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For the first time, a threshold quantum secure direct communication (TQSDC) 
scheme is presented. Similar to the classical Shamir’s secret sharing scheme, the 
sender makes n shares, S1, …, Sn of secret key K and each receiver keeps a share 
secretly. If the sender wants to send a secret message M to the receivers, he en-
codes the information of K and M on a single photon sequence and sends it to one 
of the receivers. According to the secret shares, the t receivers sequentially per-
form the corresponding unitary operations on the single photon sequence and ob-
tain the secret message M. The shared shares may be reusable if it can be judged 
that there is no eavesdropper in line. We discuss that our protocol is feasible with 
current technology. 

quantum secure direct communication, threshold secure direct communication, quantum secret sharing 

1  Introduction 

One of the most remarkable applications of quantum mechanics in quantum information is quan-
tum cryptography. Quantum cryptography exploits the principles of quantum mechanics to enable 
provably secure distribution of private information, including generating a key[1－5], secret shar-         
ing[6－10] and so on.  

Recently, a novel branch of quantum communication, quantum secure direct communication 
(QSDC), was proposed and actively pursued by some groups[11－25]. With QSDC, the communi-
cating parties, Bob and Carol can exchange the secret message directly without generating a pri-
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vate key in advance and then encrypting the message, which is different from quantum key dis-
tribution (QKD). In 2002, Beige et al.[11] presented a deterministic quantum secure communication 
protocol in which the message could be read out after the transmission of an additional classical 
information for each qubit[12,17,23], similar to a QKD scheme in which each bit of key can represent 
one bit of secret message with an additional classical information, i.e., retaining or flipping the bit 
value in the key according to the secret message[23]. In 2002, Boström and Felbinger[12] proposed a 
ping-pong QSDC following some ideas in quantum dense coding with an EPR pair. The authors 
had claimed that it was secure for generating a private key and quasi-secure for direct communi-
cation as it would leak some of the secret message in a noisy channel. Wójcik and Zhang et al. 
pointed out that the ping-pong protocol was insecure for direct communication if there were losses 
in a practical quantum channel[13,14]. Also, the ping-pong protocol can be attacked without eaves-
dropping[15]. Cai and Li[16] modified the ping-pong protocol for transmitting the secret message 
directly by replacing the entangled photons with single photons in the mixed state, similar to the 
Bennett 1992 QKD[3] protocol, and inherited its nature of insecurity[17] as it was vulnerable to the 
opaque attack which is discussed in ref. [3]. They[18] also showed that the capacity of the ping-pong 
protocol could be doubled by introducing two additional unitary operations. However, it is not 
unconditionally secure as the analysis of eavesdropping check depends on the feature of statistics 
for which a lot of samples should be chosen randomly and measured. Wang et al.[19] introduced a 
QSDC protocol with high-dimensional quantum superdense coding. Refs. [20,21] introduced the 
idea of order-rearrangement into quantum secure direct communication. Recently, Lucamarini et 
al.[22] introduced a QSDC protocol for both communicating directly and creating a private key with 
some ideas in refs. [4,17]. It is secure for QKD, the same as ref. [4], but it is just quasi-secure for 
direct communication, similar to the QSDC protocol in ref. [18]. Deng et al. put forward a two-step 
QSDC protocol[23] with EPR pairs transmitted in block and another one based on a sequence of 
polarized single photons[17]. 

In most of the above schemes, entanglement is necessary. However, it is not easy for them to be 
realized experimentally, since the efficiency of preparing even tripartite or four-partite entangled 
states[26,27] is very low.  

In this paper, for the first time, we present a t-out-of-n TQSDC scheme. Similar to the classical 
Shamir’s secret sharing scheme, the sender makes n shares, 1, , nS S  of secret key K and each 
receiver keeps a share secretly. If the sender wants to send a secret message M to the receivers, he 
encodes the information of K and M on a single photon sequence and sends it to one of the receivers. 
According to the secret shares, the t receivers sequentially perform the corresponding unitary op-
erations on the single photon sequence and obtain the secret message M. We discuss that our pro-
tocol is feasible with current technology. 

It has three main features: (1) there is no need to prepare any entanglement; (2) the shared shares 
are classical; (3) the shared shares are reusable if it can be judged that there is no eavesdropper in 
line. 

2  TQSDC scheme 

2.1  Preparation phase 

In this phase, the sender distributes the shared secrets to the receivers. 
(1) A sender chooses an original key  
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 1 1 2 2( , , , , , , ),m mK a b a b a b=  (1) 

where ,i ia b  are uniformly chosen from {0,1}. 

(2) The sender then makes n shares, 1, , nS S  of K similar to the classical Shamir’s secret 

sharing scheme[28] over 2NF as follows, where N = 2 m. The sender shares n 2m-bit distinct, non-

zero xj’s for 1,  ,  j n=  with the receivers using quantum secret sharing schemes such as the 
ones in refs. [8,9]. Also he chooses (randomly and independently) secret ai’s for 1,  ,  1i t= −  in 

2 .NF  He computes ( )j jS f x=  for 1,  ,  j n= over 2 ,NF  where jx is a polynomial represen-

tation of xj for 1,  ,  j n= , where  

 1 2
1 2 1 0( ) mod 2 ,t t N

t tf x a x a x a x a− −
− −= + + + +  (2) 

0(0)f a K= =  (where K is the polynomial representation of K). 

(3) The sender sends jS  to the receiver Rj for each 1,  ,  j n= , using quantum secure direct 

communication schemes such as the ones in refs. [16,17], where jS  is the binary representation of 

Sj. 

2.2  Precomputation phase  

In this phase, the receivers compute the preliminary information for the following procedures of 
collaborating to recover the secret message. The preliminary information depends on which subset 
of receivers is chosen to collaborate. Here, for simplicity of description, we assume that the t re-
ceivers, 1,  ,  tR R , collaborate to do that. 

(1) For each 1,  ,  j t= , Rj calculates and secretly stores the following value (given by the 
Lagrange interpolation formula): 

 
1 ,
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over NF
2

. Let 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 1 2 2( ,  ,  ,  ,  ,  ,  )j j j j j j j

m mK a b a b a b=  (4) 

be the binary representation of Kj in 2NF , where [ ] [ ],  j j
i ia b  are in {0,1}. Although each secret 

value Sj(Kj) is kept in each receiver Rj locally, these values satisfy the following equations globally: 

 
1

t

j
j

K K
=

= ∑  (5) 

over 2NF . In the binary representation, eq. (5) can be written as 

 [ ]
1 ,t j

jK K== ⊕  (6) 

where ⊕  represents bitwise exclusive-OR. Note that even in the following collaborative proce-

dure, Kj ( [ ]jK ) is kept secret at Rj and the original key K (K) is not recovered. 
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2.3  Secret message distribution phase 

Suppose that the sender wants to send a secret message M  to the receivers.  
 1 2( , , , ),mM c c c=  (7) 
where ci is in {0,1}, 1,  ,  i m= . 

(1)The sender generates a quantum state for the secret message M 
 

1 1 1 2 2 2, , , ,
m m mc a b c a b c a bφ ψ ψ ψ⊕ ⊕ ⊕= ⊗ ⊗ ⊗  (8) 

where for each 1,  ,  i m= , a qubit ,i i ic a bψ ⊕  is one of the following states 

 

0,0

1,0

0,1

1,1

0 ,

1 ,

( 0 1 ) / 2,

( 0 1 ) / 2.

ψ

ψ

ψ

ψ

=

=

= +

= −

 (9) 

The value of bi determines the measurement basis. If bi is 0, then i ic a⊕  is encoded in the Z 

basis { 0 , 1 }; if bi is 1, then i ic a⊕ is encoded in the X basis  

{ ( 0 1 ) / 2,+ = +  ( 0 1 ) / 2− = − }. 
From eq. (6), 
 [1] [ ] [1] [ ]

1 1 1 1 1( , , ) ( , , )t t
m m m m mc a a c a a c a c a⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕  (10) 

is encoded using the bases 
 [1] [ ] [1] [ ]

1 1 1( , , ) ( , , ).t t
m m mb b b b b b⊕ ⊕ ⊕ ⊕ =  (11) 

(2) The sender sends the quantum state φ  to one of the receivers. Here, for simplicity of de-

scription, we assume that the receiver, R1, receives the quantum state φ . Whoever receives the 

quantum state φ  is unimportant, since for each Rj, 1,  ,  j t= , the quantum state φ  is un-

known and he cannot get the information of φ  without disturbing it since quantum no-cloning 
theorem ensures its security.  

2.4  Secret message recovery phase 

In this phase, the t receivers collaborate to recover the secret message. Here, we assume the t re-
ceivers are 1,  ,  tR R . For each 1,  ,  j t= , Rj has calculated [ ] [ ] [ ] [ ]

1 1 2( ,  ,  ,j j j jK a b a=  
[ ] [ ] [ ]

2 ,  ,  ,  )j j j
m mb a b  in the precomputation phase. Let [0]φ φ= , and R0 be the sender. 

(1) For each 1,  ,  j t= , jR receives the [ 1]jφ −
 from 1jR − . To check Trojan horse atta-        

ck[25－27], he measures the state [ 1]jφ −  with some photon number splitters (PNSs: 50/50) and some 
detectors. The measurements will at least have two outcomes if the quantum signal is a multiphoton 
one. Figure 1[26] is an example of a four-photon quantum signal as the fake signal. 

If the quantum signal is a single one, then he applies [ ]jW  to [ 1]jφ − . [ ]jW  is defined in eq. 
(12): 
 [ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1 2 2 ,j j j j j j j
m mW U V U V U V= ⊗ ⊗ ⊗  (12) 
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Figure 1  The measurements with the photon number splitters (PNS: 50/50) in the case that there are four photons in each sig-
nal[26]. 
 
where  
 [ ] [ ] [ ] [ ]( ),  ( ),j j j j

i i i iU U a V V b= =  (13) 

 

(1) 0 1 1 0 ,

(0) 0 0 1 1 ,
1 1(1) ( 0 1 ) 0 ( 0 1 ) 1 ,
2 2

(0) 0 0 | 1 1 .

yU i

U

V H

V

σ= = −

= +

= = + + −

= +

 (14) 

Rj then obtains [ ]jφ  by the unitary transformation 

 [ ] [ 1] [ ]: .j j jW φ φ− ⎯⎯→  (15) 

If ,j t<  Rj sends [ ]jφ  to 1jR + . Otherwise, he proceeds to step (2). 

(2) Rt measures [ ]tφ  on the basis of (0,  0,  ,  0)  and gets the secret message 

1 2( ,  ,  ,  )mc c c . 
(3) To check whether any dishonest receiver or eavesdropper is in line, the sender should insert 

some decoy particles 1eS  in the sequence before it is sent. The number of the particles in 1eS  is 
not required to be very large, but enough for the statistical analysis. As any eavesdropper or dis-
honest receiver does not know the information about K, he cannot decrypt φ . Only by comparing 

the results of measurement of 1eS  with the ones prepared by him can the sender judge whether any 

dishonest receiver or eavesdropper exists. If the error rate is lower than the threshold thε , the 
sender can judge that no dishonest receiver or eavesdropper is in line and the receivers can recover 
the secret message M with error correction methods. Otherwise, they start from the beginning.  

3  Security analysis 

Now we will analyze some possible cases: (1) intercept-resend attack; (2) individual cheating 
attack; (3) t-1-party cheating attack.  

(1) Intercept-resend attack 
The quantum state sent by the TTP is multi-qubit tensor product. Each qubit is randomly in one 
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of two conjugated bases. Without the information of bi, the eavesdropper cannot perform the cor-
rect unitary operation on each qubit. If he takes an intercept-resend attack, the probability of not 
being detected is (1/4)m. 

(2) Individual cheating attack 
The TTP sends the quantum state φ  to R1. Whoever receives the quantum state φ  is un-

important, since for each Rj, 1,  ,  j t= , the quantum state φ  is unknown and he cannot get the 

information of φ  without disturbing it since quantum no-cloning theorem ensures its security. 
Before R1 receives the quantum state sent by the TTP, Eve can take Trojan horse attack[29－31], i.e., 
he intercepts it and sends another multi-photon quantum state to R1. Eve expects to obtain R1’s 
secret operation information by measuring the quantum state operated by R1 with some photon 
number splitters (PNSs: 50/50) and some detectors. However his Trojan horse attack will be de-
tected by R1 in step (1) of secret message recovery phase. It is the similar case with the cheater 
being Rj 2,  ,  j t= . 

(3) (t-1)-party cheating attack 
Suppose a dishonest receiver Ri aims to find out another receiver Rj’s share and then to recover 

the secret message with other t-2 receivers. Ri prepares a fake signal and sends it to Rj. Then from 
the fake signal operated by Rj, Ri tries to gain Rj’s share. 

Without loss of generality, we assume that Rj does one of the four kinds of operations on every 
qubit with equal probability and that every single-qubit operation is independent. So it is sufficient 
to consider Ri’s eavesdropping on one qubit.  

Ri’s fake signal can be presented as 0 ( 0 1 ) 1 ( 0 1 )a b c dθ = + + + , where 2|a +  
2 2 2|| | | | | | 1.b c d+ + =  For simplicity, we regard every probability amplitude as a real number, but 

the security proof is fitted for plural number. Ri sends the first qubit to Rj and keeps the second one. 
Rj encodes his share by applying one of the four kinds of operations with equal probability. The 

state can be expressed by 
  

            

1 1 ( ) ( )
4 4

1 1( ) ( ) ( ) ( ).
4 4

w U I U I

V I V I UV I V U I

θ θ θ θ

θ θ θ θ

+

+ + +

= + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗
  

 (16)
 

The mutual information between Ri and Rj that can be extracted from this state is given by the 
von-Neumann entropy, ( , ) ( ( ))i j eI R R S Tr w≤ . In order to calculate the von-Neumann entropy, we 

need to calculate the eigenvalues of ( ),eTr w  which are the roots of the characteristic polynomial 

det( ( ) )eTr w Iλ− . 

 1,2
1 (1 2 2 ).
2

ab cdλ = + +  (17) 

So we have 
 1 2 1 2 2 2( , ) log log .i jI R R λ λ λ λ− −≤  (18) 
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For 1 2
1 ,
2

λ λ= =  ( , )i jI R R  reaches the maximal value 1 bit. So Ri can eavesdrop 1 bit of 2 bit 

operation information on one qubit. 
However, ( , )i jI R R  can also reach the maximal value when Ri prepares the legal qubit, namely 

the options of the values of , , ,a b c d  meet the condition 0.ab cd+ =  Due to the large number of 
the options of , , ,a b c d  meeting the above condition, the values of , , ,a b c d  are not set forth here. 
So Ri cannot gain more information by sending a fake signal than by sending a legal signal. Ri’s 
eavesdropping will introduce errors and be detected in step (3) of secret message recovery phase. 

4  Conclusion 

In this paper, for the first time, we present a t-out-of-n TQSDC scheme. Similar to the classical 
Shamir’s secret sharing scheme, the sender makes n shares, 1,  ,  nS S  of secret key K and each 
receiver keeps a share secretly. If the sender wants to send a secret message M to the receivers, he 
encodes the information of K and M on a single photon sequence and sends it to one of the receivers. 
According to the secret shares, the t receivers sequentially perform the corresponding unitary op-
erations on the single photon sequence and obtain the secret message M. We discuss that our pro-
tocol is feasible with current technology. 

It has three main features: (1) there is no need to prepare any entanglement; (2) the shared shares 
are classical; (3) the shared shares are reusable if it can be judged that there is no eavesdropper in 
line. 
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