
SCIENCE CHINA
Physics, Mechanics & Astronomy

© Science China Press and Springer-Verlag Berlin Heidelberg 2010 phys.scichina.com www.springerlink.com

*Corresponding author (email: zhang_guangcai@iapcm.ac.cn)

• Research Paper • September 2010 Vol.53 No.9: 1610–1618

 doi: 10.1007/s11433-010-4062-6

Cluster identification and characterization of physical fields

ZHANG GuangCai*, XU AiGuo, LU Guo & MO ZeYao

National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Received November 15, 2009; accepted March 1, 2010; published online July 20, 2010

The description of complex configuration is a difficult issue. We present a powerful technique for cluster identification and
characterization. The scheme is designed to treat and analyze the experimental and/or simulation data from various methods.
The main steps are as follows. We first divide the space using face or volume elements from discrete points. Then, we combine
the elements with the same and/or similar properties to construct clusters with special physical characterizations. In the algo-
rithm, we adopt an administrative structure of a hierarchy-tree for spatial bodies such as points, lines, faces, blocks, and clus-
ters. Two fast search algorithms with the complexity lnN are generated. The establishment of the hierarchy-tree and the fast
searching of spatial bodies are general, which are independent of spatial dimensions. Therefore, it is easy to extend the method
to other fields. As a verification and validation, we applied this method and analyzed some two-dimensional and
three-dimensional random data.

spatial hierarchical tree, fast search, complex configuration, dynamic physical fields, cluster identification

PACS: 05.90.+m, 07.05.Kf, 07.05.Rm

Complex configuration and dynamic physical fields are
ubiquitous in weapon-physics, astrophysics, plasma-physics,
and material-physics. Those structures and their evolutions
are characterizing properties of the corresponding physical
systems. For example, the interface instability set signifi-
cant constraints on the design of an inertial confinement
fusion (ICF) device [1], shock waves and jet-flows in high
energy physics are common phenomena [2], distributions of
clouds and nebulae are very concerned issues of astrophys-
ics [3–5], clusters and filaments occur in the interaction of
high-power lasers and plasmas [6], and structures of dislo-
cation bands determine the material softening in plastic de-
formation of metals [7]. These structures are also keys to
understanding the multi-scale physical processes. Laws on
small-scales determine the growth, the change and the in-
teractions of stable structures on larger-scales. Description
of the evolution of stable structures provides a constitutive
relation for larger-scale modeling. Because of the lack of

periodicity, symmetry, spatial uniformity or pronounced
correlation, the identification and characterization of these
structures have been challenging for years.

Existing methods for analyzing complex configurations
and dynamic fields include the linear analysis of small per-
turbations of the background uniform field, characteristic
analysis of simple spatial distributions of physical fields, etc.
These methods are lacking in a quantitative description of
characteristics of the physical domain. For example, the size,
the shape, the topology, the circulation and the integral of
related physical quantities. Therefore, it is difficult to trace
the evolution of the characteristic region or the background.
For example, the laws of growth and decline, or the ex-
change between them.

The difficulties in characteristic analysis are twofold.
The first is how to define the characteristic region. The
second is how to describe it. The former involves the con-
trol equations of the physical system. The latter is related to
recovering the geometric structure from discrete points. In
recent years, cluster analysis techniques [8,9] in data mining
have found extensive applications in identification and the

 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9 1611

testing of laws of targets. They mainly concern the schemes
for data classification. Physicists are concerned more about
the nature underlying these structures. Recovering charac-
teristic domains can be attributed to the construction of spa-
tial geometry. The key point is how to connect the related
discrete points. The Delaunay grid [10,11] has an excellent
spatial neighbor relationship. In this work, we use the De-
launay triangle or tetrahedron as the fundamental geometri-
cal element.

The designs of the data structure and algorithm for fast
searching are core issues in the field of computer software
engineering [12,13]. Using a tree structure to manage spatial
discrete data has obvious advantages in memory usage and
fast searching. In the fields of celestial evolution and galaxy
formation, a space hierarchy tree (SHT) is widely used to
manage the distribution of space particles [14,15] so that the
forces on particles and mass distribution of galaxies can be
quickly calculated.

In this paper, we use the spatial hierarchy tree to manage
objects in the n-dimensional space. Two general adaptive
fast searching algorithms are presented. As applications,
Delaunay division and cluster structure construction in two-
and three-dimensional spaces are performed.

1 SHT management structure

SHT has been successfully applied to the management and
indexing of spatial data points [16], but has not yet been
applied to more complex spatial objects, such as lines, sur-
faces, bodies, clusters, etc. In this paper, we use the SHT to
manage objects with spatial location, shape and size. The
basic idea is as follows. For a system in the n-dimensional
space, we design an n-dimensional cube to contain the sys-
tem; and then divide this cube in each dimension into two
parts to form 2n sub-cubes; only retain the cubes with ob-
jects inside; continue to decompose each cube until the re-
quired resolution is reached; put the objects (points, lines,
surfaces, bodies) into the appropriate cube according to
their locations and sizes; existing cubes are connected to-
gether, according to their belonging relationships, to form a
‘spatial hierarchical tree’. Each cube is named a ‘branch’.
Its child-cubes are named ‘sub-branches’ and its par-
ent-cube is called ‘trunk’. The largest cube is named the
‘root’. Figure 1 (Figure 2) is a schematic for the SHT man-
agement structure of two-dimensional (three-dimensional)
discrete points. Due to the uncertainty of the number of
‘sub- branches’ in a ‘branch’, ‘branches’ sharing the same
‘trunk’ are grouped as a linked list; Similarly, ‘objects’ be-
longing to the same ‘branch’ are also linked as a list.

In practical applications, the number of spatial objects
may be variable. Therefore, the SHT is constructed dy-
namically. For the establishment of a ‘tree’ from an object,
the typical procedure consists of two steps: (i) Get the
known the minimum resolution, i.e. the smallest edge length

Figure 1 Management region of SHT of two-dimensional discrete points.

Figure 2 Management region of SHT of three-dimensional discrete
points.

of cubes, σ; (ii) Use the center of an object as the geometri-
cal center of the cube. Check whether or not the cube can
contain the object. If yes, the cube is a proper ‘branch’, then
put the object into this branch; if not, the cubic length will
continue to double until the object can be contained, then
create a ‘branch’ with the object placed in. Up to now, we
have just established a ‘tree’ with only one ‘branch’ which
contains one ‘object’. Figure 3 shows the construction proc-
ess of the original tree, where a triangular object in two-di-
mensional space is used as an example.

For convenience, we use ‘A’ to represent the already ex-
isting objects (possibly more than 1) on the tree. The algo-
rithm for adding a new object B to the tree is as follows: (i)
Establish a new root. Check whether or not the object B can
be contained by the old root. If not, then create a new root:
calculate the quadrant where the center of object B is lo-
cated. Set the vertex of the old root which is located in this
quadrant as the center of the new root. In this way, the new
root is the trunk of the old one. Then, the old root becomes
a sub-branch of the new one. Continue this process until the
new roots can contain the object B. (ii) Placement of object
B. Start from the new root. Compute the quadrant where the

1612 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9

Figure 3 Schematic for the construction of the original tree.

center of object B is located, with respect to the current
branch. Check whether or not the sub-branch of this quad-
rant contains object B. If not, the object B is placed in cur-
rent branch; if yes, take the sub-branch as the current branch.
If the sub-branch does not exist, create it. Continue this
process until a sub-branch is found or created which can
contain object B. Figure 4 is the schematic for the addition
of a triangle to an existing tree.

The algorithm for removing an object from the tree is as
follows: According to the link, pick up the branch contain-
ing the object. Remove the object from the object-list cor-
responding to this branch. When a branch no longer con-
tains objects and sub-branches, remove it. Enter its trunk,
continue this process until all the useless branches are elim-
inated.

In the dynamical algorithm of the SHT, except for adding
a sub-branch or trunk of a branch, other operations have
nothing to do with space dimension. The computer memory
required by the SHT is approximately equal to kNlnN,
where N is the number of objects. It is independent of the
spatial dimension. When the spatial dimension is higher or
spatial objects have a scattered distribution, the SHT can
save a large quantity of memory compared with the back-
ground grid method. In addition, because SHT is dynami-
cally constructed the size of the system can dynamically

increase or decrease with the addition or deletion of objects.
This is a second obvious advantage over the traditional
background grid method.

2 Fast searching algorithms based on SHT

When constructing spatial geometry or determining neigh-
bor relationship between objects, we need a fast search of
objects satisfying certain conditions. The computational
complexity of an ergodic search is N. It is not practical
when dealing with a huge number of objects. For such cases,
we need to develop fast searching algorithms.

By using the SHT we propose a fast searcher with com-
putational complexity lnN. The basic idea is as below: We
do not search the objects directly, but rather check branches.
Skip those branches without objects under consideration.
Thus, searching is limited to a substantially small range.
Depending on requirements of applications, we present two
fast searching algorithms: conditional searching and mini-
mum searching. The goal of conditional searching is to
search for objects meeting certain conditions. For example,
to find objects in a given area. The goal of minimum
searching is to search for an object whose function value is
minimum. For example, to find the nearest object to a fixed
point.

Figure 4 Schematic for adding objects to the tree. (a) Generation of a new root; (b) placing an object; (c) SHT corresponding to (b).

 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9 1613

2.1 Conditional search

The idea of a conditional search is thus: First check whether
or not a branch contains objects meeting some condition. If
not, skip the branch. For example, to search for objects in a
circle, one needs to assess whether or not the region of the
branch intersects with the circle. In this way, the searching
is limited to the overlapped region of the branch and the
circle.

Conditional searching is implemented using the stack
structure. The steps are as follows: (i) Push the root into a
stack A; (2) Pop out a branch b from the stack A; Check
whether or not the objects in b satisfies the given conditions;
Pick out the required objects; (3) Check each sub-branch of
b; Push the branches satisfying the conditions into stack A;
(4) Repeat (2)–(3) until the stack is empty.

Figure 5 shows the given circle and spatial division for
managing planar triangles. Figure 6 is the schematic for the
SHT corresponding to Figure 5, where ‘/’ stands for the root.
The process to find out objects in the given circle is shown
in Figure 7.

The conditional searching is implemented by providing a
conditional function and an identification function. The
conditional function presents conditions which the objects
should satisfy. The identification function is used to assess
whether or not the region of a branch contains suitable ob-
jects. It is clear that the validity of the algorithm is assured
by the identification function. The more accurate the identi-
fication is, the fewer branches need to be searched. If iden-
tification status is always true, this searching algorithm goes
back to an ergodic browser.

2.2 Minimum search

For convenience of description, we define a few concepts.
(i) Range of a branch: It means the range of the given func-
tion for objects in this branch. (ii) B-R-branch: It is a the
new branch data structure composed of the branch itself and

Figure 5 Distribution of planar triangles and the corresponding spatial
division.

Figure 6 SHT corresponding to Figure 5.

Figure 7 Flowchart for the fast search of objects in a circular area.

1614 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9

range of this branch. (iii) Candidate B-R-branch: It is the
B-R-branch which may be checked in the following proce-
dure. It may contain objects whose functional values are
minimum. In the minimum searching procedure, we must
keep enough candidate B-R-branches. Some of them may
be dynamically added or removed according to the need. In
order to accelerate the searching speed, the candidate
B-R-branches should be linked as a list. According to the
above definition, each B-R-branch has a range. So, each
B-R-branch has a lower limit to its range. The B-R-branches
in the list are arranged in such a way that their lower limits
subsequently increase. Obviously, the B-R-branch with the
smallest lower limit is placed at the head of the list. In addi-
tion, candidate objects and candidate values should be used
to store the current objects with minimum values and the
values themselves.

The idea of minimum searching is thus: By comparing
the ranges of different branches, some branches can be ex-
cluded from the searching. The minimum searching algo-
rithm is as follows: (i) The root and its range are combined
as a B-R-branch; Add the B-R-branch to a candidate list
named L; The candidate value V is set as positive infinity;
The candidate object is set as null. (ii) Pick out a B-R-
branch, for example, B, from candidate list L; Check the
values of its objects. If the value of an object O is smaller
than V, then, replace V with this value; in the mean time, set
object O as a candidate object. Remove the B-R-branches
whose lower limit values are greater than V from the list L.
(iii) Construct a B-R-branch Z for each sub-branch of B. If
the minimum value of Z is larger than V, cancel Z; If the
maximum value of Z is smaller than the minimum value of
the B-R-branch C in L, then all the B-R-branches behind C
are removed from L; If the minimum value of Z is larger
than the maximum value of a B-R-branch in L, cancel Z;
Otherwise, insert Z into list L according to its lower limit.
(4) Repeat steps (2) and (3) until the candidate list L is
empty. The final candidate object is the required one.

As an example of applications of the proposed minimum
search algorithm, we consider a case to find the nearest
point to a fixed one from points in a plane. Figure 8

shows the distribution of planar points and spatial division.
Figure 9 is the corresponding SHT. Suppose point A in Fig-
ure 8 is the given fixed point. To seek the nearest point to it,
the range of the branch is calculated by a sphere evaluation
method. Figure 10 shows the flow-chat.

We can perform various minimum searches by providing
a different value-finding function and range-evaluation
function. The value-finding function computes the value of
an object. The range-evaluation function assesses the range
of a branch. The efficiency of the minimum searching algo-
rithm depends on the range-valuation function. The smaller
the range given by the range-evaluation function, the faster
the searching procedure. The worst range-evaluation func-
tion gives a range from −∞ to .+∞ In such a case, the
searching algorithm goes back to the ergodic browser. In the
case with a large quantity of objects, one should use a good
range-evaluation function to reduce the number of objects to
be searched. However, a good range-evaluation generally
needs a large quantity of computations, which also de-
creases the global efficiency. We should find a balance be-
tween the two sides. Since the computation for sphere re-
gions is more efficient than for cube ones, in complex
minimum searching algorithms, circumspheres of a cube are
extensively used to evaluate the range of a branch.

Figure 8 Planar point distribution and corresponding spatial division.

Figure 9 SHT corresponding to Figure 8.

 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9 1615

Figure 10 Schematic for the fast search of the nearest point to a given fixed one.

3 Constructing Delaunay tetrahedrons and
triangles

Before constructing clusters, we divide the space using the
given discrete points. We construct spatial geometrical
structures by connecting given discrete points according to
the Delaunay division approach. There are lots of algo-
rithms to the construction of Delaunay tetrahedrons in three-
dimensional space or Delaunay triangles in two-dimensional
space. The complexities of most algorithms are involved
with the searching procedures. Here, we propose an algo-
rithm based on the SHT. The algorithm is simple and intui-
tive. It is convenient to extend to higher-dimensional space.

The main idea of the algorithm is as follows: when a new
point is added to the formed Delaunay division structure, we
should adjust the subdivision near the new point to meet the
condition for Delaunay division. According to the definition
of Delaunay division, if the new point is outside the cir-
cumsphere of a Delaunay simplex, this addition does not
affect the Delaunay simplex. On the contrary, if it is inside
the circumsphere of the Delaunay simplex, it does affect the
simplex. The simplex needs to be re-divided. Specifically,
all the simplexes affected by the new added point are se-
lected to form a complex. Each face of the complex and the
new point form a new simplex.

In three-dimensional space, the algorithm for the con-
struction of the Delaunay tetrahedron from given discrete
points is as follows: (i) Generate a sufficiently large tetra-
hedron to contain all discrete points; Record the center and
radius of its circumsphere; Form an ‘extended-tetrahedron’
of the circumsphere; Add this extended-tetrahedron to SHT
with the name T (extended-tetrahedron SHT); (2) Pick out a
discrete point P; Search in T for the extended-tetrahedra
whose circumspheres contain P; Remove these ex-
tended-tetrahedra from T; Put the removed tetrahedra to-
gether to form a set named Q; (3) Add every surface of each

tetrahedron in Q to SHT S which is a tree for the external
triangular interfaces. Remove the surfaces that appears
twice because they are interfaces; Triangles in S constitute
the external interface of Q; (4) Pick out each face of S, to-
gether with point P, to construct a new tetrahedron; Record
the center and radius; Add the newly formed ex-
tended-tetrahedra to T; (5) Repeats steps (2) to (4) until all
points are used out. The set of tetrahedra in T is just the
required Delaunay division structure.

The algorithm includes two searches: one is for the cir-
cumsphere that contains a given point, the other is for the
external interface of Q. They both belong to the conditional
search. When we reduce to the two-dimensional case, the
algorithm stays the same. We need only replace the tetrahe-
dron with a triangle and replace the triangular face with a
line. Figure 11 shows the procedure of adjusting the space
division due to the addition of a two-dimensional discrete
point. Figure 12 shows the Delaunay triangle division of
20000 randomly distributed two-dimensional points. Figure
13 shows the Delaunay tetrahedron division of 20000 ran-
domly distributed points in a three-dimensional sphere.

The algorithm can be easily extended to n-dimensional
space. We need only replace the tetrahedron with an
n-simplex and replace the triangle with an (n−1)-simplex.
The circumsphere of the n-simplex constructed from n+1

points, { }1 2 1, , , ,n+r r r in n-dimensional space is used in

the algorithm. The formula to calculate the center of the
circumsphere of the n-simplex is / ,i ic A B= where

2
1 1

2
2 2

2
1 1

1 2

1 2

,

1 2

0 0

i

n n

i

A

+ +

−
−

=

−

r r

r r

r r

e

2
1 1

2
2 2

2
1 1

1 2

1 2

,

1 2

0 1
n n

B

+ +

−
−

=

−

r r

r r

r r

0

1616 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9

Figure 11 Three steps to add a new point to a two-dimensional Delaunay division. (a) Finding the triangles whose circumcircle contains the newly added
point p; (b) removing the internal lines of these triangles, retaining the external ones; (c) connecting each left line with point p to form new triangles.

Figure 12 Delaunay division constructed from randomly distributed discrete points in a two-dimensional square area [0,4]×[0,4]. (b) is the enlarged picture
of the portion in the small black rectangle in (a).

Figure 13 Delaunay division constructed from randomly distributed
discrete points in a three-dimensional spherical region.

ie is the unit vector of the i-th direction. The radius of the

circumsphere is 2
1() .−c r

4 Cluster construction and analysis method

For the discrete points in space, there is no strict cluster
structure. If the discrete points are considered as objects,
such as a molecular ball, lattice or grid, then, the objects can

be connected to form clusters. The average size of these
assumed objects is the resolution of clusters to be con-
structed with discrete points. The construction of clusters is
very simple. A cluster is formed by connecting all points
whose distance in between is less than the resolution length.

After the construction of the Delaunay division for given
set of discrete points, remove the lines whose lengths are
greater than the resolution length. The remaining spatial
structure may have various dimensions. According to con-
nectivity, the structures that are not connected to each other
can be decomposed into different clusters. Each cluster may
also have structures with various dimensions. For example,
a structure consisted of two triangles with a common side,
or a structure formed by a triangle and a tetrahedron, etc. In
physical problems, the structures with high-dimensional
measures play a major role in describing the system. Gener-
ally, we need only need to analyze clusters with the maxi-
mum dimensions.

The cluster construction algorithm consists of three parts.
Preparation part: (i) Construct Delaunay tetrahedra from
given discrete points. The corresponding SHT is notated as t.
(ii) Remove the tetrahedrons whose length is greater than
the given resolution from t. Single cluster construction part:
(iii) Remove tetrahedron T from t if such a T still exists.
Create a new cluster named C. Initialize the body tree C->t
and face tree C->s as null. Add T to the body tree C->t. Add
each of the triangle faces to a triangle tree named i. (iv) Pick

 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9 1617

Figure 14 Cluster structure formed from 1000 random discrete points in a two-dimensional square area [0,1]×[0,1]. (a) A cluster; (b) the corresponding
cluster boundary.

out a triangle face S from i. Search tetrahedron Y containing
face S from t. If found, add Y to tree C->t and add all faces
of Y to tree i. Two faces with opposite directions will anni-
hilate if they meet each other during the adding procedure.
If none are found, add S to the tree C->s. (v) Repeat step
(iv) until the tree i becomes null. Construct all the clusters:
(vi) Add the constructed cluster C to a tree for clusters
named c. Repeat the process of constructing single clusters,
and add the new cluster to c until t becomes null. The algo-
rithm for adding a face S to the tree i is as follows. Search
and check if a face with the opposite direction of S exists in
the tree i. If it exists, remove it from the tree i. If it does not
exist, add S to the tree i. Up to now, all the constructed
clusters are put to the tree for clusters c. For each cluster C
in the tree c, all tetrahedron elements are placed on the body
tree C->t, all the surface triangles are placed on the tree for
faces C->s. Figures 14 and 15 show respectively the clusters
constructed with random points in two-dimensional and
three-dimensional space.

Figure 15 Cluster structure formed from 5000 three-dimensional random
discrete points.

The algorithm is also applicable to n-dimensional dis-
crete points. We need only replace the tetrahedron with an
n-simplex and replace the triangular surface with an (n−1)-
simplex. For space with a dimension higher than three, the
number of neighboring points and the connectivity, as well
as the number of n-simplex, grow rapidly with the dimen-
sion. So, the required memory increases quickly. The De-
launay division can be constructed partition by partition.
The main skill in this algorithm is that the space is parti-
tioned according to the main branches of SHT, and points in
each partition are added sequentially. After the completion
of adding all points in a partition, we need to delete the
n-simplex that satisfies two conditions: (i) its external cir-
cumsphere is in the completed partition, (ii) at least one side
is longer than the given resolution.

5 Conclusions and discussion

We propose a new method for managing objects and fast
searching in arbitrary dimensional space. Based on this,
algorithms for the constructing a Delaunay simplex and
spatial clusters are presented. The applications to two- and
three-dimensional discrete points validate the method and
show obvious advantages.

The proposed SHT can be easily used to manage and
search objects with various locations, sizes or even shapes.
This management method can be widely used in many
fields. As an example, in the finite-element method, due to
the complexity in calculating relative positions of elements
and in the search for them, only the cases with simple
shapes and single-sizes are extensively studied. With the
proposed SHT, it is easy to search for adjacent relationships
between objects with various sizes and shapes. Therefore,
the SHT can substantially simplify simulations with the
movements of complex objects.

Compared with previous methods, the proposed SHT and
the two fast-searching algorithms based on it are established
on a more abstract framework. It has potential extensibility

1618 ZHANG GuangCai, et al. Sci China Phys Mech Astron September (2010) Vol. 53 No. 9

to various fields. Experimental data can also be treated un-
der the same SHT after parameterization of physical quanti-
ties. Then, fast searching can be realized according to a
similar algorithm. In addition, according to the needs of the
user, an object can be simultaneously placed in several
SHTs. This is equivalent to setting indexes of several prop-
erties. Therefore, fast searching for various properties can
be easily implemented.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 10702010 and 10775018) and the Science Foundations
of the Laboratory of Computational Physics and China Academy of Engi-
neering Physics (Grant Nos. 2009A0102005 and 2009B0101012).

1 Ament P. Effects of ionization gradients on Inertial-Confinement-
Fusion capsule hydrodynamics stability. Phys Rev Lett, 2008, 101:
115004

2 de Vries1 P C, Hua M D, McDonald D C, et al. Scaling of rotation
and momentum confinement in JET plasmas. Nucl Fusion, 2008, 48:
065006

3 Bowler B P, Waller W H, Megeath S T, et al. An infrared census of
star formation in the horsehead nebula. Astron J, 2009, 137: 3685–
3699

4 Hernquist L. Hierarchical N-body methods. Comput Phys Commun,
1988, 48: 107–115

5 Makino J. Vectorization of a treecode. J Comput Phys, 1990, 87:

148–160
6 Hidaka Y, Choi E M, Mastovsky I, et al. Observation of large arrays

of plasma filaments in air breakdown by 1.5-MW 110-GHz gyrotron
pulses. Phys Rev Lett, 2008, 100: 035003

7 Nogaret T, Rodney D, Fivel M, et al. Clear band formation simulated
by dislocation dynamics: Role of helical turns and pile-ups. J Nucl
Mater, 2008, 380: 22–29

8 Kotsiantis S B, Pintelas P E. Recent advances in clustering: A brief
survey. WSEAS Trans Inform Sci Appl, 2004, 1: 73–81

9 Fan Y J, Iyigun C, Chaovalitwongse W A. Recent advances in ma-
thematical programming for classification and cluster analysis. CRM
Proc Lecture Notes, 2008, 45: 67–93

10 Chazelle B, Devillers O, Hurtado F, et al. Splitting a Delaunay trian-
gulation in linear time. Algorithmica, 2002, 34: 39–46

11 Clarkson K L, Varadarajan K. Improved approximation algorithms
for geometric set cover. Discrete Comput Geom, 2007, 37(1): 43–58

12 Black P E. Entry for data structure in Dictionary of Algorithms and
Data Structures. U.S. National Institute of Standards and Technology.
15 December. 2004

13 Knuth D E. The Art of Computer Programming. Vol. 3: Sorting and
Searching. Redwood City: Addison Wesley Longman Publishing Co,
1998

14 Barnes J, Hut P. A hierarchical O(NlnN) force-calculation algorithm.
Nature, 1986, 324: 446–449

15 Pfalzner S, Gibbon P. Many Body Tree Methods in Physics. New
York: Cambridge University Press, 1996

16 Nam B, Sussman A. A comparative study of spatial indexing tech-
niques for multidimensional scientific dataset. In: Proceedings of the
16th International Conference on Scientific and Statistical Database
Management (SSDBM'04), June 21-23, 2004. 171

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

