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We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance 
measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channel. The hairpins dy-
namic information is extracted by identifying their dominant frequencies and associated spatial structures. For this 
quasi-periodic data system, the resulting main Dynamic modes illustrate the different spatial structures associated with the 
wake vortex region and the near-wall region. By comparisons with proper orthogonal decomposition (POD), it can be con-
cluded that the dynamic mode concentrates on a certain frequency component more effectively than the mode determined by 
POD. During the analysis, DMD has proven itself a robust and reliable algorithm to extract spatial-temporal coherent struc-
tures. 
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Hairpin vortexes as the common elementary characteristic 
exist in the turbulent boundary layer. The primary hairpin 
can generate more offspring hairpins according to the par-
ent-offspring scenario to form the hairpin vortex packets, 
which always appear in the low speed region between the 
hairpin legs. Smith and Walker [1] explained that the burst-
ing process of streaks feeds concentrated vorticity into the 
outer layer, thus providing a feedback mechanism to 
strengthen the regeneration process of hairpin packets. In 
this way, hairpin packets prevail in the outer part of the 
boundary layer, and meanwhile, long and large-scale 
streaky structures occupy the inner part, which would make 
up the skeleton frame and foundation of a self-sustained 
turbulent boundary layer. Clearly, the hairpin vortices are so 

important in the boundary layer that the study of discrete 
hairpin vortices and their induced flow patterns in an ini-
tially stable boundary layer is necessary. Figure 1 shows a 
sketch of the hairpins generated by the hemisphere protu-
berance [2]. 

The search for physical mechanisms underlying fluid  

 
Figure 1  A sketch of the hairpins generated by the hemisphere protuber-
ance [2]. 
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flow relies on the decomposition of flow fields into coherent 
structures and flow patterns whose dynamics provides a 
more compact and instructive manner of describing the fluid 
process. Dynamic mode decomposition (DMD) was re-
cently developed based on Koopman analysis [3] of dy-
namical system by Schmid et al. [4]. This technique uses 
snapshots of the flow field only, and is capable of describ-
ing the flow elements that characterize the dominant dy-
namic behavior without any recurrence to the underlying 
governing equations [4]. DMD provides a more compact 
and instructive manner of understanding the fluid process 
by revealing dynamic information of the flow field, e.g. the 
temporal dynamics and the associated spatial shapes in a 
temporally orthogonal sense.  

In the present paper, a two-dimensional (2D) time-re-                  
solved (TR) PIV study is done to investigate the hairpin 
vortices generated by the interaction of a hemisphere pro-
tuberance within a developing laminar boundary layer from 
the side view and the top view, respectively. After acquiring 
the basic spatial-temporal velocity information, then DMD 
is used to extract the hairpins’ dynamic information by 
identifying the dominant frequencies and the associated 
spatial structures. Additionally, the comparison between the 
methods of DMD and POD will also be presented. 

1  Experimental set-up and method 

1.1  Experimental set-up 

The present experiment is carried out in a re-circulating 
water channel. The water-channel system has a working 
section 1200 mm long, 150 mm wide, and 140 mm deep, 
with an operating velocity of 10 cm/s for the present ex-
periment. A 1000 mm long Plexiglas flat with a 4:1 ellipti-
cal leading edge is utilized as a test surface. The plate is 
supported 15 mm above the channel surface by adjustable 
legs to allow the development of a laminar boundary layer 
and to prevent interference by channel-wall boundary layers. 
Hairpin vortices are generated by three-dimensional vortex 
shedding from hemisphere protuberance with the height h = 
9 mm placed at a distance of 150 mm downstream along the 
leading edge of the plate. The boundary layer thickness just 
upstream of the hemisphere is about /h=1, Reh=800. 

A 2D TR PIV system is based on practical Nd:Yag lasers 
and a high speed camera is utilized for particle images re-
cording, storage and processing. A schematic diagram of the 
test system is shown in Figure 2. Seeding particles with a 
median diameter of 10 m and density of 1.03 g/mm3 are 
illuminated by a laser sheet with a thickness of about 1 mm. 
2D TR PIV measurement is taken in the streamwise-normal 
wise (x, y)-plane and the streamwise-spanwise (x, z)-plane, 
separately. For the side-view case, the laser plane crosses 
the axial center-plane of the hemisphere along the stream-
wise direction. A high-speed camera (1280 pixels × 1024 
pixels) acquires the particle images in the (x, y)-plane from  

 

Figure 2  Schematic diagram of the hairpins generation and experimental 
set-up. (a) Side view; (b) top view. 

a side view; then, the velocity data in the (x, z)-plane paral-
lel to the wall of the plate at a height (y/h= 5/6) are obtained 
for the top view case (shown in Figure 2(b)).  

The present sampling frequency of the camera is 250 Hz. 
6548 snapshots of particle images are recorded for each 
region, and are analyzed by the following steps: background 
subtraction, adaptive correlation with inter-rogation win-
dows of 32 pixels×32 pixels and an overlap rate of 75%, 
range validation and the last step of average filter. Each 
flow field consists of 157×125 two-dimensional velocity 
vectors. The field is about 120 mm×95 mm (streamwise 
length× wall-normal height/spanwise width). 

1.2  Principles of the dynamic mode decomposition 

After acquiring the velocity data, the dynamic mode de-
composition (DMD) method is used for data processing. 
The basic concept, fundamental mathematical deduction, 
and physical explanation of DMD have been given by 
Schmid et al. [4] and Pan et al. [5]. Here, we just give a 
brief explanation of the DMD method for our present ex-
periment. The DMD does not depend on a particular basis 
model; however, its reliance on data allows a time-resolved 
sequence of flow field measurements that suffice to perform 
the dynamic mode decomposition. In the present experiment, 
we assume general flow field data and denote each such 
field by a vector vj. A sequence of N snapshots is then writ-
ten as  1 1 2, , , ,N

NV v v v   where an equal time interval 

t is assumed between two subsequent snapshots vj and vj+1. 
These snapshots vj should be produced by a nonlinear proc-
ess for experimental data. However, for the purpose of in-
voking a linear-tangent approximation, a linear mapping A 
from one snapshot to the next is employed. This mapping is 
taken as a constant over all the data sequence which is writ-
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ten as 1 .j j v Av  Following the idea underlying the Ar-

noldi method (Greenbaum [6]; Trefethen and Bau [7]), the 
linear map A could be expressed as 1 1

2 1 1 ,N N NV V V  A S  

with S as a companion matrix that simply shifts the snap-
shots 1 through N1 (via the subdiagonal matrix entries) 
and approximates the last snapshot N by a linear combina-
tion of the previous N1 snapshots [8]. As the number of 
snapshots increases and the data sequence given by 1

1
NV   

captures the dominant features of the underlying physical 
process, it is reasonable to assume that, beyond a critical 
number of snapshots, the vectors could become linearly 
dependent. This procedure will result in the low-dimen-                
sional system matrix S. The matrix S can be computed from 
the above equation by a least-squares approximation based 
on the two data sets 1

1
NV   and 2

NV , as 1
2

H NS R Q V , 

with 1
1
NV QR   as the QR-decomposition of 1

1 .NV   It is 

noted that at no point in the above procedure do we need the 
explicit form of the system matrix A. Only its low-dimen-                   
sional proxy S is required. It is then known that the eigen-
values of S approximate some of the eigenvalues of A and 
the corresponding eigenvectors of A are determined by 

1
1 ,N

j jDM V w  where wj is an eigenvector of S to the na-

ture of the data sequence. The eigenvalues  of S describe 
the inter-snapshot dynamics, in accordance with the stan-
dard convention. The eigenvalues of S are logarithmically 
mapped onto the complex plane: log( ) ,r it        

in which their real part r represents exponential growth or 
decay (depending on the sign) and their imaginary part i 
contains the temporal frequency. The associated eigenvec-
tors of S provide the coefficients of the linear combination 
that is necessary to express the modal structure within the 
snapshot basis. In order to evaluate the dominance between 
dynamic modes, we can project a specific dynamic mode 
DMj onto the proper orthogonal decomposition (POD) basis, 
form the modulus of the resulting vector [4], and use it as a 
criterion to rank dynamic modes, similar to ranking POD 
modes with energy content.  

After describing the experimental setup and the princi-
ples of the dynamic mode decomposition, a set of 2D TR 
PIV-measurements will be processed and analyzed. The 
obtained results will be presented in the form of their spec-
tral characteristics (frequencies and amplitudes) and modal 
shapes. Additionally, the comparison with the POD method 
will be also illustrated in this paper. 

2  Results and analysis 

The instantaneous flow field in the wake region of the 
hemisphere protuberance from the side view is shown in 
Figure 3. The vector field which subtracts the local convec-
tional velocity (mean velocity) is shown, clearly four clock-           

wise swirling motions marked by red circles appear in the 
wake shear layer downstream along the hemisphere protu-
berance. In the plot, the closed streamlines representing the 
heads of the vortexes and Q2 event just upstream and below 
the head are consistent with the key features of the hairpin 
vortex. Moreover, as the model of the hairpins is generated 
by the hemisphere protuberance (shown in Figure 1) given 
by Acarlar and Smith [2], this succession of swirling mo-
tions (red circles) correspond to the heads of the succession 
of hairpins shedding from the hemisphere. As shown in the 
plot, these hairpins are growing upward convecting along 
the streamwise direction, and then several hairpin heads 
appear with an inclination angle with the wall. 

2.1  DMD modes and frequencies 

For the present experiment, the DMD temporal analysis is 
attempted with a sequence of flow fields: 

   1 2, ,...,  ( 2 ),  ( 4 ),  ( 6000 )Nv v v v t t v t t v t t        

with N=3000 in time. These 3000 time-step flow fields 
could be reshaped into the columns of a data matrix 3000

1V , 

and the corresponding companion S-matrix of dimension 
2999×2999 can be deduced following the procedure de-
scribed above, whose eigenvalues are shown in Figure 4(a). 
Figure 4(a) shows that nearly all the eigenvalues are ex-

pected to tend towards on the unit circle 1j   suggest-

ing that most modes are quasi-neutral stable, while those 
dynamic modes fallen inside the unit circle might have re-
sulted from contamination of measurement noise. In all 
these dynamic modes, the mean flow mode (1.000018, 0) 
signifying the temporally-averaged flow field of the data 
sequence has been omitted in the Figure, and the other four 
main eigenvalues are distinguished in color blue, depending 
on the magnitude of the corresponding Dynamic mode. The 

magnitudes defined by the global energy norm jv  are 

shown in Figure 4(b) with the same color as the spectrum. 
In Figure 4(b) each mode is displayed with its magnitude at 
its corresponding frequency (f) expressed as the image part 
of j normalized by 2 in the current case. As the eigenval-
ues appear in complex conjugate pairs, only the cases of f >0  
(j>0) are shown and the mean flow mode at f = 0 is not 
displayed. By ordering the modes with respect to their mag-
nitude plotted in the Figure 4(b), two pronounced peaks at 
two frequencies can be observed: the first and second 
modes oscillate with f1=1.766 and f2=2.606 respectively. 
However two modes (3rd and 4th) with a relative low fre-
quency ( f3= 0.8400; f4= 0.7413) are also extracted. It can be 
seen that the linear combinations of the first and third 
modes excite the second (higher) mode (f2= f1+f3). 

Acarlar and Smith [2] experimentally explain that the pe-
riodicity of the vortex shedding from hemispheres was ex-
amined over a wide Reynolds number range. In the current  
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Figure 3  Snapshot of the instantaneous fluctuation vector for the side- 
view case. 

experiment, the two distinct time series at two different po-
sitions in the region are chosen for further discussion: one is 
in the shedding vortex region along the wake trajectory 
(x1(x/h, y/h)=(4, 1.7)), and the other one is located just 
downstream of the hemisphere and close to the wall (x2(x/h, 
y/h)=(4, 0.3)). Figure 5(a) shows the power spectrum of 
time signal at x1 (black line). The peak frequency corre-
sponds to a vortex shedding of wake vortices with 

1
1.766xf   Hz. In Figure 5(b), the peak frequency of the 

time signal located at x2 oscillates with 
2

0.80189xf   Hz, 

much smaller than the shedding frequency 
1xf . In the whole 

region we measured, it is noted that the peak frequencies of 
the power spectra vary with the different locations in the 
region downstream of the hemisphere protuberance, the  

whole motion in the region we covered is integrated by 
multi-frequencies cases working together. 

As stated above, the image part of j normalized by 2 
could reveal the frequency of the corresponding dynamic 
mode. In Figures 5(a) and 5(b) the power spectra of the two 
time signals (black lines) are compared with the frequencies 
obtained directly from the eigenvalues of the S-matrix (blue 
vertical lines, also shown in Figure 4(b)). The shedding 
frequency and the lower harmonic are in agreement with the 
frequencies of the main dynamic modes, although the sam-
ple frequency of the two extracted time series is just 250 Hz. 
As shown, the dominant dynamic eigenvalues match the 
frequencies for the shear-layer mode (

1
1.766xf  ) and the 

wall mode (
2

0.80189xf  ). It should be noted that in the 

current experiments the time signals are local measures of 
the frequencies at one spatial point. However, the frequency 
of time signal at two different local spatial locations is 
separately extracted. The dynamic eigenvalues correspond 
to the global region in the flow fields with time-periodic 
motion. Moreover, we can also obtain that DMD is capable 
of distinguishing the different dynamic modes by the spec-
tra of frequency. 

Figure 6 shows the dynamic modes corresponding, re-
spectively, to the three main frequencies indicated in color 
blue in the amplitude plot (Figures 4(b) and 5). All modes 
are visualized by the streamwise velocity contour in the  

 

Figure 4  (a) Eigenvalues j of the matrix S representing the inter-snapshot dynamics. The values corresponding to the four main dynamic modes are shown 
with the blue symbol; (b) the magnitudes of the dynamic modes at each frequency. 

 
Figure 5  The spectral contents of two time signals located (a) in the wake vortex region x1(x/h, y/h)=(4, 1.7) and (b) near the wall x2(x/h, y/h)=(4, 0.3) are 
shown in color black and the magnitudes of the first four of DMD modes at each frequency are shown in blue. The amplitudes are normalized with their 
maximum values. 
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Figure 6  The contour levels of the streamwise velocity components of 
three main dynamic modes. (a) First mode, with ||DM2||=4.76873 and 
f1=1.766; (b) second mode, with ||DM2||=4.55883 and f2=2.606; (c) third 
mode, with  ||DM3||=3.38412 and f3=0.8400. 

(x, y)-plane. In these modes (with frequency f1 =1.766 Hz, f2 
=2.606 Hz, f3 =0.8400 Hz), the three successions of vor-
texes inclined with the wall along the streamwise direction 
can be extracted, due to the rise of hairpins heads generated 
by the hemisphere protuberance as they are evolving down-
stream. This is similar to the instantaneous results shown in 
Figure 3. Also, the density of the vortex structures for dif-
ferent modes demonstrates that the temporal dynamic mode 
decomposition can indeed identify distinct frequencies un-
derlying the data sequence. The first mode f1 (Figure 6(a)) 
can be associated with the primary vortex shedding fre-
quency, which is consistent with the experimental work by 
Acarlar and Smith [2]; the low frequency mode f3 shown in 
Figure 6(c) features large-scale positive and negative 
streamwise velocities, which can be associated with another 
kind of wall vortex structure in the near wall region induced 
by the primary hairpin vortexes of the first mode f1. In addi-
tion, the linear combinations of the frequencies can excite 
the higher modes f2, as shown in Figure 6(b). The nonlinear 
interaction of f1 and f3 results in f2, representing the 
higher-order harmonics in the measured region.  

We also analyze the streamwise-spanwise plane flow 
field by DMD as stated above. Figure 7 shows the velocity 
vectors of the first mode (except the mean flow mode), with 
the frequency f1 =1.76 Hz indicating the shedding frequency 
of hairpin legs, which is consistent with the frequency of the 
first mode for the side-view case. In the plot, the counter- 
rotating vortex pairs with an increasing spanwise width or-
ganized in the streamwise direction, which correspond with 
the cross-section of a succession of hairpin legs in the  

 

Figure 7  Decomposition of the flow field in the (x, z)-plane from the 
top-view with the most dominant dynamic mode (except mean flow mode). 

streamwise-spanwise (x, z)-plane. Combining the side-view 
and top-view results, we can reconstruct the spatial shape of 
the series of hairpins generated by the hemisphere: the hair-
pin heads are rising up and legs are being apart along the 
streamwise direction, evolving into a larger hairpin body 
downstream. 

2.2  Comparison with POD modes 

So far, many other techniques have been developed to ex-
tract coherent motion in a more general way, in which the 
POD technique, first introduced by Lumley [9] in the con-
text of coherent structures, has been also increasingly ap-
plied in conjunction with PIV. Used with POD, the meas-
urements yield optimal basis functions for a given flow field 
(e.g., Lumley [9]; Sirovich [10]; Berkooz et al. [11]; 
Holmes et al. [12]). 

For the above side-view experimental data and for com-
parison purposes in the following, the POD analysis uses 
the set of flow fields at discrete times: 

   ( 2 ),  ( 4 ), ,  ( 6000 ) ,v t t v t t v t t       

which have been performed in DMD analysis. The results of 
POD analysis are displayed in Figure 8. The energy spec-
trum shown in Figure 8(a), shows a rather weak decay after 
the first initial drop. The first POD mode, corresponding to 
the largest singular value, represents the mean flow, the 
same as the mean flow DMD mode. The result of most en-
ergetic POD mode (except mean flow mode) shown in Fig-
ure 8(b) captures similar spatial structures to the most main 
dynamic mode shown in Figure 6(a). However, the down-
stream region is significantly different from the DMD mode, 
which will be discussed later.  

For further comparison, we need consider the temporal 
behavior of the main POD and DMD modes (both except 
the mean flow mode). The temporal behavior of the main 
POD mode is characterized by computing the POD coeffi-
cients via projecting the flow-field snapshots onto the cor-
responding mode. Mezić & Banaszuk [13] and Mezić [14] 
discussed that in spite of the periodic or non-periodic sys-
tems, the flow field can be reconstructed with isolated DMD 
modes by discrete Fourier transformation: 

 
1

2

0

e ,  0, , 1,
N

ijk N
k j

j

v v k N






     
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Figure 8  (a) Energy spectra from the (x, y)-plane velocity POD decomposition; (b) the stream-wise component of the most energetic POD mode (except 
the mean flow mode).  

and the DMD coefficient takes the form as ( ) e ,ta t   
where 1.766i   for the main dynamic mode. The dis-
tinction in the time coefficients between POD and DMD is 
shown in Figure 9(a), where the main Dynamic mode con-
tains only a single frequency component, and presents peri-
odical variation with an amplitude fixed over periods. In 
contrast, the concerning POD mode results in the mode that 
looks like containing several frequencies. All of these be-
come clear in the spectrum of the coefficients as shown in 
Figure 9(b): the power spectrum of DMD coefficients with 
a distinct peak is expected at f=1.76. However, the coeffi-
cient of the POD mode oscillates with multi-frequencies, 
although undulating with a frequency f=1.79167 close to the 
frequency extracted by the main DMD mode. The two 
higher frequencies are also extracted, which cause the beat-
ing shown in Figure 9(a), and the velocity of this POD 
mode could be contaminated when these frequencies work 
together, just as the streamwise velocity component in the 
downstream region plotted in the Figure 8(b). 

The dynamic mode decomposition is capable of extract-
ing dominant flow features from the velocity field basis, by 
approximating the linear mapping between the velocity 
fields. In contrast, POD uses a second-order statistics of the  

flow fields and produces a hierarchy of coherent structures 
that diagonalize their correlation tensor. It can be said that 
POD concentrates on a representation based on the spatial 
orthogonality, and DMD focuses on a representation based 
on the temporal orthogonality (frequencies), when the spa-
tial relationship is taken into account between the various 
parts of the whole region we covered. By comparison, we 
conclude that the DMD modes are thus more effective at 
decoupling and isolating these dynamics. 

3  Conclusions 

In this paper, we have presented Dynamic Mode Decompo-
sition for studying the periodic dynamical behavior of the 
hairpin vortexes generated by hemisphere protuberance. 
The nonlinear dynamical system is acquired by 2D TR PIV 
from the side view and the top view, separately. DMD is 
used to extract the dynamic information by identifying the 
dominant frequencies and their associated spatial structures. 
The resulting main modes illustrate the different spatial 
structures associated with the wake vortex region and the 
near-wall region, which indicates that DMD provides a  

 

Figure 9  (a) Comparison of the temporal behavior of time coefficients: the most energetic POD mode (red), and the coefficient of the main dynamic mode 
(grey); (b) the power spectrum of the corresponding time coefficient is shown with the same color. 
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method to extract the main frequencies in the different parts 
of the whole region we covered, and also offer the linear 
combined result of these separated main modes. 

Additionally, by comparing the coefficients of the main 
DMD and POD modes (except the mean flow mode), the 
most striking distinction is shown in the time coefficients. A 
single DMD mode contains only a single centralized fre-
quency component, while the POD mode captures the most 
energetic structures as a combination of several significant 
frequency components (shown in Figure 9(b)). The experi-
mental evidence also shows that hairpin vortexes shed from 
the hemisphere protuberance at a definite frequency instead 
of several frequencies, which is in agreement with the single 
frequency property of DMD in temporal behavior. However, 
the POD modes could not exhibit this ability. Thus, it can 
be concluded that dynamic modes are more effective at iso-
lating these dynamics concentrating on a certain frequency 
component in temporal behavior than the modes determined 
by POD.  

In short, for the above case of the flow generated by 
hemisphere protuberance, DMD produces an effective de-
scription of the flow behavior, capable of identifying dy-
namic features directly.  
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