by the phenomenon stagnating near a libration point, 
as implemented by the low-thrust propulsion. Figure 9 illus-
trates the velocity history of stabilization by low-thrust de-
celeration. The spacecraft damps its velocity up to 0.0402 
m/s in a very short period of time (around 0.2496TSE+M), 
and then keeps a small oscillation in the vicinity of Location 
. 

The low-thrust propulsion near a libration point is too in-
efficient to have any engineering application in acceleration 
or deceleration. So a spacecraft is expected to free-fly along  

 

Figure 8  Stabilization of the phasic angle 0 on the Halo orbit at EL1 by 
low-thrust deceleration. 

 

Figure 9  Velocity history of stabilization by low-thrust deceleration. 

the stable manifolds E M
SW   to increase its velocity and 

avoid stagnation near a libration point. This phenomenon 
explains the selection of the invariant manifolds as the en-
trance for transferring to the Halo orbit, rather than the 
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nominal orbit itself. 
A turning on/off schedule for low-thrust propulsion is in-

troduced for the controlled manifolds avoiding stagnation on 
libration points. Too early booting does not make the space-
craft accumulate enough velocity to avoid stagnation. Too 
late booting may not enable the spacecraft to be captured by 
Earth. The dynamical system (7) or (9) describing the low- 
thrust propulsion in the CR3BP is an autonomous dissipa-
tive system. No time node is available to measure the boot-
ing schedule. Hence, the length of the interception distance 
along the x axis is introduced to measure the schedule. All 
the invariant manifolds beyond the interception are referred 
to as controlled manifolds booted by the low-thrust propul-
sion. 

The turning on/off schedule and earliest booting time 
measured by the interception distance along the x axis de-
pend on the stagnating duration accepted by the authors. 
Therefore, the booting time is only the accepted earliest 
time, not the real earliest one. 

The stagnating trajectories defined in the present paper, 
are those generated from integrating the dynamical equa-
tions at the step of (1  104)TSE+M by the Dormand–Prince 
algorithm. This algorithm is integrated using the tool ODE5 
by the software Simulink4.0, with an integration period of 
more than 5 min (physical time). The hardware platform is 
Intel(R) Core(TM) 6300@1.86GHz CPU and 1G RAM. The 
accepted earliest booting time defines the lengths of the 
controlled manifolds, which is measured by the interception 
distance along the x axis in Figure 10. Obviously, all the 
stagnating trajectories by the low-thrust propulsion reducing 
the Jacobi energy from CHalo (Jacobi energy on the Halo 
orbit and its invariant manifolds) to CEL1

 (Jacobi energy at 
EL1), have been ignored when the accepted earliest booting 
time is counted for controlled manifolds. 

The spacecraft has reduced its Jacobi energy up to CEL1
 at 

EL1 by the accepted earliest booting time and low-thrust  

 

Figure 10  Accepted earliest booting time defined by the Jacobi energy at 
EL1. 

propulsion. However, the spacecraft still has the opportunity 
to stay away form EL1. Therefore, the endings of the con-
trolled manifolds lying inside the boundary of the Earth’s 
gravity trap in the configuration space need to be investi-
gated. Figure 11 depicts all the controlled manifolds in the 
configuration space with their Jacobi energy reduced from 
CHalo to CEL1

. Figure 12 presents the uncontrolled trajectories 
after the Jacobi energy is reduced to CEL1

, and then the 
low-thrust propulsion is removed. 

Figure 11 indicates that all the endings of controlled 
manifolds lie inside the boundary of the Earth’s gravity trap 
in the configuration space. Figure 12 indicates that all un-
controlled trajectories, after their Jacobi energy is reduced to 
CEL1

, are restricted inside the boundaries of gravity traps 
without any transit occurring between the traps. 

Hence, the solution to the open problem is that all con-
trolled manifolds need to be captured inside the boundary of 
Earth’s gravity trap. All invariant manifolds can also be  

 
Figure 11  Controlled manifolds in the configuration space with their 
Jacobi Energy reduced to CEL1. 

 
Figure 12  Uncontrolled trajectories after the Jacobi Energy is reduced to 
CEL1

 and then the thrust is removed. 
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applied to design low-thrust transferring trajectories. 

4  SITs in the SBCM 

In the absence of perturbations, a spacecraft may take infi-
nite time to insert into or escape from Halo orbits along in-
variant manifolds. However, the periodic perturbation im-
posing on the SBCM model from lunar gravity may destroy 
the closed forms of Halo orbits at EL1 or EL2. The perturba-
tion may also drive any point in the Halo orbit to depart 
from the nominal orbit without maneuvers within a finite 
time. 

Some optimizations on lunar flyby trajectories to Halo 
orbits have been developed [9]. However, some difficult 
problems remain, such as the existence of single-impulse 
trajectories surviving the lunar perturbation. The Lebesgue 
measure of invariant manifolds preserving the topologies in 
the CR3BP under the perturbation is also a problem. Some 
branches of the stable manifolds are integrated into the 
gravity trap of the Earth from the negative time arrow. 
These branches are referred to as SITs transferring to Halo 
orbits. 

4.1  SITs from the earth to Halo orbits 

The dynamical model SBCMEM is integrated into the coor-
dinate system SEM to investigate the evolutions of the in-
variant manifolds of Halo orbit under lunar gravity [16]. 
Figure 13 shows the ergodic surveys on the parameters of 
the perigee altitudes, phasic angles of the Halo orbit, and 
relative phases of the Sun, the Earth, and the Moon. These 
surveys act as the initial guess to generate the real transfer 
trajectories to the Halo orbit in the ephemeris model from  

 
Figure 13  Ergodic survey of the parameters of perigee altitudes, phasic 
angles of the Halo orbit, as well as relative phases of the Sun, the Earth, 
and the Moon (Arabic numbers are marked as 40, measuring the phasic 
angles of Halo orbit). 

the iterative routine.  
Based on the evolutions of invariant manifolds, most of 

them have preserved their topologies in the CR3BP. There 
are also slight changes in the relationship between the peri-
gee altitudes and lunar phase angle .  is used to generate 
the SITs from the Earth or the Moon to Halo orbits. The 
perigee altitudes of few manifolds are quite non-continuous 
with the lunar phase angles, which can be utilized to gener-
ate single-impulse lunar flyby trajectories.  

Three types of flyby trajectories marked as , , and  ■ ▲ ●
are displayed in Figure 14. Their orbital elements (semi- 
major axis and eccentricity) in the inertial frame of GI are 
shown in Figures 15, 16, and 17. Types , , and  have ■ ▲ ●
the common features of the flyby trajectories in numerical 
jumps in orbital elements at 136.6TE+M ( ), ■ 137.4TE+M 
( ), and ▲ 253.5TE+M ( ).●  

Type  decreases its semi■ -major axis or Jacobi energy 
when the trajectory is approaching lunar gravity, which is 
undesirable. However, types  and  increase their semi▲ ● - 
major axes or energies when the trajectories are approaching 
the Moon, which is preferred for transferring to Halo orbits. 

4.2  SITs from the moon to Halo orbits 

The dynamical model SBCMEM is integrated in the coordi-
nate system SEM from the invariant manifolds of a Halo 
orbit at EL2 to the Poincaré section T: 0.r r   The pur-
pose is to investigate the evolutions of the invariant mani-
folds of a Halo orbit under lunar gravity, and to generate 
SITs from the Moon to Halo orbits. 

The spacecraft parking on the lunar pole orbit with an al-
titude of 100 km needs at least 3 maneuvers to insert into 
the stable manifolds of Halo orbits. The first maneuver V1 
is used to raise the altitude of apolune. The second maneu-
ver V2 is used to change its inclination and RAAN. The  

 
Figure 14  All simple-impulse transfer trajectories to the Halo orbit at EL1 
in the SBCM. 
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Figure 15  Histories of the semi-major axis and eccentricity for type ■ of flyby trajectories. 

 
Figure 16  Histories of the semi-major axis and eccentricity for type  of f▲ lyby trajectories. 

 

Figure 17  Histories of the semi-major axis and eccentricity for type  of flyby●  trajectories. 
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third maneuver V3 is driving the spacecraft to free-fly 
along the SIT. The transferring windows and properties of 
SITs from lunar pole orbits are demonstrated respectively in 
Figure 18 and Table 2. 

Transferring windows are defined as angle intervals of 
the relative phase  of the Sun, the Earth, and the Moon. 
During these windows, invariant manifolds have a distance 
less than 62636 km (the radius of the lunar gravitational 
sphere of influence) from the lunar surface. The SITs lie on 
the angle intervals as [54°, 64°], [120°, 126°], [138°, 140°], 
[144°, 146°], [288°, 290°], and [352°, 356°]. Their repre-
sentations in the position space are demonstrated in Figures 
19 and 20. The most economical trajectory with its V 
around 1000m/s occurs at the relative angle  of 354° be-
longing to the interval [352°, 356°], depicted by the most 
thick solid lines in Figures 19 and 20. 

5  Conclusions 

The evolutions of the invariant manifolds of Halo orbits are 
investigated in CR3BP and SBCM. The possible application 
of these manifolds in designing low-thrust transferring tra-
jectories, and the presence of SITs under lunar gravity are 
explained. The relationship between the invariant manifolds 
and the perigee altitude is investigated using a Poincaré map. 
Six types of SITs are attained from the geometry of the in-
variant manifolds. The evolutions of the controlled mani-                

 
Figure 18  Transferring windows of single-impulse trajectories from lunar 
pole obits. 

folds are indicated by the gradient law of Jacobi energy, and 
the following conclusions are drawn. First, the low thrust 
(acceleration or deceleration) near a libration point is very 
inefficient that a spacecraft free-flies along the invariant  

Table 2  Properties of single-impulse transfer trajectories from the Moon to the Halo orbit 

 (°) 
Phasic angle of a  

Halo orbit () 
Altitude of parking  

orbit (km) 
Inclination (°) V1 + V2 + V3 

(m/s) 
Flight duration 

(day) 

54 24 6700 38.328 1532.1 91.12 

56 24 65603 41.008 1532.1 91.256 

58 24 64803 43.447 1532 91.397 

60 24 64821 45.51 1531.8 91.55 

62 24 65581 47.103 1531.8 91.707 

64 24 67026 48.175 1531.4 91.876 

120 8 18996 84.043 1114.3 113.94 

122 8 27220 86.678 1204.2 114.22 

124 8 39223 88.625 1284.6 114.53 

126 8 53378 89.987 1338 114.86 

138 22 31351 77.099 1238.6 109.51 

140 22 25008 116.09 1036.8 110.27 

144 21 66616 81.402 1536.9 109.07 

146 21 43407 82.306 1431.3 109.57 

288 24 65078 119.82 1306.1 122.53 

290 24 54017 76.839 1409.7 121.49 

298 28 46026 23.136 1570.6 111.13 

300 28 25517 157.44 1316.5 110.58 

352 20 66591 122.96 1306.2 98.295 

352 21 59589 102.66 1220.7 98.888 

354 20 10471 115.53 1005.9 97.817 

354 21 63614 83.541 1287.7 98.398 

356 20 32647 73.059 1301.7 97.48 
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Figure 19  Single-impulse transfer trajectories from lunar pole orbits to 
the Halo orbit in the Syzygy coordinate system of the Sun-Earth/Moon 
System. 

 

Figure 20  Single-impulse transfer trajectories from lunar pole orbits to 
the Halo orbit in the Syzygy coordinate system of the Earth-Moon System. 

manifolds to increase its velocity and avoid stagnation near 
the libration point. Second, all the controlled manifolds are 
captured because they lie inside the boundaries of the grav-
ity traps of the Earth in the configuration space. A turning 
on/off schedule for low-thrust propulsion is introduced to 
the controlled manifolds avoiding the stagnation on libration 
points to measure the interception distance along the x axis. 
The evolutions of invariant manifolds under lunar gravity 
are indicated from the relationship between the lunar phasic 
angle as well as the altitudes of the perigee and perilune. 
Third and last, most of the manifolds have preserved their 
topologies in the CR3BP, which are used to generate the 
transfer trajectories from the Earth or Moon to Halo orbits. 
However, the perigee altitudes of few manifolds are quite 
non-continuous, which can be used to generate single-im-                  
pulse flyby trajectories. 

The evolutions of the invariant manifolds of a Halo orbit  

under low-thrust propulsion and lunar gravity are empha-
sized in the present paper. All invariant manifolds can be 
applied in designing low-thrust transferring trajectories. 
There are also remaining SITs preserved under lunar gravity. 
Trajectories may be constructed from ergodic surveys of the 
parameters of the phasic angles of a Halo orbit and relative 
phases of the Sun, the Earth, and the Moon. The constructed 
trajectories act as an initial guess to generate the real trans-
fer trajectories to the Halo orbit in the ephemeris model 
from the iterative routine. 
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