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Abstract  The problem of deducing one-dimensional theory from two-dimensional the-
ory for a homogeneous isotropic beam is investigated. Based on elasticity theory, the re-
fined theory of rectangular beams is derived by using Papkovich-Neuber solution and 
Lur’e method without ad hoc assumptions. It is shown that the displacements and stresses 
of the beam can be represented by the angle of rotation and the deflection of the neutral 
surface. Based on the refined beam theory, the exact equations for the beam without 
transverse surface loadings are derived and consist of two governing differential equations: 
the fourth-order equation and the transcendental equation. The approximate equations for 
the beam under transverse loadings are derived directly from the refined beam theory and 
are almost the same as the governing equations of Timoshenko beam theory. In two ex-
amples, it is shown that the new theory provides better results than Levinson’s beam the-
ory when compared with those obtained from the linear theory of elasticity. 

Keywords: deep rectangular beams, the refined theory, Papkovich-Neuber solution, Lur’e method, governing 
equation. 

The beam theory has been studied for many years. In the early eighteenth century, 
Bernoulli and Euler presented the classical beam theory, and Timoshenko[1] introduced 
the shear theory of beams, then Cowper[2] gave the shear coefficients. Since then, more 
and more work on the subject has been done by the following researchers, i.e., Levin-
son[3], Bickford[4], Tutek and Aganović[5], Lewiński[6], Fan and Widera[7], Tullini and Sa-
voia[8]. 

Cheng[9] gave a refined plate theory from Boussinesq-Galerkin elasticity solution and 
Lur’e method[10] without ad hoc assumptions. The refined plate theory consists of three 
parts: the biharmonic equation, the shear equation and the transcendental equation. Peo- 
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ple may doubt the legitimacy of manipulations performed on differential operators in the 
derivation; however, the final results obtained by his method can be justified by the sat-
isfaction of all equations in the three-dimensional theory of elasticity. The only approxi-
mation in Cheng’s plate theory is due to the approximate specification of boundary con-
ditions at the edges of plates; therefore, regarding Saint-Venant’s principle, Cheng’s the-
ory is a very accurate one. 

A parallel development of Cheng’s theory by Barrett and Ellis[11] has been obtained for 
the isotropic plates under transverse surface loadings (only homogeneous cases are con-
sidered in the previous works). The paper also presents a detailed discussion on the 
specification of boundary conditions in light of the work of Gregory and Wan[12,13]. Their 
work actually indicates that various approximate theories for plates subjected to surface 
loadings can be developed directly from the three-dimensional theory of elasticity.  

Wang and Shi[14] derived a new thick plate theory by using Papkovich-Neuber solution 
and Lur’e method[10] without ad hoc assumptions, and derived the shear theory of plates 
from the refined plate theory. Moreover, from the nonuniqueness of Papkovich-Neuber 
solution, a rigorous proof was given: the deformation of bending plates may be described 
by three generalized displacements on the neutral surface of the plate without loss in 
generality. Yin and Wang[15] extended it for the transversely isotropic plates by using 
Elliott-Lodge solution. Xu and Wang[16] applied the results[14] to the problem of a trans-
versely isotropic piezoelectric plate, and derived approximate equations for the plate un-
der transverse loadings. Recently, several extensions have been found in the rectangular 
beam problems of magnetoelastic beams[17], thermoelastic beams[18] and piezoelectric 
beams1), and the refined theory of beams in the coupling fields has been obtained. More-
over, the exact equations for the beam without transverse surface loadings and the ap-
proximate equations for the beam under transverse loadings are derived from the refined 
beam theory, respectively.  

This paper presents the theory for a deep beam of rectangular cross-section by using 
the plate method developed by Wang and Shi[14]. In the next section, based on elasticity 
theory, the refined theory of rectangular beams is derived by using Papkovich-Neuber 
solution and Lur’e method without ad hoc assumptions. In sec. 2, based on the refined 
beam theory, the exact equations for the beam without transverse surface loadings consist 
of two governing differential equations: the fourth-order equation and the transcendental 
equation. The approximate equations for the beam under transverse loadings are derived 
directly from the refined beam theory in sec. 3, and they are almost the same as the gov-
erning equations of Timoshenko beam theory[19]. In the end, two examples are examined 
to illustrate the application of the new theory and compare the results with the known 
exact and approximate beam theories. 

The method used in this paper is obtained by extending our previous work: Wang and 
Xu[20], Wang and Wang[21,22]. 
 

                          
1) Gao Y, Wang M Z. The refined theory of transversely isotropic piezoelectric rectangular beams. Sci China Ser  
G-Phys, Mech & Astro (accepted)
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1  Lur’e method 

We consider a straight beam of narrow rectangular cross-section as a plane stress 
problem. In a fixed rectangular coordinate system, z is the coordinate normal to the neu-
tral surface (x-y plane) of the beam. We assume that the beam length in x-direction is l, 
the beam width in y-direction is 1, the beam height in z-direction is h, and l » h » 1. In the 
absence of body force, the equilibrium equations of elasticity plane stress problem ex-
pressed by displacement xu  and  are zu

2 21 10,   0,
1 1x zu u

x z
ν θ ν
ν ν

θ+ ∂ + ∂
∇ + = ∇ +

− ∂ − ∂
=                (1) 

where 2 2 2 2 2x z∇ = ∂ ∂ + ∂ ∂ is a two-dimensional Laplacian operator; xu xθ = ∂ ∂ +  

zu z∂ ∂ ; ν  is Poisson’s ratio. 
Papkovich-Neuber solution of the governing eq. (1) can be obtained as 

( ) (1 0 1 3 3 0 1
1 1,   ,

4 4x zu P P xP zP u P P xP zP
x z

)3
ν ν+ ∂ + ∂

= − + + = − + +
∂ ∂

       (2) 

where the displacement function ( )0,1,3iP i =  is a two-dimensional harmonic function 
and satisfies 

2
2 2

2 0    0,1,3;   .i
i x i x

PP P i
xz

∂ ∂⎛∇ = + ∂ = = ∂ =⎜
⎞
⎟∂∂ ⎝ ⎠

               (3) 

The problem of beam may be decomposed into two fundamental problems: the exten-
sion of a beam and the bending of a beam. In the case of bending of a beam, the beam is 
subjected only to anti-symmetrical loadings and edge conditions, thus only odd functions 
of z are required for xu  and even functions of z for . From the Lur’e method and 
with these requirements satisfied, treating eq. (3) as an ordinary differential equation in z 
with constant coefficients, one obtains the following symbolic solution of eq. (3): 

zu

1 1 3
sin( )( , ) ( ),  ( , ) cos( ) ( ),x

x
x

z
3P x z g x P x z z g x∂

= =
∂

∂             (4) 

where 1g  and 3g  are unknown functions of x  yet to be determined, in which the 

trigonometric functions sin( )x xz∂ ∂  and ( )cos xz∂  have the following symbolic ex-
pressions: 

2 2 4 4

2 2 4 4

sin( ) 1 11 ,
3! 5!

1 1cos( ) 1 .
2! 4!

x
x x

x

x x x

z z z z

z z z

∂ ⎛ ⎞= − ∂ + ∂ −⎜ ⎟∂ ⎝

⎛ ⎞∂ = − ∂ + ∂ −⎜ ⎟
⎝ ⎠

⎠                   (5) 

From Appendix A of ref. [14], we can know that harmonic function 0P  always can 
satisfy the following expression without loss in generality: 

0 1 3 cos( ) ( ),xP xP zP z z f x+ + = − ∂                    (6) 
where 

1 30
( ) ( )d ( ).

x
f x g t t g x= −∫                       (7) 
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Substituting eqs. (4) and (6) into eq. (2), one obtains 

[ ]

1

3

sin( ) 1 cos( ) ,
4

1cos( ) cos( ) sin( ) ,
4

x
x x

x

z x x x x

zu g z z f

u z g z z z

ν

ν f

∂ + ′= + ∂
∂

+
= ∂ + ∂ − ∂ ∂

        (8) 

where the differential symbol “ ' ” denotes differentiation with respect to x. The angle of 
rotation and the deflection of the neutral surface can be found to be 

1 30
0

1 1,   .
4 4

x
z z

z

u g f w u g f
z

ν νψ
=

=

∂ + +⎛ ⎞′= − = − + = = +⎜ ⎟∂ ⎝ ⎠
         (9) 

From eqs. (9) and (8) , the final expressions for the displacements are 
sin( ) sin( )1 cos( ) ,

4
1cos( ) sin( ) ,

4

x x
x x

x x

z x x x

z zu z z

u z w z z f

νψ

ν

f
⎡ ⎤∂ ∂+ ′= − + ∂ −⎢ ⎥∂ ∂⎣ ⎦

+
= ∂ − ∂ ∂

          (10) 

with the expression 

( )
0

( ) d ( ) .
x

f x t t wψ x⎡ ⎤= − +⎢ ⎥⎣ ⎦∫        (11) 

Eq. (10) is the displacement expressions by the angle of rotation of the neutral surface 
ψ  and the deflection of the neutral surface . w

2  Exact beam equations: No transverse surface loadings 

In order to satisfy the homogeneous boundary conditions on the upper and lower sur-
faces of the beam, we set 

0,  0  ( 2).z xz z hσ τ= = = ±                     (12) 
Using Hooke’s law, from eq. (10) the stress components xσ , xzτ  and zσ  can be 

indicated as 

sin( ) sin( )1 4cos( ) ,
4 1 1

1cos( )( ) sin( ) ,
2

sin( ) sin( )1 4cos( ) ,
4 1 1

x x
x x

x x

xz x x x

x x
z x

x x

z zE z z f

z w z z f

z zE z z f w

νσ ψ
ν ν

ντ μ ψ

νσ
ν ν

⎧ ⎫⎡ ⎤∂ ∂−⎪ ⎪′′ ′= − − ∂ +⎨ ⎬⎢ ⎥+ ∂ + ∂⎪ ⎪⎣ ⎦⎩ ⎭
+⎡ ⎤′ ′= − ∂ − + ∂ ∂⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤∂ ∂−⎪ ⎪′′ ′= − + ∂ + ′⎨ ⎬⎢ ⎥+ ∂ + ∂⎪ ⎪⎣ ⎦⎩ ⎭

       (13) 

where  and E ( )2 1Eμ ν= +  are the Young’s modulus and the shear modulus of the 
beam, respectively. Substituting the stress expressions in eq. (13) into the boundary con-
ditions (12) of the beam, we get the following matrix equation expressed by ψ  and : w

2 2
1 2 1 2

2 2
3 2 3

( ) 0
.4 0

(1 )

x x x

x x x

D D D D

wD D D
h

ψ

ν

⎡ ⎤− ∂ − + ∂ ∂
⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥∂ − ∂ + ∂ ⎣ ⎦ ⎣ ⎦⎢ ⎥+⎣ ⎦

          (14) 
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The three differential operators 1D , 2D  and 3D  are defined by 

1 2

3

4 cos ,   sin ,
1 2 2

1 1cos sin .
2 2 1 2

x x

x

x x

x

h hhD D

h hhD

ν
ν
ν

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ ∂⎝ ⎠ ⎝ ⎠
∂ ∂−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟+ ∂⎝ ⎠ ⎝ ⎠

                 (15) 

Let  be the determinant of the 0L 2 2×  matrix equation (14),  

4
0 2

sin( )4 1 1
1

x ,x
xx

hhL
hν

⎧ ⎫⎡ ⎤∂⎪ ⎪= −⎨ ⎢ ⎥+ ∂∂⎪ ⎪⎣ ⎦⎩ ⎭
∂⎬

)

                    (16) 

and  be the elements of the matrix equation (14). The solutions of eq. (14) 

are 

( , 1,2ijL i j =

22 12 1

21 11 2
,

L L
L Lw

ξψ
ξ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                       (17) 

and iξ  satisfies 

0 0  ( 1,2).iL iξ = =                          (18) 
In Appendix A, it is proved that the solutions of eq. (18) can be decomposed into two 

parts, so there are two functions ( )1
iξ  and ( )2

iξ , 
(1) (2)     ( 1,2),i i i iξ ξ ξ= + =                         (19) 

where the superscripts “ ” and “(2)” indicate the fourth-order part and the transcen-

dental part respectively, and 

(1)
(1)
iξ and (2)

iξ  satisfy the following two governing differen-
tial equations of the beam problem, respectively: 

( )4 (1) (2)
2

sin10,   1 0,x
x i i

xx

h
h

ξ
∂⎡ ⎤

ξ∂ = −⎢ ⎥∂∂ ⎣ ⎦
=                  (20) 

then the angle of rotation and the deflection of the beam can be decomposed into two 
parts:  

(1) (2) (1) (2),   .w w wψ ψ ψ= + = +                    (21) 
The solutions of eq. (21) will be investigated in the following two sections. 

2.1  The fourth-order equation and the fourth-order solution 

(1)
iξ  satisfies the following fourth-order equation: 

4 (1) 0,x iξ∂ =                            (22) 

and the solutions of the angle of rotation (1)ψ  and the deflection  become (1)w
(1)(1)

22 12 1
(1)(1)

21 11 2

.
L L
L Lw

ξψ

ξ

⎡ ⎤⎡ ⎤ −⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                    (23) 

By using eqs. (22), (23) and Taylor series of the trigonometric functions (5), after te-
dious manipulation, the result turns out to be 
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(1) 2 2 (1)11
4 x xh wνψ +⎛ ⎞= + ∂ ∂⎜ ⎟

⎝ ⎠
,                    (24) 

where 
4 (1) 0xw∂ = ;                           (25) 

and from eq. (10), the total displacements can be found to be 
2

(1) 2 2 2 2 (1) (1) 2 2 (1)
2

1 11 3 2 ,   1
6 12 2x x x x z x

zu z z h w u z w
h

ν ν⎡ ⎤⎛ ⎞+ ⎛ ⎞= − ∂ − ∂ + ∂ − = + ∂⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

;   (26) 

the normal stress and shear stress can be found to be 

( ) ( )( )(1) (1) (1) 2 2 (1) (1),   4 ,   0.
8x xz
EEz w h z wσ τ′′ ′′′

zσ= − = − − =         (27) 

Calculating moment and shear force for the present case yields 

( ) ( )(1) (1) (1) (1),   ,x xM D w Q D w′′ ′′′= − = −                 (28) 

where 3 12D Eh=  is the flexural rigidity of beam. 

By the same arguments made in Cheng[9], eqs. (26)－(28) constitute a first-order re-
fined theory for the bending beams with the differential governing equation (25), which 
can satisfy two edge conditions along the boundary of beams and coincide with the cor-
responding expressions of the classical elasticity. Unlike the customary beam theory, all 
the fundamental equations of the refined beam theory are deduced directly. 

2.2  The transcendental equation and the transcendental solution 

(2)
iξ  satisfies the following transcendental equation: 

(2)
2

sin( )1 1 x
i

xx

h
h

ξ
⎡ ⎤∂ 0,− =⎢ ⎥∂∂ ⎣ ⎦

            (29) 

and the solutions of the angle of rotation (2)ψ  and the deflection  become (2)w
( )

( )

( )

( )

22
22 12 1

22
21 11 2

.
L L
L Lw

ξψ

ξ

⎡ ⎤⎡ ⎤ −⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                    (30) 

Substituting eq. (30) into the displacement and stress expressions (10) and (13) respec-
tively, one obtains the following expressions: 

( ) ( )
2 3 2 3

(2) (2)
2 3 2 2

1 11 ,   1x z
m nu u

E E
,

x x x
Φ Φν ν

x z
⎡ ⎤ ⎡∂ ∂ ∂ ∂

= − + = − +
⎤

⎢ ⎥ ⎢ ⎥
∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

      (31) 

( ) ( ) ( )
4 4

2 2 2
2 2 3 4,     ,     ,x xz z

4

x z x z x
Φ Φ Φσ τ σ∂ ∂

= = − =
∂ ∂ ∂ ∂ ∂

∂                   (32) 

where the functions  and  are conjugate harmonic function, and satisfy ( , )m x z ( , )n x z

2m n
x z

Φ.∂ ∂
= = ∇

∂ ∂
                        (33) 

Furthermore, the function ( , )x zΦ  has the following expression: 
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( ) ( )

( )

( )

(2)
12

(2)
22

4 2 4 1cos sin sin cos
1 2 1 2

sin( )             2cos sin sin
2 2

1             2 cos cos ,
2

x x
x x

x

x x x
x

x

x
x

x

h hh z z z
E

h z hh z

hz z

Φ ξ
ν ν

ξ

∂ ∂⎡ ⎤⎛ ⎞ ⎛ ⎞− = − ∂ + ∂⎜ ⎟ ⎜ ⎟⎢ ⎥+ + ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − ∂⎢ ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣
∂ ⎤⎛ ⎞− ∂⎜ ⎟ ⎥ ∂⎝ ⎠ ⎦

(34) 

and  satisfies the following equations: Φ
2 2 0,Φ∇ ∇ =                                     (35) 

( )0,   0    2 .z z hΦ Φ= ∂ ∂ = = ±                     (36) 
Therefore, the moment and shear force are 

(2) (2)0,   0.x xM Q= =                         (37) 
Eq. (37) shows that the transcendental solution does not yield moment and shear force 

which are yielded only from the fourth-order solution. Eqs. (31), (32) and (37) satisfy 
two edge conditions along the boundary of beams, and yet satisfy exactly all the funda-
mental equations in the theory of elasticity. 

Combining the fourth-order solution of eqs. (26)―(28) and the transcendental solution 
of eqs. (31), (32) and (37), we arrive at a second-order refined theory for the bending 
beams with the two differential governing equations (25) and (35). It is important to note 
that the equilibrium equation (1) is satisfied by any solution of the refined beam theory, 
and the only approximation in the theory is introduced by the approximate specification 
of the boundary conditions at the edges of the beam (i.e. the boundary conditions are 
specified in terms of the stress resultants or some combination of the angle of rotation 
and the deflection of the neutral surface, instead of the stress or displacement distribution 
over the thickness −h/2≤z≤h/2). Therefore, in the cases where Saint-Venant’s principle 
holds, the refined beam theory should be a very accurate one. 

3  Approximate beam equations: Transverse surface loadings  

Now let us consider the case that the beam is subjected only to the transverse surface 
loadings, i.e. 

0,   2     ( 2).xz z q z hτ σ= = ± = ±                    (38) 
There are various beam theories. Bernoulli-Euler beam theory and Timoshenko beam 

theory are the most famous two among them. The governing equation of Bernoulli-Euler 
beam theory[19] is 

.Dw q′′′′ =                              (39) 
The governing equations of Timoshenko beam theory[19] are 

2 21 111
5 60 x ,Dw ν h q⎡ ⎤⎛ ⎞′′′′ = − + ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                    (40) 

.D qψ ′′′ =                                       (41) 
Now the governing equations of the refined beam theory will be derived. Substituting 

the stress expressions in eq. (13) into the boundary conditions (38) of the beam, we get 
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the following equations expressed by ψ  and : w
2 2

1 2 1 2

2
3 2 3

( ) ( )

4 .
(1 )

x x x

x x

D D D D w 0,

2D D D w q
h E

ψ

ψ
ν

− ∂ − + ∂ ∂ =

⎡ ⎤
∂ − − ∂ =⎢ ⎥+⎣ ⎦

                (42) 

Taking the operator 2
1 2 xD D− ∂  on both sides of the second expression of eq. (42) and 

then using the first expression of eq. (42), one obtains 

2 2 2
1 3 1 2 2 1 2

4 4 22 (
(1 ) (1 ) x x ) .D D D D D w D D

h h Eν ν
⎡ ⎤ ′′− + ∂ = −⎢ ⎥+ +⎣ ⎦

q∂       (43) 

Substitutions of eq. (15) into (43) and the first expression of eq. (42) give 
sin( ) 11 cos sin

2 2 4
x x

x
x

h h hEh w h
h

ν⎡ ⎤∂ ∂ ∂ ,
2

x q⎡ ⎤+⎛ ⎞ ⎛ ⎞′′− = − ∂⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
                (44) 

1 1cos sin cos sin .
2 4 2 2 4 2

x x x
x x

h h h hh hν νψ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ∂ = + ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
x

xw   (45) 

Eq. (44) is the exact governing equation for the deflection  at the neutral surface of 
the beam subjected to the transverse surface loadings. Since this equation is of infinite 
order, however, it is not applicable in most cases. Using Taylor series of the trigonomet-
ric functions in eq. (5) and then dropping all the terms associated with  or the higher 
orders, we arrive at the following equations: 

w

4h

2 2 2 21 21 1
20 8x ,xD h w h qν+⎛ ⎞ ⎛′′′′− ∂ = − ∂⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎞
⎟
⎠

              (46) 

2 2 2 221 1
8 8xh hν νψ+⎛ ⎞ ⎛− ∂ = + ∂ ∂⎜ ⎟ ⎜

⎝ ⎠ ⎝
.x xw⎞

⎟
⎠

20 / 8

               (47) 

Taking the operators  and  on both sides of eqs. (46) and 

(47) respectively, and then omitting the  order terms, one obtains 

2 21 /xh+ ∂ 2 21 (2 )xh ν+ ∂ +
4h

2 21 11
5 8 x ,Dw ν h q⎡ ⎤⎛ ⎞′′′′ = − + ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                  (48) 

2 21 11
20 8 x .D h qψ ν⎡ ⎤⎛ ⎞′′′ = + + ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                  (49) 

Eqs. (48) and (49) form the basic equations for an approximate first-order theory for 
the bending of the beam. Eqs. (48) and (49) are almost the same as the governing equa-
tions of Timoshenko beam theory (40) and (41). With the  order term omitted, the go- 
verning equation (48) has the same structure as that of Bernoulli-Euler beam theory (39).  

2h

From eqs. (48) and (49), the expressions about the displacements, stresses and stress 
resultants become 

2 2 2 2
3

2 2 2 2
4

2 5 21 ,
40 6

1 8 51 ,
40 2

x x
x

z x
x

zu h
D

u h z
D

ν ν

ν ν

+ +⎛ ⎞= − + ∂ − ∂⎜ ⎟∂ ⎝ ⎠

+⎛ ⎞= − ∂ + ∂⎜ ⎟∂ ⎝ ⎠

x

x

z q

q
             (50) 
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2 2 2 2
2 2

2

2 2

12 1 11 ,
20 3

3 31 4 ,     2 ,
2 2

x x x
x

xz z
x

z h z q
hh

z z zq q
h hh h

σ

τ σ

⎛ ⎞= − + ∂ − ∂⎜ ⎟∂ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − − = −⎜ ⎟ ⎜ ⎟

∂ ⎝ ⎠ ⎝ ⎠

2

 

           (51) 

,     .x xM q Q q′′ ′= − = −                                 (52) 
Clearly, even if people doubt the legitimacy of the manipulation performed on differen-
tial operators, the beam equations obtained above can be justified by comparing their 
forms with the forms of the corresponding equations in other well-known beam theories. 

4  Examples and comparison  

Dropping all the terms associated with  or the higher orders in eq. (42), we arrive 
at the following equations: 

4h

[ ]
2 2 2(1(2 ) 0,   ( ) .

8 3
hw w w

Eh
νψ ν ψ ν ψ +′ ′′ ′′′ ′ ′′− − + + = − =

) q         (53) 

According to the stress expressions in eq. (13), omitting all the terms associated with 
 or the higher orders, one obtains the expressions of the moment and shear force as 4h

(2 5 ) 8 5 2,   ( ).
10(1 ) 2 5 3x x
DM w Q h w

v
ν ν ψ μ

ν
+ +⎛ ⎞′ ′′ ′= − + = − −⎜ ⎟+ +⎝ ⎠

ψ          (54) 

Fan and Widera[23] employed the asymptotic expansion approach, and derived the 
proper new boundary conditions of a beam for the outer expansion without a considera-
tion of the inner solution by adopting Gregory and Wan’s technique[12,13]. It is interesting 
to note that the new boundary conditions in the stress data case are consistent with the 
conventional boundary conditions[24]. To illustrate the applications of the refined beam 
theory developed in the previous sections, we present the following two typical examples 
by using the boundary conditions given by Fan and Widera[23]. Results for the examples 
are given for both the new theory and Levinson’s beam theory, and are compared with 
the well-known exact solutions and the solutions by Levinson[3]. 

4.1  The uniformly loaded cantilever beam 

Considering a cantilever beam of uniform cross-section loaded by a uniformly distrib-
uted load of intensity 0q q=  and clamped at x l= , where  is a constant. For the 
present theory, the boundary conditions are 

0q

[ ]8 5 2(0) (0) 0,   (0) (0) 0,     ( ) ( ) 0.
2 5 3

w h w w l lν ψ μ ψ
ν

+ ′ ′′ ′ ψ+ = − − = = =
+

    (55) 

From eqs. (53) and (55), the solution for the deflection curve of the neutral surface is 
4 44 2 2

0 0
4 2 2

5 54 3 2 1 1 1
24 20 4 2
q l q l .x x h xw

EI l EI ll l l
ν ν x⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛= − + + + − + + − ⎞

⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜
⎝ ⎠ ⎝ ⎠⎝

⎟
⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  (56) 

Whereas the theory of Levinson solution[3] is 
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4 44 2 2
0 0

4 2 24 3 (2 2 ) 1 (1 ) 1
24 20
q l q l .x x h xw

EI l EI ll l l
ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + + − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

x     (57) 

The solution of eq. (56) based on the refined theory is the exact solution of elasticity 
theory[24] and is the same as the solution by Levinson[3] if 0ν = . 

4.2  The linear loaded and simply supported beam 

The other example is a beam of uniform cross-section which carries a linear distrib-
uted load 0( )q x q x=  and is simply supported at x l= ± . For the new theory, the 
boundary conditions are 

8 5 ( ) ( ) 0,   ( ) 0.
2 5

l w l w lν ψ
ν

+ ′ ′′± + ± = ± =
+

                (58) 

From eqs. (53) and (58), the solution for the deflection curve of the neutral surface is 
5 55 3 2 3

0 0
5 3 2 3

5( ) 3 10 7 1 .
360 8 30
q l q lx x x h x xw x

EI l EI ll l l l
ν

⎛ ⎞ ⎛⎛ ⎞= − + + + −⎜ ⎟ ⎜⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

      (59) 

Whereas the theory of Levinson solution[3] is 
5 55 3 2 3

0 0
5 3 2 3( ) 3 10 7 (1 ) .

360 30
q l q lx x x h x xw x

EI l EI ll l l l
ν

⎛ ⎞ ⎛
= − + + + −⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

       (60) 

The solution of eq. (59) based on the refined theory is the exact solution of elasticity 
theory[24]. From eqs. (59) and (60), for this problem both of the beam theories equally 
overestimate the “shear correction” term at the center of the beam less than  if 0≤
ν ≤0.5. 

14%

For the above-mentioned two cases, eqs. (56) and (59) that we give from the refined 
theory are the exact solutions for the neutral surface given for the case of plane stress by 
the linear theory of elasticity[24]. The refined theory provides the better results than Lev-
inson’s beam theory when compared with those obtained from the linear theory of elas-
ticity. 

5  Conclusions 

In the above sections, a refined theory for rectangular beam has been deduced system-
atically and directly from the elasticity theory by using Papkovich-Neuber solution and 
Lur’e method without ad hoc assumptions. For the homogenous beam, the refined beam 
theory is exact in the sense that a solution of the refined beam theory satisfies all the 
equations in the elasticity theory and consists of two parts: the fourth-order equation and 
the transcendental equation. Especially, the distribution of stresses described by the 
fourth-order equation is the same as that of stresses in the classical elasticity. For the 
beam under a transverse loading, the approximate governing equations and solutions are 
accurate up to the second-order terms with respect to beam thickness, and they are almost 
the same as the governing equations of Timoshenko beam theory. Furthermore, the two 
examples studied also indicate that the refined beam theory for the loaded beams can still 
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be justified by comparing its form with that of other well-known beam theories. There-
fore, in these cases where Saint-Venant’s principle holds, the refined beam theory should 
be a very accurate one. 
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Appendix A 

The method used in this appendix is obtained by extending the previous work[25]. Next, 
we will give and prove a lemma and a theorem. 

A.1  The lemma 

Supposing that  satisfies ( )H x

2
sin( )1 1 x

xx

h H
h

⎡ ⎤∂ 0,− =⎢ ⎥∂∂ ⎣ ⎦
                     (A1) 

then there exists function  which satisfies the following two equations: ( )B x

4
2

sin( )1,   1 0.x
x

xx

hB H B
h

⎡ ⎤∂
∂ = −⎢ ⎥∂∂ ⎣ ⎦

=                  (A2) 

Proof: Assume function , which satisfies the following equation, can be found: ( )C x
2 .xC H∂ =                             (A3) 

We can obtain the following equation: 

2
2 2

sin( ) sin( )1 11 1x x
x

x xx x

h hC
h h

⎡ ⎤ ⎡ ⎤∂ ∂ 0.H∂ − = −⎢ ⎥ ⎢ ⎥∂ ∂∂ ∂⎣ ⎦ ⎣ ⎦
=            (A4) 

Set 

1 2 2
sin6 1 1 x

xx

hB C C
hh

.
⎡ ⎤∂

= − −⎢ ⎥∂∂ ⎣ ⎦

( )                  (A5) 

Using eqs. (A3) and (A4), we can get 
2 2

1 .x xB C H∂ = ∂ =                          (A6) 
After tedious manipulation by using eqs. (A4) and (A5), the result turns out to be 

12
sin( )1 1 x

xx

h B
h

⎡ ⎤∂
−⎢ ⎥∂∂ ⎣ ⎦

0.=                    (A7) 

Because  and  satisfy the same equation,  can be used instead of 

. Repeating eqs. (A3)―(A7), we can obtain  as 
1( )B x ( )H x 1( )B x

( )H x ( )B x

2
1 2

sin( )1,   1 0.x
x

xx

hB B B
h

⎡ ⎤∂
∂ = − =⎢ ⎥∂∂ ⎣ ⎦

               (A8) 

From eqs. (A6) and (A8), it is not difficult to verify that ( )B x  satisfies eq. (A2). So 
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the proof of the lemma is finished. 
A.2  The theorem 

Supposing that ξ  satisfies the following equation: 

4
2

sin( )1 1 x
x

xx

h
h

ξ
⎧ ⎫⎡ ⎤∂⎪ ⎪ 0,− ∂ =⎨ ⎬⎢ ⎥∂∂⎪ ⎪⎣ ⎦⎩ ⎭

                (A9) 

then there exist (1)ξ  and (2)ξ  such that 
(1) (2) ,ξ ξ ξ= +                        (A10) 

satisfying the following two equations: 
( )4 (1) (2)

2

sin10,   1 0.x
x

xx

h
h

ξ
∂⎡ ⎤

ξ∂ = −⎢ ⎥∂∂ ⎣ ⎦
=              (A11) 

Proof: Let 
4 ,xF ξ= ∂                          (A12) 

then 

2
sin( )1 1 x

xx

h F
h

⎡ ⎤∂
−⎢ ⎥∂∂ ⎣ ⎦

0.=                  (A13) 

According to the lemma, there exists (2)ξ  such that 

4 (2) (2)
2

sin( )1,  1 0.x
x

xx

hF
h

ξ
⎡ ⎤∂ ξ∂ = −⎢ ⎥∂∂ ⎣ ⎦

=

x

             (A14) 

From eq. (A12) and the first equation of eq. (A14), we get 
4 (2) 4 ,x Fξ ξ∂ = = ∂                      (A15) 

namely, 

( )4 (2) 0.x ξ ξ∂ − =                        (A16) 

Let 
(1) (2) .ξ ξ ξ= −                       (A17) 

Eq. (A16) becomes the first equation of eq. (A11), so there are functions (1)ξ  and (2)ξ  
which satisfy eq. (A11). This completes the proof of the theorem.  
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