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On the basis of reproducing kernel particle method (RKPM), using complex variable theory, the complex variable reproducing 
kernel particle method (CVRKPM) is discussed in this paper. The advantage of the CVRKPM is that the correction function of 
a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed. Then the 
CVRKPM is applied to solve two-dimensional elasto-plasticity problems. The Galerkin weak form is employed to obtain the 
discretized system equation, the penalty method is used to apply the essential boundary conditions. And then, the CVRKPM 
for two-dimensional elasto-plasticity problems is formed, the corresponding formulae are obtained, and the Newton-Raphson 
method is used in the numerical implementation. Three numerical examples are given to show that this method in this paper is 
effective for elasto-plasticity analysis. 
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1  Introduction 

Elasto-plasticity problem is one of the important problems 
in civil engineering, mechanical engineering, water engi-
neering, aviation and material sciences, and so on. Under 
the elasto-plasticity state, the relationship of material stress 
and strain is nonlinear, then many difficulties occur for ob-
taining the solutions of elasto-plasticity problems. It is just 
for this reason that only a few simple elasto-plasticity prob-
lems can be solved analytically, then the numerical methods 
must be applied to obtain the approximate solution of 
elasto-plasticity problems when the solution domains are 
complicated. In recent years, with the development of 
computer technology, the numerical methods have been 
widely used to solve various elasto-plasticity problems of 

engineering structures. The finite element method (FEM) 
and boundary element method (BEM) are the main numeri-
cal methods to obtain the solutions of elasto-plasticity 
problems at present. However, these methods are based on 
the meshes of the solution domain, and the re-meshing 
technique should be carried out with a large computational 
cost when large deformation occurs. 

Meshless methods are approximations based on nodes 
without initial mesh and re-meshing. Then meshless meth-
ods can overcome the disadvantage that the conventional 
numerical methods depend on the mesh of the solution do-
main [1,2]. Meshless methods have some advantages over 
the FEM in solving dynamic fracturing and non-linear 
problems. With the development of meshless methods, 
some researchers have successfully applied some meshless 
methods to the elasto-plasticity problems in recent years 
[3–9]. 

At present, some meshless methods such as the ele-
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ment-free Galerkin (EFG) method [10], the reproducing 
kernel particle method (RKPM) [11], Hp-clouds meshless 
method [12], the finite point method [13,14], the meshless 
local Petrov-Galerkin (MLPG) method [15], the meshless 
point collocation method (PCM) [16], the wavelet particle 
method (WPM) [17], the meshless finite element method 
(MFEM) [18], the complex variable meshless method 
[19–21], the meshless manifold method [22,23], the mesh-
less boundary integral equation methods [24–29], etc., have 
been developed. 

The RKPM is developed on the basis of the smoothed 
particle hydrodynamics (SPH) method. The RKPM is one 
of the most important methods used to form approximation 
function in the meshless methods. As the earliest meshless 
method, the SPH method was used to solve infinite field 
problems. For finite field problems, the SPH method leads 
to low computational accuracy and unstability because the 
compatibility conditions on the boundary can not be satis-
fied. To overcome the disadvantages of the SPH method for 
solving a finite domain problem, Liu et al. proposed the 
RKPM by introducing a corrected function to integral 
transformation in the SPH method to satisfy the boundary 
compatibility, and the unstability of the SPH method can be 
eliminated [11]. 

Compared with conventional numerical methods, the 
RKPM has many advantages, such as good smoothness and 
high computational accuracy, and that the shape function is 
formed without meshes. But the RKPM has a great compu-
tational cost because of a great number of nodes selected in 
the domain of a problem. To overcome the disadvantage 
which the RKPM has a great computational cost, the com-
plex variables reproducing kernel particle method 
(CVRKPM) was presented by the authors of this paper [30]. 
The advantages of the CVRKPM are that the correction 
function of a 2D problem is formed with 1D basis function 
when the shape function is obtained, which lead to the 
fewer nodes selected in the domain of the problem without 
the loss of the computational accuracy, then the computa-
tional cost is reduced. 

In this paper, the CVRKPM for two-dimensional elasto- 
plasticity is proposed. For the non-linear elasto-plasticity 
problems, the incremental CVRKPM is used to obtain field 
variable approximation, and the increments of stress and 
strain are used to characterize the elasto-plastic constitutive 
relationship. And the penalty method is employed to apply 
the essential boundary conditions. And then based on the 
incremental constitutive relationship, the control equation of 
the CVRKPM is obtained. The Newton-Raphson method is 
used in the numerical implementation. The CVRKPM in 
this paper can analyze the elasto-plasticity behaviors and 
some characteristics of loading and deformation history 
conveniently. Finally, some numerical examples are given 
to demonstrate the efficiency of the method in this paper. 

2  The shape function of the CVRKPM 

Consider a complex function ( )u z  which with the con-

tinuous derivative function defined in the domain Ω. In the 
CVRKPM, the key to obtain the trial function is using the 
corrected kernel function ( )′−hw z z  to form the repro-

ducing kernel approximation ( )hu z  of the function ( )u z  

at point z, and 
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where ( )′−hw z z  is a corrected reproducing kernel func-

tion: 

 ( ) ( ; ) ( ),′ ′ ′− = − ⋅ −h hw z z C z z z w z z  (2) 

where ( )′−hw z z  is the kernel function which has a com-

pact support domain, and ( ); ′−C z z z  is the correction 

function which is expressed as a linear combination of 
polynomial basis functions, i.e. 
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where m  is the highest order of polynomial basis func-
tions, ( )′−ip z z  are the basis functions, and ( )ib z  are the 

corresponding coefficients. In general, for two-dimensional 
problems, the basis functions can be chosen as linear basis 

 ( )T 1, ,′= −z zp  (6) 

or quadratic basis 

 ( )T 21, , ( ) .′ ′= − −z z z zp  (7) 

The discretized form of the complex variables reproduc-
ing kernel approximation can be obtained by applying the 
trapezoidal rule to eq. (1), i.e. 
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where Iz  is the node in the support domain of z, n is the 

total number of the nodes in the support domain of z, 

 1 2( ) ( ) i ( ),= +I I Iu z u z u z  (9) 



956 CHEN Li, et al.   Sci China Phys Mech Astron   May (2010)  Vol. 53  No. 5 

and Δ IV  is the volume of node Iz  and represents the 

integration weight, i.e. 
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where tn  is the total number of nodes distributed in the 

solution domain. 
Eq. (8) can be rewritten as 
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Let 

 T( ) ( ; ) ( ) ( ).= − = −I I IC z C z z z z z zp b  (17) 

Then we have 
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0 1( ) ( ), ( ), , ( ) .= mz b z b z b zb  (20) 

Here the correction coefficients are obtained via the repro-
ducing conditions of the trial function, and 

 ( ) ( ) ,⋅ =z zM b H  (21) 

where 
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Then the expression of the trial function ( )hu z  can be 

written as 
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where ( )zΦ  is defined as the shape function of the 

CVRKPM, and 
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The advantage of the CVRKPM is that the correction 
function of a two-dimensional problem is formed with 
one-dimensional basis function, which leads to the fact that 
fewer nodes can be selected in the meshless method formed 
with the CVRKPM under the same precision. As for an ar-
bitrary node, when its shape function and its derivatives are 
calculated, it is necessary to obtain the inversion of the ma-
trix M. Under the same precision, because the fewer un-
known coefficients needed in the CVRKPM approximation 
lead to reducing the dimension of the matrix M, then the 
CVRKPM has greater computational efficiency compared 
with the RKPM. For example, for the linear basis, the basis 
function in the RKPM is ( )T

1 1 2 21, , ,′ ′= − −x x x xp  and 

three unknown coefficients are needed; and the basis func-
tion in the CVRKPM is ( )T 1, ,′= −z zp  and two un-

known coefficients are needed. For the quadratic basis, the 
basis function in the RKPM is  

 
(

)

T 2
1 1 2 2 1 1

2
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         , ,
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and six unknown coefficients are needed; and the basis 

function in the CVRKPM is ( )T 21, , ( )′ ′= − −z z z zp , 

and three unknown coefficients are needed. Then for an 
arbitrary point in the domain, we need fewer nodes with 
support domains that cover the point, and thus we also re-
quire fewer nodes in the whole domain. In addition, under 
the same node distribution in the problem domain, the 
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CVRKPM has greater precision than the RKPM. 

3  The CVRKPM for elasto-plasticity problems 

3.1  Basic equations of elasto-plasticity problems 

Because of the nonlinearity of an elasto-plasticity bound-
ary-value problem of the structures, it is more complicated 
than a linear elasticity problem. When the structure works in 
the plastic state, its stress-strain relationship appears to be 
nonlinear, then the control equation and boundary condi-
tions can be in the increment form, and the symbol ‘·’ 
denotes the increment form of a variable. And the plastic 
item should be considered. Suppose the structure via a 
loading history, the displacement u , strain ε  and stress σ 

at time t  have been obtained. If the body force rate b , the 

traction rate t  on the natural boundary tΓ  and velocity 

distribution u  on the essential boundary uΓ  are given, 

then the equilibrium equation for elasto-plasticity problems 
can be written as 

 T 0+ =L σ b , in Ω, (29) 

where L is differential operator matrix, i.e. 
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The strain-displacement relationship can be written as 

 =ε Lu , in Ω. (31) 

The stress-strain relationship can be expressed as 

 ,= Dεσ  (32) 

where D is material constant matrix: 
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in the elastic state, and 

 [ ]ep= DD  (34) 

in the plastic state. [ ]
ep 

D  is the elasto-plasticity matrix of 

increment theory, i.e. 
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where E is Young’s modulus, ν is Poisson’s ratio, and ′H  
is the plastic modulus for material hardening, and deter-
mined by the relationship of stress and plastic strain ob-
tained from the material tests: 
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In eq. (35): 
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where σ  is the equivalent stress, 11σ ′  and 22σ ′  are the 

deviatoric stresses, and we have: 
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As for the plane strain problems, when the structure is in 
plasticity state, Poisson’s ratio 0.5.=ν  For the corre-

sponding elasto-plasticity matrix, E in [ ]
ep 

D  of plane 

stress problems is only changed into 21
,

−
E
ν

 and v is 

changed into .
1−
ν
ν

 

The boundary conditions can be written as: 

 ,=u u  on ,Γ u  (42) 

 ,⋅ =n tσ  on ,Γ t  (43) 

where u  is the prescribed velocity distribution at an arbi-
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trary point z on the essential boundary Γ u ; t  is the pre-

scribed traction rate at an arbitrary point z  on the natural 
boundary Γ t ; Γ  is the boundary of the domain Ω, and 

Γ Γ Γ= ∪u t , Γ Γ∩ =u t ∅; 1n  and 2n  are the units 

outward normal to the boundary ,Γ t  respectively, and we 

have 

 1 2

2 1
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3.2  Galerkin weak form for elasto-plasticity problems 

In this paper, the penalty method is used to enforce the es-
sential boundary conditions. The corresponding constrained 
Galerkin weak form can be obtained as follows [6]: 
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where α is penalty factor which is assigned the constant of a 
large positive number. At present, the following equation is 
adopted to determine the penalty factor mostly: 

 (1.0 10 ~ 1.0 10 )3 5α = × × × E,  (46) 
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When the displacement exists at the boundary at 1x  (or 

2x ) direction, the corresponding 1s  (or 2s ) equals to 1 , 

otherwise to 0. 
By using the strain-displacement relationship eq. (31) 

and the stress-strain relationship eq. (32), eq. (45) can be 
explicitly expressed as: 
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3.3  The discrete equation of the CVRKPM for 
elasto-plasticity problems 

From the CVRKPM approximation (25), the velocity ( )u z  

at an arbitrary point z in the domain can be expressed as 
follows: 
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where ( )zΦ  is the shape function, and 
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Combining eqs. (49) and (50), we have 
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where ( )zΦ  is the matrix of shape functions, n is the 

number of nodes in the support domain of point z, and U  
is nodal velocity vector, and 
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The product of Lu  in eq. (48) can be expressed as      
follows: 
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Substituting eqs. (51) and (55) into eq. (48) yields 
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Because the nodal test function TδU  is arbitrary, we 
can obtain the final discretized equation as follows: 

 ( ) ,+ = +α αK K U F F  (59) 

where 

 T d ,
Ω
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eq. (59) can be simply written as 
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If the concentrated force T̂  is applied to a certain point 

0z  on the boundary tΓ  and the concentrated force rate 

T̂  can be given as 
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Similar to the elastic problems, the contribution of the 
concentrated force to equivalent node load increment can be 
given as [30] 
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Therefore, in the case of existence of body force, traction 
and concentrated force, the equivalent node load increment 
can be expressed as follows: 
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this is the CVRKPM for elasto-plasticity problems. 

4  Solution to the elasto-plasticity problems––– 
Increment tangent stiffness matrix method 

4.1  Linearization of nonlinear problems 

For the elasto-plasticity problem with small deformation, 
the displacement is continuous, and the relationship of dis-
placement and strain is linear, but the relationship of stress 
and strain in the plastic field is nonlinear. When the loading 
has a minor increment, the nonlinear relationship between 
the stress differentiation and strain differentiation should be 
adopted. 

In order to solve the nonlinear problem, in this paper we 
convert it into a series of linear problems using the method 

of gradually increasing loading. In certain stress and strain 
level, increasing a load increment, we will obtain the stress 
increment Δσ and strain increment Δε. Only when the load 
increment is rightly small, the stress and strain differentia-
tion can be replaced by their increments, and then the rela-
tionship between the stress increment and strain increment 
can be expressed approximately as follows: 

 [ ]∆ ∆
ep

,= Dσ ε  (70) 

where [ ]
ep

D  is only related to the stress before adding the 

load increment, but not related to the stress and strain in-
crements after adding the load increment. Then eq. (70) is a 
linear equation system. Thus for the load increment at each 
step, similar to elasticity problems entirely, we can form the 
corresponding formulae to obtain the displacement incre-
ment, strain increment and stress increment produced by the 
load increment in this step. And then, the previous stress 
state is revised, and the calculation for the load increment at 
the next step will begin. The problem with each load incre-
ment should be a linear problem, and then the solution of 
the elasto-plasticity problem will be obtained. 

First of all, the linear elasticity analysis should be made 
to obtain the structure displacement, strain and stress under 
the elastic limit load 0F , and they are recorded as 0U , ε0 

and σ0 respectively. And then, the structure will enter the 
yield state, the load will be added with load increment 
method, and the corresponding node load increment 1∆F  

and the corresponding stiffness matrix can be obtained. 
When obtaining the stiffness matrix, for Gaussian quadra-
ture points entering the yield state, we must use [ ]

ep
D  to 

replace [ ]
e
,D  and the stress in [ ]

ep
D should be 0σ . And 

then the stiffness matrix is related to the stress before add-
ing the load increment, and it is recorded as 0( )K σ . 

Solving the equation 

 0 1 1( ) ∆ ∆ ,⋅ =K U Fσ  (71) 

then 1∆ ,U  1∆ε  and 1∆σ  can be obtained, and then the 

displacement, strain and stress after a load increment are 
obtained. Therefore we have obtained a new stress 1 0=σ σ  

1∆ .+ σ  The rest can be deduced by analogy. After 1−i  

load increments, the displacement, strain and stress at that 
time can be obtained, and the stress is 1i−σ . When the ith 

load increment ∆ iF  is added, solving the following equa-

tion: 

 1( ) ∆ ∆ ,− ⋅ =i i iK U Fσ  (72) 

we can get the i-th displacement increment ∆ iU , strain 

increment ∆ iε  and stress increment ∆ ,iσ  and then the 
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new stress can be obtained, i.e. 

 1 ∆ .−= +i i iσ σ σ  (73) 

Repeating the above mentioned process until the load of the 
problem is added completely, the displacement, strain and 
stress of the elasto-plasticity problem can be obtained. 

4.2  Formation of the stiffness matrix K (σi−1) 

When using increment tangent stiffness matrix method to 
analyze an elasto-plasticity problem, we must obtain the 
stiffness matrix and stress at each load increment step. 

From eq. (64) we can obtain the stiffness matrix. In eq. 

(64), T
1( ) d− = ⋅ ⋅∫i

Ω
ΩK σ B D B  is the integration in the 

whole domain, and then use Gaussian quadrature, we have 

 

T
1

T

d

( ) ( ) ( )G

( )

,

Ω
Ω− = ⋅ ⋅

= ⋅ ⋅ ⋅

∫

∑
G

IJ i I J

n

i I i i J i
i

K

w z z z

B D B

B D B

σ
 

(74)
 

where Gn  is the total number of Gaussian quadrature 

points which fall in the field intersection of support domains 
of node Iz  and Jz , Giw  is the integration weight of the 

Gaussian quadrature point iz . 

As for the elasto-plasticity problem, in the solution do-
main, a plastic zone will occur and develop with the in-
crease of load increments. And then the stress-strain rela-
tionship at Gaussian quadrature points in the plastic zone is 
nonlinear. Thus, before a load increment is added at each 
load step, it is necessary to discuss the stress at each Gaus-
sian quadrature point after the previous load increment step, 
and then the equivalent stress of the point will be obtained. 
If the equivalent stress at a Gaussian quadrature point is 
larger than the material yield stress, the Gaussian quadrature 
point will enter into the plastic zone, and then ( ) =izD  

[ ]ep ,D  otherwise ( ) [ ]e .=iz DD  

4.3  Calculation of the equivalent node load vector F  

When the equivalent node load increment ∆F  is applied, 
some Gaussian quadrature points in the elastic state will 
enter into the plastic state, and then we have ( ) [ ]e .=iz DD  

Thus, when obtaining the equivalent node load increment, 
the previous loading imbalance should be corrected, and 
then the solution will have good accuracy. Therefore, for 
each load increment step, the discrete increment equation 
system eq. (72) should be revised as follows: 

 ( )1 T
1 1∆ [ ( )] d ,

Ω
Ω−

− −= ⋅ − ∫i i i iU K F B σσ  (75) 

where the integration T
1d

Ω
Ω−∫ iB σ  is the equivalent node 

load to the stress after the previous load increment step, and 

iF  is the total equivalent node load after this load incre-

ment, i.e. 

 0 1 2∆ ∆ ∆ .= + + + +i iF F F F F  (76) 

In the practical numerical process, all the loading should 
be applied on the structure first, and the structure is ana-
lyzed with linear elasticity theory, and then the total 
equivalent node load F  is obtained from eq. (69). The 

equivalent node load 
1
L

F , where max ,
σ
σ

=
s

L  can be used 

as the elastic limit load 0F . And the corresponding dis-

placement, strain and stress under the elastic limit load can 
be obtained with linear elastic analysis. And then the step 

loading should be adopted, and 
1 1∆ 1⎛ ⎞= −⎜ ⎟

⎝ ⎠n L
F F  is used 

as the equivalent node load increment at each loading step. 

iF  in eq. (76) can be obtained as follows: 

 

1 1 1 1∆ 1

( 1) ( 1, 2, , ),,

⎛ ⎞= + ⋅ = + ⋅ −⎜ ⎟
⎝ ⎠

+ ⋅ −
= =

i i i
L L n L
n i L i n

nL

F F F F F

F
 

(77)
 

where n is total number of the loading steps. 

5  Numerical examples 

Two example problems are presented to demonstrate the 
applicability of the CVRKPM for two-dimensional elasto- 
plasticity problems. The results obtained for these examples 
using the CVRKPM are compared with the ones of the 
RKPM and ANSYS. 

In the numerical examples presented in this section, the 
quadratic basis function is used in the construction of cor-
rection function, and the cubic spline weight function is 
used in the CVRKPM approximation. The rectangle zone is 
used as the support domain of nodes, and the scaling pa-
rameter dmax determining the size of the support domain is 
3.5. The penalty factor is α =(1.0×103)×E. In each integra-
tion cell, the 4×4 Gaussian quadrature is used for numerical 
integrations. And the total number of the loading steps for 
the examples in this section is n=100. 

5.1  Cantilever beam subjected to a concentrated force 

A cantilever beam subjected to a concentrated force at the 
free end is shown in Figure 1. In this example, the geomet-
ric parameters for this cantilever beam are as follows: the 
length of the beam is L=8 m, the height is h=1 m and 
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Figure 1  Cantilever beam subjected to a concentrated force. 

the depth is 1 m. =t  The material properties are: the 

Young’s modulus 510 Pa, =E  the Poisson’s ratio =ν  

0.25, and the yield stress 25 Pa. σ =s  The linear hardening 

elasto-plastic model is adopted with 0.2′ =E E,  and Mises 

yield criterion is used. The concentrated force is 1 N =P  
without gravity. And the plane stress problem is considered. 

11×5 nodes are used, and the node distribution is shown 
in Figure 2. Using the CVRKPM presented in this paper we 
can obtain the displacement, stress and strain of the problem. 
The numerical solutions of vertical displacements at some 
nodes obtained using the CVRKPM are shown in Table 1. 
Compared with the numerical results obtained using the 
RKPM and ANSYS, we can see that the results using the 
CVRKPM are closer to those using ANSYS, and then the 
CVRKPM in this paper has a higher accuracy than the 
RKPM. And then under the same node distribution in the 
problem domain, the CVRKPM can improve the solution 
accuracy compared to the traditional RKPM. 

The relationship between the displacements of midpoint 
at the end of the beam and the load is shown in Figure 3. It 
can be seen intuitively that when the load is larger than 
elastic limit, the material begins to yield and enters into the 
elasto-plastic state. 

5.2  Perforated plate under an axial distributed load 

The second example that is considered is a rectangular plate 
with a central hole under a distributed load, as shown in 
Figure 4. The length of the plate is 1 m,0 =L  the width is 

4 m, =h  the radius of the central hole is 1 m, =r  and the 

unit thickness of the plate is considered. The left end of the 
plate is fixed, and the distributed load 1000 N / m=q  is 

applied at the right end of the plate. The other parameters 
used in our analysis are Young’s modulus 51.0 10 Pa, = ×E  

Poisson’s ratio 0.25,=ν  and the yield stress 250 Pa. σ =s  

 

Figure 2  Node distribution. 

 

Figure 3  Relationship between displacements of the midpoint at the end 
of the beam and the load. 

 

Figure 4  A plate with a central hole under a distributed load. 

The linear hardening elasto-plastic model is adopted with 
0.2 ,E E′ =  and Mises yield criterion is used. 

As shown in Figure 5, 116 nodes in the domain are used 
for the solution. Other parameters are similar to those used 
in the first example in Section 5.1. The numerical results of 
displacements at some nodes using the CVRKPM and 
ANSYS are shown in Table 2. Similarly, it can be seen that 
the results obtained using CVRKPM show excellent agree-
ment with those obtained using ANSYS. The relationship 
between the displacements of midpoint at the end of the 
beam and the load is shown in Figure 6. Similarly, when the 

Table 1  Vertical displacement of the beam subjected to a concentrated force (unit: mm) 

Node coordinate (1.6, 0.5) (3.2, 0.5) (4.8, 0.5) (6.4, 0.5) (8.0, 0.5) 
Elasticity solution 1.180 4.334 8.963 14.575 20.672 

ANSYS 2.020 6.837 13.227 20.600 28.460 

The largest relative  
difference compared  

with ANSYS (%) 

RKPM 1.938 6.709 13.067 20.316 28.143 4.06 Elasto-plasticity solution 

CVRKPM 2.087 6.954 13.389 20.806 28.712 3.32 
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Table 2  Elasto-plasticity solution of node displacement of the plate 

u1 (mm)  u2 (mm) 
Node coordinate 

ANSYS CVRKPM  ANSYS CVRKPM 

(−4.0,2.0) 42.433 42.889  24.924 24.889 

(−3.0,2.0) 84.524 83.872  27.557 28.471 

(−2.0,2.0) 145.610 143.03  34.790 34.376 

(−1.0,2.0) 225.550 220.14  77.695 75.728 

(0.0,2.0) 274.670 267.25  126.600 117.962 

(1.0,2.0) 323.040 313.20  76.718 74.658 

(2.0,2.0) 403.350 391.37  34.099 33.361 

(3.0,2.0) 466.270 451.45  27.784 28.275 

(4.0,2.0) 512.480 497.51  30.547 30.235 

(5.0,2.0) 552.920 537.79  32.323 32.225 

 
 

 

Figure 5  Node distribution. 

 

Figure 6  Relationship between the displacements of the midpoint at the 
right end and the load. 

load is larger than elastic limit, the material begins to yield 
and enters into the elasto-plastic state. 

6  Discussion on the numerical accuracy of the 
CVRKPM 

From many numerical examples, we analyze the effects of 
the size of the influence domain at a node, the number of 
nodes in the domain and the total number of the loading 
steps upon the numerical accuracy and computational effi-
ciency, and obtain some similar conclusions. In this section, 
we give an example of the cantilever beam subjected to a 

distributed load to show some conclusions. 
A cantilever beam subjected to a distributed load, as 

shown in Figure 7. The length of the beam is 8 m, =L  the 

height is 1 m =h  and the unit thickness of the plate is con-
sidered. This example is discussed as a plane stress problem. 
The distributed load is 1 N / m=q without considering 

gravity. The other parameters used in our analysis are 
Young’s modulus 510 Pa, =E  Poisson’s ratio 0.25,=ν  

and the yield stress 25 Pa. σ =s  The linear hardening 

elasto-plastic model is adopted with 0.2 ,E E′ =  and Mises 

yield criterion is used. 

6.1  Effect of the size of the influence domain upon the 
accuracy of the CVRKPM 

Similar to the example in Section 5.1, a regular node ar-
rangement of 11×5 is used, and the other parameters are 
also the same. The rectangle zone is still used as the support 
domain of node, and the scaling parameter dmax determining 
the size of the support domain can take the value of 2.0, 2.5, 
3.0, 3.5, 4.0, 4.5, 5.0, 6.0 and 7.0, respectively. The corre-
sponding numerical results using the CVRKPM are shown 
in Table 3. It can be seen that the size of the influence do-
main in the CVRKPM may have a certain effect upon the 
computational accuracy. For example, for the displacements 
of nodes at the axis of the beam, the computational accuracy 
is raised first and then drops slightly with the increasing 
value of dmax, but the CPU time sustains to increase. Ac-
cordingly, as for the CVRKPM, taking two aspects of accu-
racy and CPU time into consideration, we think that the  

 

Figure 7  Cantilever beam subjected to a distributed load. 
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Table 3  Node displacement u2 of cantilever beam under different influence domains 

Node coordinate (1.6,0.5) (3.2,0.5) (4.8,0.5) (6.4,0.5) (8.0,0.5) 

ANSYS 18.279 60.587 113.12 167.96 223.19 
Max relative difference  

compared with ANSYS (%) 
CPU  

time (s) 

2.0 16.957 57.495 108.12 160.99 214.24 7.23 161 

2.5 17.885 59.496 111.26 165.29 219.7 2.16 222 

3.0 18.15 59.989 111.97 166.23 220.88 1.03 293 

3.5 18.231 60.249 112.39 166.77 221.54 0.74 361 

4.0 18.295 60.398 112.6 167.05 221.89 0.58 432 

4.5 18.15 60.142 112.24 166.62 221.39 0.98 491 

5.0 18.058 60.017 112.01 166.37 221.11 1.21 535 

6.0 18.032 60.038 111.99 166.3 220.98 1.05 620 

dmax 

7.0 17.905 59.841 111.64 165.88 220.5 2.05 692 

 
 
value of parameter dmax is the most suitable when 3.5 ≤  

4.5.maxd ≤  

6.2  Effect of the node distribution on numerical accu-
racy of the CVRKPM 

In this section, four kinds of regular node distribution are 
used for solution. The parameter dmax=3.5, and the other 
parameters are the same as previously mentioned. The nu-
merical results of displacements of nodes at the axis after 
the loading completion using the CVRKPM and ANSYS 
are shown in Figure 8. It can be seen that under different 
node distributions, the results of the CVRKPM all agree 
well with the results of ANSYS, but with the increase of the 
number of nodes, the numerical results of the CVRKPM can 
be better in agreement with those of ANSYS. 

6.3  Influence of the number of the loading steps on 
numerical accuracy of the CVRKPM 

Since the increment tangent stiffness matrix method is 
adopted in the CVRKPM for elasto-plasticity in this paper, 
the number of loading steps has an effect upon the numeri-                 

 

Figure 8  Node displacements u2 at the axis under different node distribu-
tions. 

cal accuracy of the CVRKPM. Because load increment in 

each loading step is 
1 1∆ 1 ,

⎛ ⎞= −⎜ ⎟
⎝ ⎠n L

F F  n is the total num-

ber of the loading steps. Theoretically, the larger the total 
number of the loading steps is, the smaller the load incre-
ment will be. As a result, the numerical error, which is from 
the equations in the increment form when the equations in 
differential forms are replaced, will be smaller, and then the 
numerical accuracy of the CVRKPM will be higher. How-
ever, in the practical numerical process, the increasing of 
the total number of the loading steps will increase computa-
tional cost and reduce the computational efficiency. There-
fore, it is a key problem to choose the total number of the 
loading steps to satisfy the requirements of numerical accu-
racy and efficiency. 

For the example in section 6.1, we choose the total num-
ber of the loading steps as 10, 30, 50, 70, 90, 100, 130, and 
150, respectively. The node displacements u2 of cantilever 
beam under different loading step numbers using the 
CVRKPM are shown in Table 4. It can be seen that the 
maximum relative difference is only 4.09% when the load-
ing step number is 30, and this is because the New-
ton-Raphson method is used in this paper, and then the high 
numerical accuracy can be obtained when the total number 
of the loading steps is small. 

The max relative difference of displacement of cantilever 
beam between the results using the CVRKPM and those 
using ANSYS depending on the loading step number is 
shown in Figure 9. It can be seen that the numerical accu-
racy will rise with the increase of the loading step number. 
But it can be seen again from Table 4 that the CPU time 
will increase, then the computing efficiency will be low. As 
a result, it is not necessary to choose a large number of the 
loading steps, otherwise the computational cost will in-
crease greatly. 

7  Conclusions 

On the basis of the RKPM, the CVRKPM for elasto-plas-          
ticity problems is presented in this paper. The advantage of 
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Table 4  Node displacement u2 of cantilever beam under different loading step numbers 

Node coordinate (1.6,0.5) (3.2,0.5) (4.8,0.5) (6.4,0.5) (8.0,0.5) 

ANSYS 18.279 60.587 113.12 167.96 223.19 

Max relative difference compared 
with ANSYS solution (%) 

CPU  
time (s) 

10 16.363 54.69 102.08 151.55 201.41 10.48 41 

30 17.531 58.28 108.88 161.66 214.83 4.09 112 

50 17.894 59.428 110.96 164.71 218.85 2.11 185 

70 18.044 59.775 111.57 165.6 220.02 1.42 257 

90 18.139 60.051 112.06 166.31 220.95 1.0 328 

100 18.231 60.249 112.39 166.77 221.54 0.74 361 

130 18.402 60.643 113.03 167.66 222.68 0.67 473 

Loading  
step  

number 

150 18.398 60.82 113.3 168.04 223.16 0.65 543 

 
 

 

Figure 9  Relationship between the max relative difference of numerical 
solution and the loading step number. 

the CVRKPM is that the correction function of a 2D prob-
lem is formed with 1D basis function when the shape func-
tion is formed, and the approximation function of 2D prob-
lems is obtained further. And then the corresponding for-
mulas of the CVRKPM for two-dimensional elasto-plas-                                     
ticity problems are derived. Some numerical examples are 
given. Compared to the solution using the RKPM and 
ANSYS, the present method is proved to be efficient. 

In this paper, the effects of the size of the influence do-
main of the nodes, the total number of nodes arranged in the 
domain and the load step number upon the numerical preci-
sion and efficiency of the CVRKPM are discussed. And we 
obtained some conclusions: (1) The size of the influence 
domain of nodes can affect the results greatly, and the nu-
merical precision of the CVRKPM will be great when the 
value of the scaling parameters dmax determining the size of 
influence domain of nodes is between 3.5 and 4.5; (2) the 
computational precision can be improved with the increase 
of the number of nodes distributed in the domain, but the 
CPU time will also increase correspondingly; (3) the com-
putational precision can rise with the increase of the load 
step number, but the CPU time will increase greatly, and the 
computational efficiency will be decreased. 

This work was supported by the National Natural Science Foundation of 
China (Grant Nos. 10571118 and 10871124) and Innovation Program of 
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