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This paper deals with the approximate nonstationary probability density of a class of nonlinear vibrating system excited by 
colored noise. First, the stochastic averaging method is adopted to obtain the averaged Itô equation for the amplitude of the 
system. The corresponding Fokker-Planck-Kolmogorov equation governing the evolutionary probability density function is 
deduced. Then, the approximate solution of the Fokker-Planck-Kolmogorov equation is derived by applying the Galerkin 
method. The solution is expressed as a sum of a series of expansion in terms of a set of proper basis functions with time-   
depended coefficients. Finally, an example is given to illustrate the proposed procedure. The validity of the proposed method is 
confirmed by Monte Carlo Simulation. 
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Nonlinear systems subjected to random excitations are often 
found in science and engineering. A case in point is the hel-
icopter rotor blade vibration during forward flight in a tur-
bulent atmosphere. The response of such systems has been 
studied for decades. However, the exact probability density 
functions (PDF) are obtained only for some linear systems 
and a few particular first-order nonlinear systems [1–4]. For 
some specific second order nonlinear systems, exact sta-
tionary PDF can be deduced [5–7]. In order to study the 
response of nonlinear stochastic systems, the stochastic av-
eraging method was introduced by Stratonovitch [8] and 
verified theoretically by Khasminskii [9]. Then, this method 
was reproposed by Zhu and Lin [10] based on a theorem 
proposed by Khasminskii. The stochastic averaging method 
has been proved to be a powerful strategy to predict re-
sponse [11–14]. The main advantage of the stochastic aver-

aging method is that it leads to a Markov process, and that a 
much more tractable mathematical problem of determining 
the response of the system can be obtained. 

The transient response is usually considered in the area 
of electrical engineering [15]. The nonstationary PDF gov-
erning the dynamic evolution of the stochastic nonlinear 
dynamic system is difficult to obtain. Some approximate 
strategies have been proposed, such as the cell mapping 
method [16], path integration [17,18], and the Galerkin 
method [19]. This paper is limited to the Galerkin method. 
The Galerkin method, as a variation method, has been 
adopted to study both the stationary and nonstationary re-
sponses of nonlinear systems. Atkinson [19] adopted this 
method to study the stationary response of several se-
cond-order nonlinear systems, and a non-stationary case 
was studied by Wen [20]. Recently, Spanos [21] further 
studied the nonstationary response of nonlinear oscillators 
subjected to additive Gaussian White noise and Jin [22] 
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studied the response of such oscillators with time delay. 
White noise is an ideal mathematical model. The correla-

tion time is supposed to be zero, which never happens in the 
real world. Real noise is considered to be colored noise. 
Some work has been done on the response of the system 
excited by colored noise [23,24]. To the authors’ knowledge, 
little work has been done on the nonstationary response 
envelope probability densities of nonlinear oscillators sub-
jected to colored noise. 

The present paper deals with the nonstationary response 
PDF of a class of nonlinear oscillators subjected to colored 
noise. The results obtained are authenticated by those ob-
tained from Monte Carlo Simulation (MCS) of the original 
oscillator. 

1  Simplification of the model 

Consider a nonlinear system driven by colored noise 
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where 0 and  are the frequency and the ratio of damping 
of the system, respectively. Suppose  is a small positive 
parameter, and ( , )h X X  represents lightly nonlinear 

damping of order . fk represents the amplitude of external 
excitation k(t) of the order of 1/2. k(t) are wide (or nar-
row)-band colored noise with zero mean and correlation 
functions Rkr() or spectral functions Skr(). 

The response of system (1) can be assumed of the fol-
lowing form [13]: 
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where A,  and  are all stochastic processes. Regarding eq. 
(2) as generalized van der Pol transformation from X, X  
to A, , one can obtain the following equations: 
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where 
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Based on the Stratonovich-Khasminskii theorem [25], A(t) 
converges to a one-dimensional diffusive Markov process 
as →0. The Itô equation of the limiting diffusion process is 
of the form: 

 d ( )d ( )d ( ),A m A t A W t   (5) 

where W(t) is a unit Wiener process, and m(A) and (A) are 
expressed as follows: 
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where 
2π

0

1
d

2πt
     represents the time averaging. 

The averaged FPK equation associated with eq. (5) is 
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where m(a)=m(A)|A=a, 2(a)=(A)|A=a. For simplicity, it is 
assumed that system (1) is initially at rest. The initial condi-

tion is p(a,0)= ˆ( ).a . 

2  An approximate solution of the FPK equation 

First, consider the linear oscillator: 
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According to sect. 1, the FPK equation of system (8) is 
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Under the restriction 0a∞, the eigenvalues i and the 
eigenfunctions Ei(a) of eq. (9) are in the following: 
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in which Li(·) represents the i-th order Laguerre polynomial. 

(6) 
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With the properties of the Laguerre polynomial, it can be 
proved that Ei(a) satisfies the pronominalization condition: 
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where kr is the Kronecker delta symbol. 
Based on the Galerkin method, first, the approximate so-

lution of eq. (7) can be expressed as [21]: 
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where zi(t) are functions of time to be determined. Substi-
tuting eq. (12) into eq. (7), the residual error is available: 
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In actual numerical calculation, the series need to be 

properly truncated. If N+1 (i=0,1,...,N) terms are adopted, 
N+1 unknown zi(t) will be determined. 

According to the Galerkin method, these zi(t) can be 
evaluated by making the projection of the residual error 
Rerror on a set of independent functions be zero. Selecting 
Ei(a)/E0(a) as weighting functions, the condition above can 
be expressed as: 
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Substituting eq. (13) into eq. (14) together with the proper-
ties of Laguerre polynomial, a set of linear first-order ordi-
nary differential equations governing z(t) can be deduced: 

 ( ) ( ) ( )t t t z Fz D  (15) 

F and D represent a matrix of order (N+1)×(N+1) and a 
(N+1)-dimensional vector, respectively. Eq. (17) can be 
numerically solved via Runge-Kutta method. 

Besides, the statistic moments of the response envelope 
can be obtained. The j-th order moment can be written as: 
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3  Example 

Consider the Van der pol-Rayleigh system subjected to an 
external colored noise 
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where  is a constant, 0 and  are the same as those in eq. 
(1). (t) is a colored noise with zero mean and rational 
spectral density: 
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where D, 1,  are constants.  and D are assumed of the 
same order of  in eq. (1). (t) can be regarded as the output 

of the second order filter 2
1 12 ( ).gW t         Wg(t) is 

a Gaussian white noise with intensity D. 
Based on the procedure proposed in sect. 2, the coeffi-

cients of the averaged FPK equation of the system eq. (17) 
are 
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with 

 

0

2 2

2 2 2

2 0
3
0

2 ,

1
( ) exp ,

! 2 2

π ( )
.

2

i

i i

s s s

s

i

a a a
E a L

i

S

 

  








   
    

   



 (20) 

In the case of white noise, the stationary variance 
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gether with the properties of Laguerre polynomial, a set of 
linear first-order ordinary differential equations governing 
z(t) can be written as follows: 
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where 
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Figure 1 describes the response of the amplitude of eq.  
(1) at t=50 s. It is shown that even for large value of the 
nonlinear parameter , 16 terms are enough for us to get a 
good agreement with digital data. 

Figures 2–4 present the nonstationary PDF values of the 
amplitude of system (17) at different time instants corre-
sponding to different sets of parameters respectively. It can 
be seen that even the parameters of the colored noise are 
different. The results obtained via the proposed method 
match well those obtained by MCS at each time instant. It is 
also shown that the PDF becomes cliffier as the correlation 
time of the colored noise becomes longer. 

Figures 5 and 6 display the time evolution of the 
first-order and the second-order moments of system (19) 
envelope corresponding to different sets of parameters. It  

 

Figure 1  (Color online) Nonstationary probability density of the ampli-
tude of system eq. (17) at t=50 s for different values of N by the proposed 

method and MCS. =0.02, 0=1, =5.84, D=1, 1=3, =0.5. ...... N=5, ------ 
N=8, --- N=15, -·-·- N=20, ● MCS. 

 

Figure 2  (Color online) Nonstationary probability density of the ampli-
tude of system eq. (17) at different time instants. =0.02, 0=1, =5.84, 
D=1, 1=3, =0.5, N=15. —— the proposed method, ●►*◄MCS.  

 

Figure 3  (Color online) Nonstationary probability density of the ampli-
tude of system eq. (17) at different time instants. =0.02, 0=1, =24, D=2, 
1=5, =0.5, N=15. —— the proposed method, ●►*◄ MCS. 

 

Figure 4  (Color online) Nonstationary probability density of the ampli-
tude of system eq. (17) at different time instants. =0.02, 0=1, =2.92, 
D=2, 1=3, =0.5, N=15. —— the proposed method, ●►*◄ MCS. 

can be seen that the results obtained by the proposed pro-
cedure are in good agreement with the digital simulation 
when N=15, even when N=2 (Figure 6). From Figures 5 and 
6 one also can see that the system will experience a dynam-
ic process and then reach the steady state. 

4  Conclusion 

In the present paper, the nonstationary PDF of a class of 
nonlinear oscillators subjected to external colored noise is 
considered. The averaged Itô equation is obtained by the 
stochastic averaging method. The approximate solution of 
the FPK equation becomes available by applying the Ga-
lerkin method. The proposed procedure is then applied to an 
example at last. The results obtained by the procedure pro-
posed in the paper are in good agreement with the digital  
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Figure 5  (Color online) Time evolution of the first-order (a) and the second-order (b) moments of the response envelope. =0.02, 0=1, =5.84, D=1, 1=3, 
=0.5. -·-·- N=2, – – – N=8, ------ N=15, ● MCS. 

 

Figure 6  (Color online) Time evolution of the first-order (a) and the second-order(b) moments of the response envelope. =0.02, 0=1, =24, D=2, 1=5, 
=0.5. -·-·- N=2, – – – N=8, ------ N=15, ● MCS. 

simulation. The significant effect of the colored noise on the 
response is discussed as well. 

It is noted that this procedure can be extended to the 
non-Gaussian noise case. This will be the subject of our 
future work. 

The work reported in this paper is supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 10872165 and 10932009). 

1 Risken H. The Fokker-Planck Equation. 2nd ed. Berlin: Spring-
er-Verlag, 1989 

2 Caughey T K, Dienes J K. Analysis of a nonlinear first-order system 
with a white noise. Input J Appl Phys, 1961, 32(11): 2476–2479 

3 Lin Y K. Probabilistic Theory of Structural Dynamics. New York: 
McGraw Hill, 1967 

4 Gardiner C W. Handbook of Stochastic Method. 2nd ed. Berlin: 
Springer-Verlag, 1983. 117–232 

5 Lin Y K, Cai G Q. Exact stationary response solution for second or-
der nonlinear systems under parametric and external white noise ex-
citations: Part II. J Appl Mech, 1988, 55(3): 702–705 

6 Yong Y, Lin Y K. Exact stationary-response solution for second or-
der nonlinear systems under parametric and external white-noise ex-
citations. J Appl Mech, 1987, 54(2): 414–418 

7 Zhu W Q, Cai G Q, Lin Y K. On exact stationary solutions of sto-
chastically perturbed Hamiltonian systems. Probab Eng Mech, 1990, 
5(2): 84–87 

8 Landau P S, Stratonovich R L. Theory of stochastic transitions of 
various systems between different states. Proceeding of Moscow 
University, 1962 

9 Khasminskii R Z.On the behavior of a conservative system with 
small friction and small random noise. Appl Math Mech, 1964, 28: 
1126–1130 

10 Zhu W Q, Lin Y K. Stochastic averaging of energy envelope. J Eng 
Mech, 1991, 117(8): 1890–1905 

11 Cai G Q. Random vibration of nonlinear systems under non-white 
excitations. J Eng Mech, 1995, 121(5): 633–639 

12 Zhu W Q, Yang Y Q. Stochastic averaging of quasi-nonintegrable- 
Hamiltonian systems. J Appl Mech, 1997, 64(1): 157–164 

13 Feng L Q, Xu W, Wang R. Stochastic responses of vibro-impact 
duffing oscillator excited by additive Gaussian noise. J Sound Vib, 
2008, 309(3-5): 730–738 

14 Bellizzi S, Bouc R. Analysis of multi-degree-of-freedom strongly 
nonlinear mechanical systems with random input: Part I: non-linear 
modes and stochastic averaging. Probab Eng Mech, 1999, 14(3): 



482 Qi L Y, et al.   Sci China-Phys Mech Astron   March (2012)  Vol. 55  No. 3 

229–244 
15 Liu J, Zhao Z B, Cui X. Analysis of transient response of complex 

thin wire structures by using time domain integra equation approach. 
Proceedings of the CSEE, 2009, 29(30): 116–122 

16 Sun J Q, Hsu C S. The generalized cell mapping method in nonlinear 
random vibration based upon short-time Gaussian approximation. J 
Appl Mech, 1990, 57(4): 1018–1025 

17 Naess A, Johnsen J M. Response statistics of nonlinear dynamic sys-
tems by path integration. Italy: Proceedings of IUTAM Symposium, 
1991: 1–5 

18 Yu J S, Cai G Q, Kin Y K. A new path integration procedure based 
on Gauss-Legendre scheme. Int J Non-Linear Mech, 1997, 32(4): 
759–768 

19 Atkinson J D. Eigenfunction expansions for randomly excited 
non-linear systems. J Sound Vib, 1973, 30(2): 153–172 

20 Wen Y K. Approximation method for nonlinear random vibration. J 

Eng Mech Div, 1975, 101(4): 389–401 
21 Spanos P D, Sofi A, Paola M Di. Nonstationary response envelope 

probability densities of nonlinear oscillators. J Appl Mech, 2007, 
74(2): 315–324 

22 Jin X L, Huang Z L. Nonstationary probability densities of strongly 
nonlinear single-degree-of-freedom oscillators with time delay. Non-
linear Dyn, 2010, 59(1-2): 195–206 

23 Feng C S, Wu J Y, Zhu W Q. Response of Duffing system with de-
layed feedback control under combined harmonic and real noise ex-
citation. Commun Nonlinear Sci Numer Simulate, 2009, 14(6): 
2542–2550 

24 Wu Y J, Zhu W Q. Stationary response of Duffing-Ratleigh-Mathieu 
system under colored noise excitation. J Vib Eng, 2009, 22(2): 
2542–2550 

25 Khasminskii R Z. On the averaging principle for stochastic differen-
tial Itô equation. Kibernetika, 1968, 4: 260–279 

 


