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The description of complex configuration is a difficult issue. We present a powerful technique for cluster identification and 
characterization. The scheme is designed to treat and analyze the experimental and/or simulation data from various methods. 
The main steps are as follows. We first divide the space using face or volume elements from discrete points. Then, we combine 
the elements with the same and/or similar properties to construct clusters with special physical characterizations. In the algo-
rithm, we adopt an administrative structure of a hierarchy-tree for spatial bodies such as points, lines, faces, blocks, and clus-
ters. Two fast search algorithms with the complexity lnN are generated. The establishment of the hierarchy-tree and the fast 
searching of spatial bodies are general, which are independent of spatial dimensions. Therefore, it is easy to extend the method 
to other fields. As a verification and validation, we applied this method and analyzed some two-dimensional and 
three-dimensional random data. 
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Complex configuration and dynamic physical fields are 
ubiquitous in weapon-physics, astrophysics, plasma-physics, 
and material-physics.  Those structures and their evolutions 
are characterizing properties of the corresponding physical 
systems. For example, the interface instability set signifi-
cant constraints on the design of an inertial confinement 
fusion (ICF) device [1], shock waves and jet-flows in high 
energy physics are common phenomena [2], distributions of 
clouds and nebulae are very concerned issues of astrophys-
ics [3–5], clusters and filaments occur in the interaction of 
high-power lasers and plasmas [6], and structures of dislo-
cation bands determine the material softening in plastic de-
formation of metals [7]. These structures are also keys to 
understanding the multi-scale physical processes. Laws on 
small-scales determine the growth, the change and the in-
teractions of stable structures on larger-scales. Description 
of the evolution of stable structures provides a constitutive 
relation for larger-scale modeling. Because of the lack of 

periodicity, symmetry, spatial uniformity or pronounced 
correlation, the identification and characterization of these 
structures have been challenging for years.  

Existing methods for analyzing complex configurations 
and dynamic fields include the linear analysis of small per-
turbations of the background uniform field, characteristic 
analysis of simple spatial distributions of physical fields, etc. 
These methods are lacking in a quantitative description of 
characteristics of the physical domain. For example, the size, 
the shape, the topology, the circulation and the integral of 
related physical quantities. Therefore, it is difficult to trace 
the evolution of the characteristic region or the background. 
For example, the laws of growth and decline, or the ex-
change between them.  

The difficulties in characteristic analysis are twofold. 
The first is how to define the characteristic region. The 
second is how to describe it.  The former involves the con-
trol equations of the physical system. The latter is related to 
recovering the geometric structure from discrete points. In 
recent years, cluster analysis techniques [8,9] in data mining 
have found extensive applications in identification and the 
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testing of laws of targets. They mainly concern the schemes 
for data classification. Physicists are concerned more about 
the nature underlying these structures. Recovering charac-
teristic domains can be attributed to the construction of spa-
tial geometry. The key point is how to connect the related 
discrete points. The Delaunay grid [10,11] has an excellent 
spatial neighbor relationship. In this work, we use the De-
launay triangle or tetrahedron as the fundamental geometri-
cal element. 

The designs of the data structure and algorithm for fast 
searching are core issues in the field of computer software 
engineering [12,13]. Using a tree structure to manage spatial 
discrete data has obvious advantages in memory usage and 
fast searching. In the fields of celestial evolution and galaxy 
formation, a space hierarchy tree (SHT) is widely used to 
manage the distribution of space particles [14,15] so that the 
forces on particles and mass distribution of galaxies can be 
quickly calculated. 

In this paper, we use the spatial hierarchy tree to manage 
objects in the n-dimensional space. Two general adaptive 
fast searching algorithms are presented. As applications, 
Delaunay division and cluster structure construction in two- 
and three-dimensional spaces are performed.  

1  SHT management structure 

SHT has been successfully applied to the management and 
indexing of spatial data points [16], but has not yet been 
applied to more complex spatial objects, such as lines, sur-
faces, bodies, clusters, etc. In this paper, we use the SHT to 
manage objects with spatial location, shape and size. The 
basic idea is as follows. For a system in the n-dimensional 
space, we design an n-dimensional cube to contain the sys-
tem; and then divide this cube in each dimension into two 
parts to form 2n sub-cubes; only retain the cubes with ob-
jects inside; continue to decompose each cube until the re-
quired resolution is reached; put the objects (points, lines, 
surfaces, bodies) into the appropriate cube according to 
their locations and sizes; existing cubes are connected to-
gether, according to their belonging relationships, to form a 
‘spatial hierarchical tree’. Each cube is named a ‘branch’. 
Its child-cubes are named ‘sub-branches’ and its par-
ent-cube is called ‘trunk’. The largest cube is named the 
‘root’. Figure 1 (Figure 2) is a schematic for the SHT man-
agement structure of two-dimensional (three-dimensional) 
discrete points. Due to the uncertainty of the number of 
‘sub- branches’ in a ‘branch’, ‘branches’ sharing the same 
‘trunk’ are grouped as a linked list; Similarly, ‘objects’ be-
longing to the same ‘branch’ are also linked as a list. 

In practical applications, the number of spatial objects 
may be variable. Therefore, the SHT is constructed dy-
namically. For the establishment of a ‘tree’ from an object, 
the typical procedure consists of two steps: (i) Get the 
known the minimum resolution, i.e. the smallest edge length  

 

Figure 1  Management region of SHT of two-dimensional discrete points. 

 

Figure 2  Management region of SHT of three-dimensional discrete 
points. 

of cubes, σ; (ii) Use the center of an object as the geometri- 
cal center of the cube. Check whether or not the cube can  
contain the object. If yes, the cube is a proper ‘branch’, then  
put the object into this branch; if not, the cubic length will  
continue to double until the object can be contained, then  
create a ‘branch’ with the object placed in. Up to now, we  
have just established a ‘tree’ with only one ‘branch’ which  
contains one ‘object’. Figure 3 shows the construction proc- 
ess of the original tree, where a triangular object in two-di-          
mensional space is used as an example. 

For convenience, we use ‘A’ to represent the already ex-
isting objects (possibly more than 1) on the tree. The algo-
rithm for adding a new object B to the tree is as follows: (i) 
Establish a new root. Check whether or not the object B can 
be contained by the old root. If not, then create a new root: 
calculate the quadrant where the center of object B is lo-
cated. Set the vertex of the old root which is located in this 
quadrant as the center of the new root. In this way, the new 
root is the trunk of the old one. Then, the old root becomes 
a sub-branch of the new one. Continue this process until the 
new roots can contain the object B. (ii) Placement of object 
B. Start from the new root. Compute the quadrant where the 
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Figure 3  Schematic for the construction of the original tree. 

center of object B is located, with respect to the current 
branch. Check whether or not the sub-branch of this quad-
rant contains object B. If not, the object B is placed in cur-
rent branch; if yes, take the sub-branch as the current branch. 
If the sub-branch does not exist, create it. Continue this 
process until a sub-branch is found or created which can 
contain object B. Figure 4 is the schematic for the addition 
of a triangle to an existing tree. 

The algorithm for removing an object from the tree is as 
follows: According to the link, pick up the branch contain-
ing the object. Remove the object from the object-list cor-
responding to this branch. When a branch no longer con-
tains objects and sub-branches, remove it. Enter its trunk, 
continue this process until all the useless branches are elim-
inated. 

In the dynamical algorithm of the SHT, except for adding 
a sub-branch or trunk of a branch, other operations have 
nothing to do with space dimension. The computer memory 
required by the SHT is approximately equal to kNlnN, 
where N is the number of objects. It is independent of the 
spatial dimension. When the spatial dimension is higher or 
spatial objects have a scattered distribution, the SHT can 
save a large quantity of memory compared with the back-
ground grid method. In addition, because SHT is dynami-
cally constructed the size of the system can dynamically  

increase or decrease with the addition or deletion of objects. 
This is a second obvious advantage over the traditional 
background grid method.  

2  Fast searching algorithms based on SHT  

When constructing spatial geometry or determining neigh-          
bor relationship between objects, we need a fast search of 
objects satisfying certain conditions. The computational 
complexity of an ergodic search is N. It is not practical 
when dealing with a huge number of objects. For such cases, 
we need to develop fast searching algorithms.  

By using the SHT we propose a fast searcher with com-
putational complexity lnN. The basic idea is as below: We 
do not search the objects directly, but rather check branches. 
Skip those branches without objects under consideration. 
Thus, searching is limited to a substantially small range. 
Depending on requirements of applications, we present two 
fast searching algorithms: conditional searching and mini-
mum searching. The goal of conditional searching is to 
search for objects meeting certain conditions. For example, 
to find objects in a given area. The goal of minimum 
searching is to search for an object whose function value is 
minimum. For example, to find the nearest object to a fixed 
point. 

 

Figure 4  Schematic for adding objects to the tree. (a) Generation of a new root; (b) placing an object; (c) SHT corresponding to (b). 
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2.1  Conditional search 

The idea of a conditional search is thus: First check whether 
or not a branch contains objects meeting some condition. If 
not, skip the branch. For example, to search for objects in a 
circle, one needs to assess whether or not the region of the 
branch intersects with the circle. In this way, the searching 
is limited to the overlapped region of the branch and the 
circle. 

Conditional searching is implemented using the stack 
structure. The steps are as follows: (i) Push the root into a 
stack A; (2) Pop out a branch b from the stack A; Check 
whether or not the objects in b satisfies the given conditions; 
Pick out the required objects; (3) Check each sub-branch of 
b; Push the branches satisfying the conditions into stack A; 
(4) Repeat (2)–(3) until the stack is empty. 

Figure 5 shows the given circle and spatial division for 
managing planar triangles. Figure 6 is the schematic for the 
SHT corresponding to Figure 5, where ‘/’ stands for the root. 
The process to find out objects in the given circle is shown 
in Figure 7. 

The conditional searching is implemented by providing a 
conditional function and an identification function. The 
conditional function presents conditions which the objects 
should satisfy. The identification function is used to assess 
whether or not the region of a branch contains suitable ob-
jects. It is clear that the validity of the algorithm is assured 
by the identification function. The more accurate the identi-
fication is, the fewer branches need to be searched. If iden-
tification status is always true, this searching algorithm goes 
back to an ergodic browser. 

2.2  Minimum search 

For convenience of description, we define a few concepts.  
(i) Range of a branch: It means the range of the given func-
tion for objects in this branch. (ii) B-R-branch: It is a the 
new branch data structure composed of the branch itself and 

 
Figure 5  Distribution of planar triangles and the corresponding spatial 
division. 

 

Figure 6  SHT corresponding to Figure 5. 

 

Figure 7  Flowchart for the fast search of objects in a circular area. 
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range of this branch. (iii) Candidate B-R-branch: It is the 
B-R-branch which may be checked in the following proce-
dure. It may contain objects whose functional values are 
minimum. In the minimum searching procedure, we must 
keep enough candidate B-R-branches. Some of them may 
be dynamically added or removed according to the need. In 
order to accelerate the searching speed, the candidate 
B-R-branches should be linked as a list. According to the 
above definition, each B-R-branch has a range. So, each 
B-R-branch has a lower limit to its range. The B-R-branches 
in the list are arranged in such a way that their lower limits 
subsequently increase. Obviously, the B-R-branch with the 
smallest lower limit is placed at the head of the list. In addi-
tion, candidate objects and candidate values should be used 
to store the current objects with minimum values and the 
values themselves. 

The idea of minimum searching is thus: By comparing 
the ranges of different branches, some branches can be ex-
cluded from the searching. The minimum searching algo-
rithm is as follows: (i) The root and its range are combined 
as a B-R-branch; Add the B-R-branch to a candidate list 
named L; The candidate value V is set as positive infinity; 
The candidate object is set as null. (ii) Pick out a B-R- 
branch, for example, B, from candidate list L; Check the 
values of its objects. If the value of an object O is smaller 
than V, then, replace V with this value; in the mean time, set 
object O as a candidate object. Remove the B-R-branches 
whose lower limit values are greater than V from the list L. 
(iii) Construct a B-R-branch Z for each sub-branch of B. If 
the minimum value of Z is larger than V, cancel Z; If the 
maximum value of Z is smaller than the minimum value of 
the B-R-branch C in L, then all the B-R-branches behind C 
are removed from L; If the minimum value of Z is larger 
than the maximum value of a B-R-branch in L, cancel Z; 
Otherwise, insert Z into list L according to its lower limit. 
(4) Repeat steps (2) and (3) until the candidate list L is 
empty. The final candidate object is the required one.  

As an example of applications of the proposed minimum 
search algorithm, we consider a case to find the nearest 
point to a fixed one from points in a plane. Figure 8  

shows the distribution of planar points and spatial division. 
Figure 9 is the corresponding SHT. Suppose point A in Fig-
ure 8 is the given fixed point. To seek the nearest point to it, 
the range of the branch is calculated by a sphere evaluation 
method. Figure 10 shows the flow-chat.  

We can perform various minimum searches by providing 
a different value-finding function and range-evaluation 
function. The value-finding function computes the value of 
an object. The range-evaluation function assesses the range 
of a branch. The efficiency of the minimum searching algo-
rithm depends on the range-valuation function. The smaller 
the range given by the range-evaluation function, the faster 
the searching procedure. The worst range-evaluation func-
tion gives a range from −∞  to .+∞  In such a case, the 
searching algorithm goes back to the ergodic browser. In the 
case with a large quantity of objects, one should use a good 
range-evaluation function to reduce the number of objects to 
be searched. However, a good range-evaluation generally 
needs a large quantity of computations, which also de-
creases the global efficiency. We should find a balance be-
tween the two sides. Since the computation for sphere re-
gions is more efficient than for cube ones, in complex 
minimum searching algorithms, circumspheres of a cube are 
extensively used to evaluate the range of a branch. 

 

Figure 8  Planar point distribution and corresponding spatial division. 

 

Figure 9  SHT corresponding to Figure 8. 
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Figure 10  Schematic for the fast search of the nearest point to a given fixed one. 

3  Constructing Delaunay tetrahedrons and 
triangles 

Before constructing clusters, we divide the space using the 
given discrete points. We construct spatial geometrical 
structures by connecting given discrete points according to 
the Delaunay division approach. There are lots of algo-
rithms to the construction of Delaunay tetrahedrons in three- 
dimensional space or Delaunay triangles in two-dimensional 
space. The complexities of most algorithms are involved 
with the searching procedures. Here, we propose an algo-
rithm based on the SHT. The algorithm is simple and intui-
tive. It is convenient to extend to higher-dimensional space. 

The main idea of the algorithm is as follows: when a new 
point is added to the formed Delaunay division structure, we 
should adjust the subdivision near the new point to meet the 
condition for Delaunay division. According to the definition 
of Delaunay division, if the new point is outside the cir-
cumsphere of a Delaunay simplex, this addition does not 
affect the Delaunay simplex. On the contrary, if it is inside 
the circumsphere of the Delaunay simplex, it does affect the 
simplex. The simplex needs to be re-divided. Specifically, 
all the simplexes affected by the new added point are se-
lected to form a complex. Each face of the complex and the 
new point form a new simplex. 

In three-dimensional space, the algorithm for the con-
struction of the Delaunay tetrahedron from given discrete 
points is as follows: (i) Generate a sufficiently large tetra-
hedron to contain all discrete points; Record the center and 
radius of its circumsphere; Form an ‘extended-tetrahedron’ 
of the circumsphere; Add this extended-tetrahedron to SHT  
with the name T (extended-tetrahedron SHT); (2) Pick out a 
discrete point P; Search in T for the extended-tetrahedra 
whose circumspheres contain P; Remove these ex-
tended-tetrahedra from T; Put the removed tetrahedra to-
gether to form a set named Q; (3) Add every surface of each 

tetrahedron in Q to SHT S which is a tree for the external 
triangular interfaces. Remove the surfaces that appears 
twice because they are interfaces; Triangles in S constitute 
the external interface of Q; (4) Pick out each face of S, to-
gether with point P, to construct a new tetrahedron; Record 
the center and radius; Add the newly formed ex-
tended-tetrahedra to T; (5) Repeats steps (2) to (4) until all 
points are used out. The set of tetrahedra in T is just the 
required Delaunay division structure. 

The algorithm includes two searches: one is for the cir-
cumsphere that contains a given point, the other is for the 
external interface of Q. They both belong to the conditional 
search. When we reduce to the two-dimensional case, the 
algorithm stays the same. We need only replace the tetrahe-
dron with a triangle and replace the triangular face with a 
line. Figure 11 shows the procedure of adjusting the space 
division due to the addition of a two-dimensional discrete 
point. Figure 12 shows the Delaunay triangle division of 
20000 randomly distributed two-dimensional points. Figure 
13 shows the Delaunay tetrahedron division of 20000 ran-
domly distributed points in a three-dimensional sphere. 

The algorithm can be easily extended to n-dimensional 
space. We need only replace the tetrahedron with an 
n-simplex and replace the triangle with an (n−1)-simplex. 
The circumsphere of the n-simplex constructed from n+1 

points, { }1 2 1, , , ,n+r r r  in n-dimensional space is used in 

the algorithm. The formula to calculate the center of the 
circumsphere of the n-simplex is / ,i ic A B=  where 

 

2
1 1

2
2 2

2
1 1

1 2

1 2

,

1 2

0 0

i

n n

i

A

+ +

−
−

=

−

r r

r r

r r

e

  

2
1 1

2
2 2

2
1 1

1 2

1 2

,

1 2

0 1
n n

B

+ +

−
−

=

−

r r

r r

r r

0

 



1616 ZHANG GuangCai, et al.   Sci China Phys Mech Astron   September (2010)  Vol. 53  No. 9 

 

Figure 11  Three steps to add a new point to a two-dimensional Delaunay division. (a) Finding the triangles whose circumcircle contains the newly added 
point p; (b) removing the internal lines of these triangles, retaining the external ones; (c) connecting each left line with point p to form new triangles. 

 

Figure 12  Delaunay division constructed from randomly distributed discrete points in a two-dimensional square area [0,4]×[0,4]. (b) is the enlarged picture 
of the portion in the small black rectangle in (a). 

 

Figure 13  Delaunay division constructed from randomly distributed 
discrete points in a three-dimensional spherical region. 

ie  is the unit vector of the i-th direction. The radius of the 

circumsphere is 2
1( ) .−c r  

4  Cluster construction and analysis method 

For the discrete points in space, there is no strict cluster 
structure. If the discrete points are considered as objects, 
such as a molecular ball, lattice or grid, then, the objects can 

be connected to form clusters. The average size of these 
assumed objects is the resolution of clusters to be con-
structed with discrete points. The construction of clusters is 
very simple. A cluster is formed by connecting all points 
whose distance in between is less than the resolution length. 

After the construction of the Delaunay division for given 
set of discrete points, remove the lines whose lengths are 
greater than the resolution length. The remaining spatial 
structure may have various dimensions. According to con-
nectivity, the structures that are not connected to each other 
can be decomposed into different clusters. Each cluster may 
also have structures with various dimensions. For example, 
a structure consisted of two triangles with a common side, 
or a structure formed by a triangle and a tetrahedron, etc. In 
physical problems, the structures with high-dimensional 
measures play a major role in describing the system. Gener-
ally, we need only need to analyze clusters with the maxi-
mum dimensions.  

The cluster construction algorithm consists of three parts. 
Preparation part: (i) Construct Delaunay tetrahedra from 
given discrete points. The corresponding SHT is notated as t. 
(ii) Remove the tetrahedrons whose length is greater than 
the given resolution from t. Single cluster construction part: 
(iii) Remove tetrahedron T from t if such a T still exists. 
Create a new cluster named C. Initialize the body tree C->t 
and face tree C->s as null. Add T to the body tree C->t. Add 
each of the triangle faces to a triangle tree named i. (iv) Pick  
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Figure 14  Cluster structure formed from 1000 random discrete points in a two-dimensional square area [0,1]×[0,1]. (a) A cluster; (b) the corresponding 
cluster boundary. 

out a triangle face S from i. Search tetrahedron Y containing 
face S from t. If found, add Y to tree C->t and add all faces 
of Y to tree i. Two faces with opposite directions will anni-
hilate if they meet each other during the adding procedure. 
If none are found, add S to the tree C->s. (v) Repeat step  
(iv) until the tree i becomes null. Construct all the clusters: 
(vi) Add the constructed cluster C to a tree for clusters 
named c. Repeat the process of constructing single clusters, 
and add the new cluster to c until t becomes null. The algo-
rithm for adding a face S to the tree i is as follows. Search 
and check if a face with the opposite direction of S exists in 
the tree i. If it exists, remove it from the tree i. If it does not 
exist, add S to the tree i. Up to now, all the constructed 
clusters are put to the tree for clusters c. For each cluster C 
in the tree c, all tetrahedron elements are placed on the body 
tree C->t, all the surface triangles are placed on the tree for 
faces C->s. Figures 14 and 15 show respectively the clusters 
constructed with random points in two-dimensional and 
three-dimensional space. 

 

Figure 15  Cluster structure formed from 5000 three-dimensional random 
discrete points. 

The algorithm is also applicable to n-dimensional dis-
crete points. We need only replace the tetrahedron with an 
n-simplex and replace the triangular surface with an (n−1)- 
simplex. For space with a dimension higher than three, the 
number of neighboring points and the connectivity, as well 
as the number of n-simplex, grow rapidly with the dimen-
sion. So, the required memory increases quickly. The De-
launay division can be constructed partition by partition. 
The main skill in this algorithm is that the space is parti-
tioned according to the main branches of SHT, and points in 
each partition are added sequentially. After the completion 
of adding all points in a partition, we need to delete the 
n-simplex that satisfies two conditions: (i) its external cir-
cumsphere is in the completed partition, (ii) at least one side 
is longer than the given resolution. 

5  Conclusions and discussion 

We propose a new method for managing objects and fast 
searching in arbitrary dimensional space. Based on this, 
algorithms for the constructing a Delaunay simplex and 
spatial clusters are presented. The applications to two- and 
three-dimensional discrete points validate the method and 
show obvious advantages. 

The proposed SHT can be easily used to manage and 
search objects with various locations, sizes or even shapes. 
This management method can be widely used in many 
fields. As an example, in the finite-element method, due to 
the complexity in calculating relative positions of elements 
and in the search for them, only the cases with simple 
shapes and single-sizes are extensively studied. With the 
proposed SHT, it is easy to search for adjacent relationships 
between objects with various sizes and shapes. Therefore, 
the SHT can substantially simplify simulations with the 
movements of complex objects.  

Compared with previous methods, the proposed SHT and 
the two fast-searching algorithms based on it are established 
on a more abstract framework. It has potential extensibility 
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to various fields. Experimental data can also be treated un-
der the same SHT after parameterization of physical quanti-
ties. Then, fast searching can be realized according to a 
similar algorithm. In addition, according to the needs of the 
user, an object can be simultaneously placed in several 
SHTs. This is equivalent to setting indexes of several prop-
erties. Therefore, fast searching for various properties can 
be easily implemented. 
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