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Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that 
most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collo-
cation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the 
least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Com-
pared with the interval analysis method based on the first order Taylor expansion, in which only information including the 
function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using 
several collocation points which improve the precision of results owing to better approximation of a response function. The 
pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. 
To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under 
continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method. 
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The treatment of structural parameters and external excita-
tions as uncertain variables has been the research subject of 
engineers and scientists for many years [1]. The concept of 
uncertainty plays an important role in the investigation of 
various science and engineering problems. The uncertainties 
in structural systems affect design and operating perform-
ance to a large extent. In structural static and dynamical 
analysis, the structural parameters are usually subject to 
variation due to fluctuations in material properties, uncer-
tainty in boundary conditions, and variations caused by 
manufacturing and assembly techniques. In the current lit-
erature regarding structural response problems with random 
uncertainties, there are three main methods [2]: the Monte 
Carlo simulation method [3–6], the stochastic finite element  

method [7–10], and the orthogonal series expansion method 
[11,12]. The Monte Carlo simulation method is very effi-
cient in the aspect of structural random analysis, but it is 
quite time-consuming. The stochastic finite element method 
is very powerful in solving the random eigen problem, static 
analysis problem, and structural stability problem, but the 
method is haunted by the notorious secular term in struc-
tural random dynamical response analysis. According to the 
orthogonal series expansion method, the structural response 
may be expanded into an orthogonal series, and the corre-
sponding numerical characteristics are given as the analyti-
cal solution form. Unfortunately, despite the success of the 
above probabilistic analysis approaches, the probabilistic 
approach requires a wealth of data, often unavailable, in 
order to define the probability distribution density. When 
crucial information for describing variability is missing, it is 
not good practice to model the uncertainties as a probabilis-          
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tic quantity [13]. In the frequently encountered case where 
sufficient knowledge about the external excitations and 
structural parameters is absent for substantiation of the sto-
chastic analysis, an alternative method models uncertainties 
on the basis of non-probabilistic conceptual frameworks. 
These approaches are based on set-theoretical formulations 
by adopting convex models or interval analysis methods 
[14–23] in which only the bounds on the magnitude of un-
certain external excitations and parameters are required, not 
necessarily knowledge concerning the probabilistic distribu-
tion densities. The interval analysis method models the un-
certainty quantities as interval variables with lower and up-
per bounds. In the case of the uncertainty being slight, the 
so-called interval perturbation method [15], and interval 
analysis method based on the first order Taylor expansion 
[19,20] can be adopted in both static and dynamic analysis. 
These methods are advantageous mainly in their flexibility 
and simplicity of the mathematical formulation. However, 
the effectiveness of these methods is limited due to the as-
sumption of small intervals. Since the method is based on 
the first order sensitivity at the nominal point, the obtained 
range of response function is related to the accuracy of the 
first order sensitivity. When an uncertain variable is not 
located in a small interval, or the response function varies in 
the width range, the method can’t be executed. In the study, 
a new interval analysis method named the collocation in-
terval analysis method (which doesn’t depend on sensitivity) 
is presented. This method can be applied when the uncertain 
variable lies in the width range and will not suffer the as-
sumption of small interval. 

On the other hand, over the last few decades, researchers 
have recognized that most significant loads, such as seismic 
ground motion, gusty winds, sea waves, jet noise, etc., in-
volved in structural engineering problems are random in 
nature. These excitations can be modeled as stochastic 
processes. A stationary stochastic process can be calculated 
relatively easily and has widespread availability in engi-
neering. The second-order stochastic process, where the 
mean-value function and variance function are finite, can be 
used to describe mostly real processes. An accurate and 
highly efficient algorithm known as the Pseudo-excitation 
method [24–27], has been developed for the random vibra-
tion computation of complex engineering structures. The 
difficulty in computational efforts for the stationary and 
non-stationary random response can be satisfactorily over-
come. The cross-correlation terms between all participant 
modes and all random excitations have been included. 
Therefore, the Pseudo-excitation method is a Complete 
Quadratic Combination (CQC) method. 

In the literature, interval analysis methods have been de-
veloped to evaluate the static response and dynamic analysis 
of structures with interval parameters subject to determinis-
tic excitations. However, to the authors’ best knowledge, 
interval methods have never been applied to evaluate the 
response of structural systems with interval parameters un-

der stochastic process input. In the design of engineering 
structures, incorporation of uncertainties of structural pa-
rameters and randomness of loads should therefore result in 
more efficient designs. 

The aim of the paper is to evaluate the range of the sto-
chastic response statistics of linear structural systems with 
interval parameters subjected to stochastic excitations. The 
mean value function can be adjusted to zero through cen-
tralizing the stochastic process. Therefore, obtaining the 
bounds of the auto-power spectrum density (PSD) function 
and variance function of the response function is the main 
objective in the study. Numerical results concerning a 
building under seismic ground motion and aerofoil under 
continuous atmosphere turbulence are presented to show the 
effectiveness of the proposed method. 

1  Problem statement 

Consider the equation of motion of a general dynamical 
system with n degrees of freedom in the following form: 

 ( ) ( ) ( ) ( ),t t t t   Mx Cx Kx F  (1) 

where ( ) ( ( )),it x tx  ( ) ( ( ))it x t x  and ( ) ( ( ))it x t x  

are the displacement, velocity and acceleration vectors, and 
the mass matrix ( ),ijmM  the damping matrix ( )ijcC  

and the stiffness matrix ( )ijkK  depend on the structural 

parameter vector ( )ihh  and may be expressed as func-

tions of the structural parameter vector h, i.e., 
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in which ( )ihh  is m-dimensional vector. ( ) ( ( ))it f tF  

is a stochastic load vector with no specific expression but 
known PSD function ( ) ( ( ))

i jFF f fS S  . Thus, eq. (1) can 

be rewritten as: 

 ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ).t t t t   M h x h C h x h K h x h F  (3) 

Considering a realistic situation in which available in-
formation on the structural parameter vector h=(hi) is not 
enough to justify an assumption on its probabilistic charac-
teristics, we follow the thought of interval mathematics and 
assume that the structural parameter vector h=(hi) belongs 
to a bounded interval vector: 

 [ , ] ( ),    [ , ],    1,2, , ,I I I
i i i i ih h h h h i m     h h h h   (4) 

where ( )ihh  and ( )ihh  are the upper and lower 

bounds of structural parameters h=(hi), respectively. From 
interval mathematics, we know that eq. (3) describes a ‘box’ 
with m order of dimension. 
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Our aim is to find statistics of all the possible dynamical 
responses x(t) satisfying the dynamical equation (3), where 
h is assumed to be all possible values inside the interval 
parameter vector hI. This infinite number of statistics of 
dynamical responses constitutes bounded sets  which has a 
very complicated region in general. In the sense of interval 
mathematics, the aim is seeking the upper and lower bounds 
of the auto PSD function and the variance function, i.e. 

  ( ) ( ), ( ) ( ) ,   1,2, , ,
i i i i i i

I I
x x x x x x iS S S S i n          (5) 

  ( ) ( ), ( ) ( ) ,   1,2, , ,
i i i

I I
x x x it t t t i n          (6) 

where  is an angular frequency variable. 

2  Pseudo excitation method 

For deterministic structural systems with stochastic process 
inputs, the PSD matrix of response function of multi-input 
and multi-output system can be expressed as: 

 * T( ) ( ) ( ) ( ),xx FF   S H S H  (7) 

where H() is the frequency transfer function matrix, the 
superscript ‘*’ and ‘T’ are adjoint operator and transposed 
operator, respectively. Though eq. (7) is extensively used in 
engineering, it is necessary to choose many discrete fre-
quency points to execute matrix multiplication twice, which 
results in rather low efficiency for large structural systems. 
For this reason, the modal superposition method and pseudo 
excitation method are introduced to increase the computa-
tional efficiency. Thus the pseudo response vector can be 
constructed as follows: 

 i

1

( , ) ( ) ( )e ,
j

q
t

j j j g
j

t H S     


 x  (8) 

where the superscript ‘~’ represents pseudo quantity, q is 
the number of truncated modal orders, j, j are the jth 
mode factor and modal vector, and gj(t) may be the linear 
combination of the components of F(t). Based on eq. (8), 
we can get 
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(9)

 

It can be proved that eq. (9) is an equivalent to eq. (7) 
when q=n. Pseudo excitation method avoids the computa-
tional effort on double summation and transforms a random 
vibration problem into a determinate problem. Only one 
vector multiplication is needed to obtain the power spec-
trum matrix of the response function. It can greatly improve 

the computational efficiency, and can be implemented for 
the calculation of large complex structures. In the study, this 
method is used to solve stochastic statistics in the sequence 
sections. 

3  Interval analysis method based on taylor ex-
pansion (TIAM) under stationary Stochastic ex-
citation 

In this section, we first define the nominal value vector of 
the interval structural parameter vector as: 

 
( )

( ) ( ) ,    1,2, , .
2

c c I
i m h i m


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h h
h h   (10) 

and the deviation amplitude vector or the uncertain radius 
vector of the interval structural parameter vector as: 

 rad ( )
( ) ( ) ,    1,2, , .

2
I

ih i m


     
h h

h h   (11) 

Thus, based on interval mathematics, the interval structural 
parameter vector is decomposed into the sum of the nominal 
value vector and the deviation vector, i.e. 
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(12)
 

where [ 1,1]e   . 

In terms of expression (12), the interval structural pa-
rameter vector may be written in the following form: 

 ,    .c     h h h h h  (13) 

When structural system contains uncertain variances 
which are characterized by interval vector h, pseudo dy-
namic response eq. (8) and the corresponding PSD function 
can be rewritten as: 
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(15)

 

Fixing frequency  on the concerned frequency point 
=c, Sxx(h,) in eq. (15) is only the function of interval 
vector h, as: 

*

* T

1

( , ) ( ) ( , ) ( ) ( )
i

q

xx c j j c j g c
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T
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Using Taylor series expansion to the first order at the 
nominal value point, the component form ( , )

i ix x cS h  can 

be expressed approximately as follows: 
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in which 

  , ,   1,2, , .I
k k k kh h h h k m        (18) 

By using the interval extension in interval mathematics, 
the interval extension of the component of PSD function 
matrix can be obtained from eq. (17), as: 
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After the interval operations, from the above equation, we 
have 
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and 
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By eqs. (20) and (21) we can determine the interval region 
of the PSD matrix at the concerned frequency point =c. 

It should be noted that it is necessary to obtain the sensi-
tivities of the component of PSD function matrix with re-
spect to different interval variables in eqs. (17), (19)–(21). 
An alternative approach in engineering simply replaces dif-
ferential calculus into differences calculus, as: 

 
( , ) ( , ) ( , )

i i i i i i

c c k c c
x x c x x c x x c

k c
k

S S S

h

   



  




h h h h

h
 (22) 

in which k c h  represents only perturbing the k-th variable 

in vector .ch  And now, the components ( , )
i j

c
x x cS h  and  

( , )
i j

c k c
x x cS  h h  can all be determined by solving the 

deterministic structural parameters system. Substituting eq. 
(22) into eqs. (20) and (21), we can obtain the interval 
bounds of the PSD matrix at the concerned frequency point 

c  , as: 
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and 
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The significant merit of interval analysis based on the 
Taylor expansion is that it is simple and efficient. Only sta-
tistics values and sensitivities of statistics values with re-
spect to each interval variable at nominal value are neces-
sary. When the number of the interval variables is m, the 
first order method can estimate statistics’ bounds through 
solving deterministic problems by m+1 times. 

Despite its computational efficiency, its shortcomings are 
obvious. First, the bounds estimated by the first order 
method are usually different from the bounds of the true 
region. For example, if the objective function is monotonic 
in the range of uncertain variables, as Figure 1, it is obvious 
that one of the bounds goes over the true bound, and the 
other one is lower than the true bound. Owing to estimated 
bounds, which use the relatively inaccurate first order 
method, the bounds obtained from eqs. (23) and (24) are a 
‘rough’ assessment. In general, one can’t guarantee that the 
estimated interval contains the true interval. In other words, 
the structures designed according to the first order method 
are not necessarily accurate. 

4  Collocation interval analysis method (CIAM) 
under stationary Stochastic excitation 

The approximate formula of Taylor expansion involves  

 
Figure 1  The approximation formula of the first order method with respect to the objective function. (a) Monotonic increasing lower convex function; (b) 
monotonic decreasing lower convex function; (c) monotonic increasing upper convec function; (d) monotonic decreasing upper convec function. 
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solving a response function value and derivatives at the 
center of a super rectangular bounding with interval vari-
ables, and spans an approximate surface of a real response 
function according to the central point’s information. In 
other words, the interval analysis methods based on Taylor 
expansion only use the central point’s information to evalu-
ate the maximum and minimum values of the real response 
function when, in fact, we can use the other points’ infor-
mation to do this work. 

Except for Taylor expansion, one can use another ap-
proximate method to describe the real response function 
with much higher accuracy. Researchers in the field of 
function approximation have discussed using a series of 
simple functions {p(x)} to approximate a continuous func-
tion located on a closed interval. Function’s Chebyshev 
orthogonal polynomial expansion is usually used for func-
tion’s approximate calculation in the whole interval; it is 
called ‘the most economic expansion’. In the study, the first 
class Chebyshev polynomial is used to approximate the re-
sponse function. The coefficients of expansion equation can 
be obtained from the Gauss-Chebyshev quadrature formula 
through collocating Gauss quadrature points in the interval 
of uncertain variables. For each interval variable, one can 
obtain the extreme points’ distribution of the approximate 
function. Then we can get a maximum point and a mini-
mum point at which the objective function reaches the 
maximum value and minimum value. 

4.1  Collocation interval analysis method  

According to eq. (12), we can rewrite interval vector h as: 

 * ,c  h h h e  (25) 

where e is one such vector whose absolute value of the ele-
ments is less than or equal to 1. The sign ‘*’ represents the 
corresponding terms in two vectors multiplied and the result 
is still a vector. Let the s-th element in vector e be variable  
x, [ 1,1]x  , and the other elements are all fixed at 0. Then 

let 

 
T{0, , , ,0} ,    1,2, ,

          1, , , ,

s x s m
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   
 

X
 (26) 

and 

 * ,s c s  h h h X  (27) 

where the superscript ‘s’ means the s-th interval variable is 
under analysis. 

Our objective is to seek the bounds of the response statis-
tics. In the same manner as in sect. 3, we first fix the fre-
quency  at the concerned frequency point =c. Thus, the 
problem with two classes of variables is transformed into a 
problem containing only interval variables. For the symbol 
convenience, we write the component of response statistics 

matrix ( , )
i ix x cS h  as the simple formula ( )S h  or S. 

We introduce the first class Chebyshev polynomials: 

 ( ) cos( arccos ),    1 1nT x n x x     (28) 
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satisfies recurrence relation as follows: 
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Supposing  0 1Span , , ,r rH T T T  is a subspace included 

in [ 1,1]C  , then we can choose the approximate polyno-

mial ( )r rP x H , such that 

 0

1

( ) ( ),
2

r

r j j
j

a
P x a T x



   (30) 

where 

 
1

0 21

2 ( )
d ,

1

sS h
a x

x

 
  (31) 

 
1

21

( ) ( )2
d ,    1,2, , .

1

s
j

j

S h T x
a x j r

x
 
 
   (32) 

According to the Gauss-Chebyshev quadrature formula: 
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where quadrature nodes , 1,2, ,kx k q   are zero roots of 

( ),qT x  represented as: 
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and kA  are quadrature coefficients, represented as: 
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Substituting eq. (36) into eqs. (33) and (34), we can obtain 
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Substituting eqs. (38) and (39) into eq. (30), we get 
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k kS S h , eq. (40) can be rewritten as matrix form: 
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Let 

 1 2, ,s s s s
qS S S   S , (42) 
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  T

0 1 2( ) ( ) ( ) ( ) ( ) ,rx T x T x T x T x T  (44) 

and 

 
2

,s s

q
A S T  (45) 

then ( )rP x  can be rewritten as: 

 ( ) ( ),s
rP x x A T  (46) 

where A is a row vector and ( )xT  is a column vector. 
In order to find the maximum and minimum value points 

of the objective function when the s-th interval available 
varies, it is necessary to obtain the extreme value point of 
the approximate function. We can accomplish  this through 
seeking the roots of derived function and combining the 
function values at the interval bounds. The maximum and 
minimum value points of the s-th interval available are re-
garded as max

sr  and min
sr . Then traversing s from 1 to m, we 

can obtain the maximum and minimum points of the objec-
tive function with respect to each interval available. Let 

 
T1 2

max max max max, , , ,mr r r   h   (47) 

 
T1 2

min min min min, , , .mr r r   h   (48) 

Then bounds of the objective function can be derived from 
these points as: 

 max( ) ( ),S Sh h  (49) 

 min( ) ( ).S Sh h  (50) 

4.2  Computational effort 

First, we research how to choose the number of truncation 
terms r and the number of Gauss integral points q. Suppos-
ing ( )f x  is a r-order polynomial, according to the Gauss- 

Chebyshev quadrature formula, we obtain 
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and the truncation error is 
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When r is an odd number, the (r+1)-order derivative of f(x) 
is zero, that’s to say, the truncation error characterized by eq. 
(52) will be zero when q(r+1)/2. On the other hand, when 
r is an even number, the truncation error is not zero until 
q(r+2)/2. Theoretically, the larger r is, the more accurate 
the obtained result is. It is suggested that odd numbers in 
3–11 are chosen for r value in engineering. Thus, it can be 
seen that the truncation error will be zero as long as q is no 
less than 6. In general, Gauss quadrature formula with ten 
integral points is widely used in scientific calculations and 
can obtain high-accuracy integral results. Therefore, in the 
study we choose q=10.  

The main computational effort is Ss, defined by eq. (42) 
via the collocation interval analysis method. It is necessary 
to solve deterministic parameters structural system by q 
times in order to find the maximum and minimum value 
points of the objective function in the s-th interval variable. 
If the number of uncertain parameters is m, m×q times 
analysis is necessary. 

It is remarkable that calculating matrix T defined by eq. 
(43) occupies little CPU time and can be neglected com-
pared with the computational effort for calculating Ss. The 
order of truncation polynomial r only contributes to com-
putational accuracy, but requires barely any computational 
effort. 

5  Determination of variance function interval 

Once the PSD functions of response functions are obtained, 
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one can get the variance functions from integration 
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(53)
 

where ( ) 2 ( )xx xx G S is single side PSD functions usu-

ally used in engineering. 
Sects. 3 and 4 present two different methods to determine 

the bounds of PSD of response function at concerned fre-
quency c  , respectively. In this section, the interval of 

PSD of response function at concerned frequency c   

is regarded as known: 

 ( , ) ( , ), ( , ) .
i i i i i i

I
x x c x x c x x cS S S     h h h  (54) 

As mentioned in eq. (53), variance function can be inte-
grated from PSD function. 

If the truncated frequency point for numerical integration 
operation is t   , we use the Gauss quadrature formula 

to integrate auto PSD to obtain a variance function of re-
sponse. Completing the transformation 
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thus  
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Collocate Gauss integral points in interval [1, 1], and use 
Gauss quadrature formula to obtain the numerical solution 
of the bounds of variance function. 

6  Numerical application 

Firstly, we use a simple example to illuminate that the col-
location interval analysis method presented in this paper can 
predict more accurate bounds of response than that obtained 
from the interval analysis method based on the first order 
Taylor expansion. Then, two examples from building under 
seismic ground motion excitation and aerofoil under con-
tinuous atmosphere turbulence excitation are presented to 
show the effectiveness of the proposed method. 

6.1  A simple beam excited by moment at the center 

In this example, the load is regarded as deterministic or 
containing interval parameters to show the accuracy of the 
collocation interval analysis method. A simple beam, de-

picted in Figure 2, is excited by a moment m at the center 
position. The Young’s modulus of material E and the load 
value m are assumed to be discussed parameters. The values 
of the other parameters can be found in Table 1. 

An analytical solution can be found to this problem. The 
deflection curve ( )x  and rotation angle ( )x  are 

 

2 2( ) ( 4 ),   0 ,
24 2

( ) ( ),                        0 .
2

mx L
v x L x x

EIL
L

x v x x

   

  
 (58) 

The beam is divided into four straight beam elements and 
five nodes; we collocate nodes at the extreme value point 
and the center of the beam to reduce discretization errors. 
Three cases are discussed as follows: 

(1) E is an interval variable, Ec=210000 MPa, E=0.1E0, 
m=100000 N mm; 

(2) E is an interval variable,
 
Ec=210000 MPa, E=0.3E0, 

m=100000 N mm; 
(3) E is an interval variable,

 
Ec=210000 MPa, E=0.3E0, 

m=100000sin(xI) N mm, xI=[1,3].  
The results calculated by the three methods, namely, the 

Endpoints combination method (EPM), the interval analysis 
method based on the first order Taylor expansion (TIAM) 
and the collocation interval analysis method (CIAM), are 
shown in Tables 2–4 under different cases. The vertical dis-
placement values of nodes 1, 3, and 5 and the angle of rota-
tion of nodes 2 and 4 are all zero, so only non-zero dis-
placement values are given in tables. 
  The displacement function is monotonic with respect to 
the uncertain parameters in case 1 and case 2. Tables 2 and 
3 show that the bounds estimated by TIAM do not coincide 
well with the exact bounds. The results for one go beyond 
the actual bounds, and the other is not enough. Errors esti-
mated by TIAM increase with the increase of interval radius 
of uncertain parameters. Although EPM can give exact 
bound values when the response is monotonic with respect 
to the uncertain parameters, it does not have the same effect  

 

Figure 2  A simple beam excited by the moment at the center and its 
finite element model. 

Table 1  Structure parameters of the beam 

b (mm) h (mm) L (mm) 

3 5 1000 
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Table 2  Comparison of the bounds by three methods with exact bound in case 1 

Exact  Endpoints  TIAM  CIAM 
Node Nominal 

upper lower  upper lower  upper lower  upper lower 

1 0.6349 0.5772 0.7055  0.5772 0.7055  0.5714 0.6984  0.5772 0.7055 

2 122.19 111.08 135.77  111.08 135.77  109.97 134.41  111.08 135.77 

3 1.2698 1.4109 1.1544  1.4109 1.1544  1.3968 1.1429  1.4109 1.1544 

4 122.19 135.77 111.08  135.77 111.08  134.41 109.97  135.77 111.08 

5 0.6349 0.5772 0.7055  0.5772 0.7055  0.5714 0.6984  0.5772 0.7055 

Table 3  Comparison of the bounds by three methods with exact bound in case 2 

Exact  Endpoints  TIAM  CIAM 
Node Nominal 

upper lower  upper lower  upper lower  upper lower 

1 0.6349 0.4884 0.9070  0.4884 0.9070  0.4444 0.8254  0.4884 0.9070 

2 122.19 93.99 174.56  93.99 174.56  85.53 158.85  93.99 174.56 

3 1.2698 1.8141 0.9768  1.8141 0.9768  1.6508 0.8889  1.8141 0.9768 

4 122.19 174.56 93.99  174.56 93.99  158.85 85.53  174.56 93.99 

5 0.6349 0.9070 0.4884  0.9070 0.4884  0.4444 0.8254  0.9070 0.4884 

Table 4  Comparison of the bounds by three methods with exact bound in case 3 

Exact  Endpoints  TIAM  CIAM 
Node Nominal 

upper lower  upper lower  upper lower  upper lower 

1 0.5773 0.0689 0.9070  0.0689 0.7632  0.1399 1.0148  0.0689 0.9070 

2 111.11 13.26 174.59  13.26 146.89  26.93 195.29  13.26 174.59 

3 1.1547 1.8141 0.1378  1.5265 0.1378  2.0295 0.2798  1.8141 0.1378 

4 111.11 174.56 13.26  146.89 13.26  195.29 26.93  174.56 13.26 

5 0.5773 0.0689 0.9070  0.0689 0.7632  0.1399 1.0148  0.0689 0.9070 

 
 
when the response function loses the monotonicity. This can 
be seen from case 3 shown in Table 4. CIAM can give al-
most or same result with an exact solution in all cases with 
r=9. 

6.2  A building excited by seismic ground motion 

In engineering, seismic computations of building design 
have long been an issue of great concern. Owing to the 
randomness in the nature of seismic motions, responses of 
buildings can be analyzed using the random-vibration ap-
proach. In this section, a n - DOF building system in Fig-
ure 3 subjected to a stationary random seismic excitation is 
considered and the parameters are: mi=m, ki=k except for 
mn=0.5m, k1=2k. The damping coefficients ci are consistent 
with Reyleigh damping, and the Reyleigh damping coeffi-
cients are α=0.1, β=0.2. The PSD of the stationary ran-
dom process x(t) has the Kanai-Tajimi form: 

 
2

02 2 2 2

1 4( / )
( ) ,

(1 / ) 4( / )
g g

xx

g g g

S S
  


    




 
 (59) 

where 19.07g   s
1, 0.544g   and 0 0.1574S   m

2 s3, 

as Figure 4 shows.  

 

Figure 3  A building excited by seismic ground motion. 

In the example, m and k have been assumed to be interval 
parameters with interval number [ , ]I c c c cm m m m m     

and [ , ]I c c c ck k k k k     where 
410cm  kg and ck   

71.4 10  kg/s2 and  ,   are variable coefficients defin-

ing the deviation amplitude. 
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Figure 4  PSD of Kanai-Tajimi form (single side). 

Figure 5(a) shows the bounds of PSD of m1 obtained 
from different methods in the case of =0.1, =0. Figure 
5(b) shows that in the case of =0, =0.1. Figures 5(c) and 
(d) show the comparison of the bounds of PSD of m1 in the 
case of =0.1, =0.1 and =0.2, =0.2, respectively. It 
can be seen from Figure 5 that the bounds obtained from the 
two methods don’t have an inclusion relation. In the main 
energy region of PSD, the bounds obtained from CIAM are  

higher than those obtained from TIAM. However, a reverse 
conclusion can be drawn in the low energy region. The 
bounds obtained from the two methods have fewer differ-
ences, shown in Figures 5(a) and (b), when the number of 
uncertainty variables and the located intervals are all small. 
However, as the number of uncertainty variables increases, 
the differences between the two methods grow, too, as Fig-
ure 5(c) shows. Furthermore, the bounds obtained from 
TIAM may make no sense in physics when the intervals are 
not small, which is seen from Figure 5(d). The lower bound 
obtained from TIAM is less than zero at some frequency 
points. 

For the validation of CIAM, an optimization method is 
used to calculate the upper bound and lower bound, which 
can be treated as an exact solution. The comparison of 
CIAM and the OPT method are depicted in Figure 6. And 
Figure 6(a) shows that in the case of =0.1, =0.1; Figure 
6(b) shows that in the case of =0.2, =0.2. It can be seen 
from Figure 6 that the bounds obtained from CIAM are 
consistent with the exact solution. Figure 7 shows the vari-
ances obtained from different methods in the case of =0, 
: 0→0.2 and : 0→0.2, =0. It can be seen that the vari-
ances obtained from TIAM are symmetrical at different 
sides of the nominal value. However, the nonlinear nature  

 

Figure 5  Comparison of the bounds obtained from TIAM and CIAM in different cases. (a) =0.1, =0; (b) =0, =0.1; (c) =0.1, =0.1; (d) =0.2, 
=0.2. 
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Figure 6  Comparison of the bounds obtained from CIAM and the optimization method in different cases. (a) =0.1, =0.1; (b) =0.2, =0.2. 

 

Figure 7  Variance comparison obtained from TIAM and CIAM methods in different cases. (a) =0, : 0→0.2; (b) : 0→0.2, =0. 

can be observed using CIAM. 

6.3  Aerofoil under continuous atmosphere turbulence 
excitation 

Gust excitation, which can be modeled as discrete gust and 
continuous gust, plays an important role in aircraft design. 
Continuous gust is considered a stationary random process 
in mathematics. In this section, we consider a simplified 
aerofoil model, the FEM model (Figure 8), which contains 
656 nodes and 640 shell elements. The vertical gust velocity 
in continuous atmosphere turbulence is described by Dry-
den PSD (single side) depicted in Figure 9. For the sake of 
simplicity, only the translational motion caused by transient 
aerodynamic force and gust is considered to introduce the 
aeroelasticity effect. The Theodorsen theory is adopted for 
calculating the transient aerodynamic force. The Young’s 
modulus of material E and shell thickness t is treated as 
interval variables with Ec=0.7×1011

 Pa and tc=3 mm. The 
other parameter values are listed in Table 5, where a and 
m are the density of air and material of aerofoil, respec-
tively. Ls is the gust scale, L is the half length of wingspan,  

 

Figure 8  Straight wing finite element model. 

V is the flight speed, and ,  are the Reyleigh damping 
coefficients. 

Figure 10(a) shows the bounds of PSD of wing tip ob-
tained from TIAM and CIAM in the case of =0.1, =0. 
Figure 10(b) shows that in the case of =0, =0.1. Figures 
10(c) and (d) show the bounds of PSD of wing tip obtained 
from different methods in the case of =0.1, =0.1 
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Figure 9  Dryden PSD (single side). 

and =0.2, =0.2, respectively. Here the meaning of  and 
 is the same as in sect. 6.2. From Figure 10, we conclude 
that the bounds obtained from TIAM are the located sym-
metric position at the sides of nominal value while the re-           

sults obtained from CIAM are not. In the same manner as in 
sect. 6.2, we use the optimization method to get the exact 
bounds to examine the validation of CIAM, as shown in 
Figure 11.  

7  Conclusion 

We study the response statistics of engineering structures 
with interval parameters under stationary random excitation 
using the interval analysis method. The analysis of “point 
approximation” interval finite element method based on the 
first order Taylor expansion shows that TIAM is only suited 
for the case for the narrow interval hypothesis. However, 
CIAM—which adopts a non-gradient algorithm based on 
several collocation points—can break through the restric-
tions on TIAM use and improve the precision of results via 
the interval analysis method. The main computational effort 
lies in calculating the values of objective function at Gaus-
sian integration points. Compared with the results obtained  

Table 5  Parameters of the aeroelastic system 

a (kg/m3) m (kg/m3) V (m/s) Ls (m) L (m)   

1.225 7800 200 1000 23.2 0.002 0.002 

 

Figure 10  Comparison of the bounds obtained from TIAM and CIAM in different cases. (a) =0.1, =0; (b) =0, =0.1; (c) =0.1, =0.1; (d) =0.2, 
=0.2. 
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Figure 11  Comparison of the bounds obtained from CIAM and the optimization method in different cases. (a) =0.1, =0.1; (b) =0.2, =0.2. 

from the optimization method, the proposed method yields 
high precision approximation to the exact solution, but takes 
little computational effort. 
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