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The mechanical behavior of non-Newtonian fluids can be modeled by several constitutive differential equations. The Oldroyd
model is viewed as one of the successful models for describing the response of a subclass of polymeric liquids, in particular the
non-Newtonian behavior exhibited by these fluids. In this paper, we are concerned with the study of the unsteady flows of an incom-
pressible viscoelastic fluid of an Oldroyd-B type in a blood vessel acting on a Brownian force. First we derive the orientation stress
tensor considering Hookean dumbbells on Brownian configuration fields. Then we reformulate the three-dimensional Oldroyd-B
model with the total stress tensor which consists of the isotropic pressure stress tensor, the shear stress tensor, and the orientation
stress tensor. Finally we present the numerical simulations of the model and analyze the effect of the orientation stress tensor in the
vessel.
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The cardiovascular system, consisting of the heart and the
vascular network of arteries, arterioles, capillaries, venules,
and veins, is responsible for the circulation of blood. The
vascular network branches into smaller vessels bringing oxy-
genated blood flow away from the heart. The thickness of the
vessel walls decreases as well [1]. The size of the large ves-
sel is between 0.1 mm and 30 mm in diameter and consists
of three layers: the intima, media, and the adventitia. There
are a number of fundamental categories dividing blood flow.
These categories better suggest schemes for the prediction of
flow inside the vessel.

Blood exhibits non-Newtonian characteristics mainly due
to shear thinning viscosity and viscoelasticity related to stress
relaxation and normal stress effects. In particular, in the case
of small arteries, arterioles, the microstructure and rheo-
logical behavior of blood should not be neglected since the
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dimension of the blood particles is of the same order as that
of the vessels. So blood can be modeled as a homoge-
neous shear-thinning and viscoelastic fluid characterized by
the Oldroyd-B type model.

Therefore, the Oldroyd-B fluid presents one of the sim-
plest constitutive models capable of describing the viscoelas-
tic behavior of dilute polymeric solutions under general flow
conditions. The expressions for both steady and unsteady ve-
locity fields for the generalized Oldroyd-B fluid are consid-
ered in the vessels [2,3]. It is a well-known observation from
designers of wind tunnels, diffusers, and airplanes that if the
angle between the wall and the main flow direction is too
long, the streamlines of the flow may detach from the wall
and create a so-called separated region. In the separated re-
gion, the flow is unsteady and the shear stress is lower than
that in the unseparated regions [4].

The compressible flow, where the density changes are in-
duced by the pressure changes through the flow field, has a
significant effect on the flow. Compressibility effects are usu-
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ally associated with high speed flow of gases. We analyze
incompressible blood flow by applying the principles of con-
servation of mass, momentum, and energy together with the
equation of state to deduce the variations of velocity, pres-
sure, density, and temperature throughout the blood vessel.
In the cardiovascular system, blood flow is under constant in-
teraction with the vessel walls. Many studies have simulated
blood flow through rigid arteries. A review on the theoretical
developments and new trends in arterial mechanics is given
in ref. [5]. Asymmetric flows of non-Newtonian fluids in the
symmetric stenosed artery in three dimensions can be found
in ref. [6]. Experimental studies on the axisymmetric sphere-
wall interaction in both Newtonian and non-Newtonian flu-
ids have been reported in ref. [7]. Mekheimer [8] studied
the effect of the induced magnetic field on peristaltic flow
of a couple stress fluid. The blood flows through a circular
pipe with an impulsive pressure gradient and only a non-zero
component of velocity w with the z-axis was introduced in
ref. [9] while the blood flow through an axisymmetric steno-
sis with velocity components u and w in 2-dimensions was
presented in ref. [10]. Some of the above researchers and
several more have proposed various representative models for
blood in small vessels and narrow capillaries by considering
a total stress tensor consisting of the isotropic pressure stress
tensor and the shear stress tensor in the absence of the orien-
tation stress tensor.

In this paper, we consider a total stress tensor consisting
of the isotropic pressure stress tensor, the shear stress tensor,
and the orientation stress tensor to understand the dynamics
of blood flow inside the vessel. First, we derive the orienta-
tion stress tensor from the Brownian force and an equivalent
microscopic description of the polymer dynamics in terms
of an ensemble of Hookean dumbbells. Then, we reformu-
late the three-dimensional Oldroyd-B model coupled with the
momentum equation and the total stress tensor. Finally, we
discuss our numerical analysis of the Oldroyd-B model with
velocity components in three dimensions and the momentum
equation. Numerical results and discussion show that the ef-
fect of the orientation stress tensor in a blood vessel is con-
siderable, although the Brownian force is sufficiently small.
We also describe that if there is no stress on the vessel wall
then the flow is incompressible representing that the diameter
of the vessel is constant.

1 Orientation stress tensor

Blood, often called the river of life, consists of red and white
blood cells in an aqueous plasma solution. Plasma, water
with various proteins, is dissolved along with ions [11]. The
blood generally demonstrates both a viscous and an elastic
effect, both of which determine the stress-strain relationship.
Such liquids are called viscoelastic. Blood plasma shows vis-
cosity, while whole blood is both viscous and elastic. The
viscosity is related to the energy dissipated during blood flow,
while elasticity is related to the energy stored during flow due

to the orientation and deformation of red blood cells. Blood is
a non-Newtonian fluid, meaning that its viscosity is not con-
stant, but depends on the rate of shear stress. At low shear
rates, the viscosity increases, and at high shear rates, the vis-
cosity decreases [12].

We consider the flow of blood through a cylindrical blood
vessel (vein or artery) with a diameter d and length L. The
velocity υ of the blood increases along the central axis of the
vessel. For a given flow rate Q in a cylindrical vessel of diam-
eter d, the viscosity is known as the apparent viscosity ηapp:

ηapp =
πd4

23L
Δp
Q
, (1)

where Δp is the pressure difference between the ends of the
vessel. The percentage of the blood volume occupied by red
blood cells is called the hematocrit. The relative viscosity
η(h, d) of blood is a function of the vessel diameter d and
hematocrit h [13]. The measurement of blood viscosity in mi-
cro vessels is very difficult, while the viscosity of the plasma
is approximately 1.2 cP [14] which has Newtonian charac-
teristics. It is evident that red blood cells are responsible for
non-Newtonian behavior. The viscosity, or internal friction,
of the blood increases as the percentage of cells in the blood
increases: more cells mean more friction with greater viscos-
ity. With a normal hematocrit of about 40 (that is, approx-
imately 40% of the blood volume is red blood cells and the
remainder plasma), the viscosity of whole blood (cells plus
plasma) is about 3 times that of water. On the other hand, the
viscosity of plasma alone is about 1.5 times that of water. Al-
though the concentrations and types of proteins in the plasma
can affect its viscosity, this has little if any effect on the over-
all viscosity of whole blood. When the hematocrit rises to
60 or 70, which it often does in patients with polycythemia,
or abnormally high red blood cell counts, the blood viscosity
can become as high as 10 times that of water. Alternatively,
when the hematocrit falls drastically, as it does in patients
with anemia (a decreased number of red cells in the blood),
blood viscosity can approach that of plasma alone.

In order to derive the orientation stress tensor in blood
flow, we consideran equivalent microscopic description of
the polymer dynamics in terms of an ensemble of Hookean
dumbbells. For the experimental dumbbell model in Brown-
ian configuration fields, we refer the reader to [15]. We con-
sider two spherical beads and connect them together with a
linear spring [16]. We set one bead at position x with ra-
dius a and another bead at position x+ r. The spring force Fs

pulling a bead towards the other beads is βr. Here β = 3kΓ/a2

is a spring constant with temperature Γ = 37◦C and the Boltz-
mann constant k (= 1.38 × 10−23 m2 kg s−2 K−1). The drag
force Fd from the bead moving through the viscous solvent
is given by Fd = −6πηa(dx/dt − υ(x)). Here, υ(x) and dx/dt
is the velocity of the fluid and bead, respectively. η = η(h, d)
is the viscosity of the fluid (blood). It is common to neglect
inertia because of the small mass of these particles. By using
Newton’s Second Law, we show that the total force is always
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approximately zero [17]. Thus, we get

Ftot = Fs + Fd + FB � 0, (2)

where Ftot and FB are the total and the Brownian force, re-
spectively. To find the velocity of the bead at position x, let
us substitute Fs and Fd in eq. (2). Then, we get

dx
dt
=

kΓ
2πηa3

r + υ(x) +
1

6πηa
FB(x). (3)

Similarly, the velocity d(x+r)/dt at x+r with the spring force,
says −βr is given:

d(x + r)
dt

= − kΓ
2πηa3

r + υ(x + r) +
1

6πηa
FB(x + r). (4)

Thus, the velocity difference between the two beads can be
written as:

d(x + r)
dt

− dx
dt
=

dr
dt
. (5)

If we invoke the locally linear flow assumption, the difference
in fluid velocities is approximated by a Taylor series expan-
sion of the first order velocity gradient tensor:

υ(x + r) − υ(x) � r · ∇υ(x).

Combining these relationships leads to the following stochas-
tic differential equation for the separation vector:

dr
dt
= − 1

2τ
r + r · ∇υ(x) +

1
6πηa

(FB(x + r) − FB(x)), (6)

where 2kΓ/πηa3 = τ−1 which represents the inverse relax-
ation time of the dumbbell. The change in the Brownian force
due to collisions of the solvent molecules with the beads is
determined by (FB(x+ r)−FB(x))dt = (dBt, dBt, dBt), where
dBt = τ

−1/2(α(t)dt)1/2 for some function α(t) � 0. Since the
force that crosses the surface of the dumbbell is βr, if there are
m dumbbells per unit volume, then the number crossing the
dumbbell surface δS with the normal unit n becomes mr·nδS .
Thus, the extra stress by the dumbbell becomes

σp · nδS = βr(mr · nδS )⇒ σp = gM.

Here, g is a constant, says elastic modulus,σp is the polymer
extra stress and M is an orientation stress tensor [18]. Now,
we take the orientation stress tensor:

M(x, t) = E[r(x, t) r(x, t)], (7)

where, for r = (r1, r2, r3) the tensor, E, can be defined by

E[rr] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1r1 r1r2 r1r3

r2r1 r2r2 r2r3

r3r1 r3r2 r3r3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We consider the time-step dt. Then the position x moves to

x + dx = x + υ(x)dt, (8)

where υ(x) is the fluid velocity. So after the time-step dt the
orientation stress tensor becomes

M(x + υ(x)dt, t + dt)=E[(r + dr)(r + dr)]

=E[rr + rdr + drr + drdr]

=E[rr] + E[rdr] + E[drr] + E[drdr].
(9)

We simplify and keep only terms up to order dt:

E[r r]=M(x, t),

E[r dr]=− 1
2τ

Mdt + M · ∇υ(x)dt,

E[dr r]=− 1
2τ

Mdt + (∇ · υ(x))TMdt,

E[dr dr]= τ−1 α(t)
(6πηa)2

Idt,

(10)

M(x + υ(x)dt, t + dt) = (υ · ∇)Mdt +
∂M
∂t

dt + M(x, t). (11)

Combining eqs. (9)–(11), we get

∂M
∂t
+(υ·∇)M−M∇υ−(∇υ)TM = −1

τ

(

M− α(t)
(6πηa)2

I
)

. (12)

We use this equation coupled with the Oldroyd-B fluid and
the momentum equation in next section to approach blood
flow dynamics in a vessel.

2 The Oldroyd-B fluid in a vessel incorporat-
ing a Brownian stress

Many theoretical and experimental formulations have been
developed to describe the finite deformation and the nonlinear
viscoelasticity of arteries in time dependent flows. Several
researchers, for instance [9,10,19,20] have proposed various
representative models for blood in small vessels and narrow
capillaries by considering a total stress tensor consisting of
the isotropic pressure stress tensor and the shear stress tensor
with the absence of the orientation stress tensor. The model
is extended here to consider the total stress tensor consisting
of the isotropic pressure stress tensor, the shear stress tensor,
and the orientation stress tensor with a constant g (the elas-
tic modulus). The governing equations of the vessel are, of
course, derived by applying conservation of mass, momen-
tum, and energy to the flow through a control volume. The
fluid obeys the following equations. Let us consider the total
stress tensorσ and the velocity υ of the flow with components
υi, where i = 1, 2, 3 are rectangular co-ordinates. The conti-
nuity and the momentum equations for the time-dependent
incompressible flow may be written:

∇ · υ = 0,

ρ

(
∂υ

∂t
+ υ · ∇υ

)

= divσ,

σ = −pI + η
(∇υ + (∇υ)T) + gM,

(13)
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where ρ is the density, σ the total stress tensor, η the viscosity
of the blood, I is the identity matrix, -pI the isotropic pres-
sure stress tensor, g the elastic modulus (constant), and M the
orientation stress tensor.

Now, we derive the Oldroyd-B equations by combining the
equation of continuity, the momentum equation, and eq. (12):

∇ · υ = 0,

ρ

(
∂υ

∂t
+ υ · ∇υ

)

= divσ,

σ = −pI + η
(∇υ + (∇υ)T) + gM,

∂M
∂t
+ (υ · ∇)M − M∇υ − (∇υ)T M

= −1
τ

(

M − α(t)
(6πηa)2

I
)

.

(14)

In fluid dynamics, the time rate of change for a fluid ele-
ment is usually denoted by D/Dt, and defined by

D f
Dt
=
∂ f
∂t
+ (υ · ∇) f , (15)

where D/Dt is often called the material (Lagrangian) deriva-
tive. For reformulation of the system (14) in the form of a ma-
terial derivative D/Dt, we set A = ∇υ, W = A + AT, B =
ηW + gM. In the system (14), the Oldroyd-B equations are
then reformulated with the use of non constant viscosity in
the form of

∇ · υ = 0,

DM
Dt
− MA − AT M = −1

τ

(

M − α(t)
(6πηa)2

I
)

,

B + γ1

[
DB
Dt
− AB − BAT

]

= η

[

W + γ2

(
DW
Dt
− AW −WAT

)]

+gM − γ2g
τ

(

M − α(t)
(6πηa)2

I

)

,

(16)

where η is the viscosity and γ1 and γ2 are material constants.

Remark There may be general instructions on the possi-
ble values for the constants in the system for physical reality.
The full Oldroyd-B fluid in the eq. (16) is reduced to the fol-
lowing form (model) in the absence of the orientation stress
tensor:

(1) If γ1 = γ2 = 0, then the model is reduced to a pure
inelastic fluid and the Naveir-Stokes linear model when, in
addition η = constant.

(2) For γ1 = γ2 � 0, the model is reduced to a Newtonian
fluid.

(3) If γ1 � 0 and γ2 = 0, then the model is reduced to con-
vected Maxwell model. This model also used for viscoelastic
flow calculation because of its simplicity.

(4) For γ1 = 0 and γ2 � 0, the model simplified to second-
order fluid.

Let x = (x1, x2, x3) and set the velocity and an orientation
stress tensor:

υ(x, t) = [υ1, υ2, υ3]T, M(x, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(17)
where M(x, t) is symmetric. The viscosity of the blood is
η(h, d) which is a function of the vessel diameter and the
hematocrit. The second equation of the system (13) is a ten-
sor equation equivalent to nine scalar equations correspond-
ing to the components σi j given by

σi j = −pIi j+η(h, d)
(
∂υi

∂x j
+
∂υ j

∂xi

)

+gMi j, i, j = 1, 2, 3. (18)

In order to calculate the orientation stress tensor, first we con-
sider all components of the orientation stress tensor M and
then find the solution to the second equation of the reformu-
lated Oldroyd-B model in eq. (16) with the expression of
velocity υ and the orientation stress tensor M in eq. (14):

∂Mi j

∂t
+

3∑

k=1

[

υk
∂Mi j

∂xk
− Mik

∂υ j

∂xk
− Mk j

∂υi

∂xk

]

=
1
τ

( α(t)δi j

(6πaη(h, d))2
− Mi j

)

, i, j = 1, 2, 3. (19)

Here δi j is the Kronecker delta. All nine components of the
orientation stress tensor M can be determined from eq. (17).
The momentum equation in eq. (13) becomes

ρ
∂υi

∂t
+

3∑

j=1

υ j
∂υi

∂x j

= − ∂p
∂xi
+ η(h, d)

[ 3∑

j=1

(
∂2υi

∂x2
j

+
∂2υ j

∂xi∂x j

)]

+g
3∑

j=1

∂Mi j

∂x j
, i, j = 1, 2, 3. (20)

In order to obtain the components of the orientation stress
tensor M, first, we solve eq. (19) and then we substitute
those components of M in eq. (20) to obtain the pressure
p. We investigate the total tensor σ once we obtain the orien-
tation stress tensor M and the pressure p. In the one dimen-
sional case, the nonlinear system is easily solved but in higher
dimensions, we require some accurate and efficient iterative
methods to solve the desired system.

3 Numerical simulation

In this section we use an iterative method to find the numer-
ical solution. Several mixed and semi-implicit methods have
been proposed to get more efficient solvers while preserv-
ing a high degree of stability and the possibility to use large
time steps. The blood flow in the vessel is symmetric at low
values of the Reynolds number. As the Reynolds number in-
creases, the blood flow changes from a steady state to an un-
steady state. We can apply either a steady state or an unsteady
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(time dependent) solver to capture these effects as appropri-
ate. Here, we consider that the unsteady shear flow depends
only on x3 and t:

υ(x, t) = (0, 0, μ sin(ωt)x3),

where μ is the amplitude of the pulsatile component and ω is
the frequency. The initial and boundary conditions of veloc-
ity on the vessel wall are taken as:

υ(x, t) = 0 at t = 0 = x3,

∂υ(x, t)
∂x3

= 0 at x3 = R,
(21)

where R is the radius of the vessel. Also we consider some
simplifications in the orientation stress tensor components
such that M11 = M12 = M22 � 0. Thus, eq. (19) becomes

∂M13

∂t
+ μ sin(ωt)x3

∂M13

∂x3
+ μ sin(ωt)M13 = −1

τ
M13,

∂M23

∂t
+ μ sin(ωt)x3

∂M23

∂x3
+ μ sin(ωt)M23 = −1

τ
M23,

∂M33

∂t
+ μ sin(ωt)x3

∂M33

∂x3
+ 2μ sin(ωt)M33

=
1
τ

(
α(t)

(6πaη(h, d))2
− M33

)

,

(22)
where η(h, d) is the viscosity of the vessel. In order to find
the numerical solution to eq. (20), first we solve eq. (22)
to obtain the orientation stress tensor component M33. The
momentum equation (20) becomes

ρμω cos(ωt)x3 + (μ sin(ωt))2x3 = − ∂p
∂x3
+ g
∂M33

∂x3
. (23)

For the purpose of numerical computations of the de-
sired quantities, the parameter μ = 0.5 kg cm−2 s−2, ρ =
1.024×103 kg cm−3, η(0.45, 1) = 5.0380P, g = 1.13616 dyn-
cm and ω = 7.2 Hz have been used. A complete schematic
scenario of the blood flow in a vessel is represented in the
given figures. The numerical result in Figure 1 represents the
orientation stress tensor component M13. The numerical re-
sults of the orientation stress tensor component M23 are sim-
ilar to the orientation stress tensor component M13. Also we
know that the matrices are symmetric, that is, M13=M31 and
M23=M32. Figure 2 represents the orientation stress tensor
component M33 with the configuration of Brownian force.
The surface of the orientation stress tensor M13 is not sim-
ilar to the orientation stress tensor M33, which shows that all
components of stress are not equal inside the vessel. If there
is no stress on the vessel wall then the flow is incompressible,
which represents that the diameter of the vessel is constant.

Figure 3 shows the total stress tensor σ33 with the ori-
entation stress tensor M33, which is the numerical result of
the first order nonlinear partial differential equations obtained
from eqs. (22) and (23). In the absence of the orientation
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Figure 1 (Color online) The graph represents the orientation stress tensor
component M13.

0
0.2

0.4
0.6

0.8
1.0

0

0.5

1.0
−0.1

0

0.1

0.2

0.3

Length x3
Time t

M
33

Figure 2 (Color online) The graph represents the orientation stress tensor
component M33.

0
0.2

0.4
0.6

0.8
1.0

0

0.5

1.0
−4

−2

0

2

4

σ
η

33
=−
p+

  (
h,
d)
W

33
+M

33

Length x3

Time t

Figure 3 (Color online) The model shows the total stress tensor component
with the orientation stress tensor component M33 of the vessel.

stress tensor, first we calculate the pressure of the vessel from
the momentum equation. Then, we substitute the value of the
pressure in eq. (23) to obtain the total stress tensor repre-
sented in Figure 4. The solution profiles of the total tensor
with and without the orientation stress tensor at x3 = 0.5 and
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t = 0.2 are represented in Figures 5 and 6, respectively. The
numerical results show that the effect of the orientation stress
tensor in a blood vessel is considerable, although the Brow-
nian force is sufficiently small. The total stress tensor σ can
be obtained from the pressure, velocity, and the Brownian
force. By comparison, with the matrix components in the
third equation of the system (13) we determine the compo-
nents of the total stress tensor

σ13 = σ23 = σ31 = σ32 = gM13(t, x3),

σ13 = 0 = σ23,

σ33 = 2η(h, d)μ sin(ωt) + gM33(t, x3) − p(t, x3).

Note that for numerical simulation, we consider only veloc-
ity in the x3-axis which shows that the magnitudes of all of
the components of stress are not similar. Hence, examining
all of the results from the present figures, we can estimate the
effects of the total stress tensor, the orientation stress tensor,
pressure, viscosity, and the nonhomogeneity of blood on the
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flow phenomena quantitatively in order to validate applica-
bility of the present mathematical model. Furthermore, for
a rigid wall problem, only the velocity field requires the ini-
tial conditions. However, for the deformable wall problem,
both the initial values for the displacement and velocity field
are considered. We plan to orient extensions to the current
study toward seeking solutions up to critical levels of the to-
tal stress tensor, and considering the temporal adjustment of
the parameters in the model with the Brownian force.

4 Conclusion

In this paper first we considered the Brownian force to derive
the orientation stress tensor. The model we developed in this
work is a full Oldroyd-B fluid describing the motion of a non-
Newtonian incompressible fluid moving into a blood vessel.
Then, we showed by numerical simulations that the effect of
the orientation stress tensor in the blood vessel is consider-
able, although the Brownian force is sufficiently small. We
also presented the results in the form of a total stress tensor
that increases with velocity profiles. Since, the blood flow
through a narrow vessel is often pulsatile, the extension of
this work to pulsatile flow could be more useful. The applica-
tions of such models are important to the real world, because
stresses are quite difficult to measure experimentally. There-
fore, it is useful to examine them by mathematical models to
obtain further insight into aspects of hemodynamics.
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