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Abstract Currently, a decision tree is the most commonly used data mining algorithm for classification

tasks. While a significant number of studies have investigated privacy-preserving decision trees, the methods

proposed in these studies often have shortcomings in terms of data privacy breach or efficiency. Additionally,

these methods typically only apply to symmetric frameworks, which consist of two or more parties with equal

privilege, and are not suitable for asymmetric scenarios where parties have unequal privilege. In this paper,

we propose SecureCART, a three-party privacy-preserving decision tree training scheme with a privileged

party. We adopt the existing pMPL framework and design novel secure interactive protocols for division,

comparison, and asymmetric multiplication. Compared to similar schemes, our division protocol is 93.5–

560.4× faster, with the communication overhead reduced by over 90%; further, our multiplication protocol

is approximately 1.5× faster, with the communication overhead reduced by around 20%. Our comparison

protocol based on function secret sharing maintains good performance when adapted to pMPL. Based on

the proposed secure protocols, we implement SecureCART in C++ and analyze its performance using three

real-world datasets in both LAN and WAN environments. he experimental results indicate that SecureCART

is significantly faster than similar schemes proposed in past studies, and that the loss of accuracy while using

SecureCART remains within an acceptable range.

Keywords privacy protection, decision trees, secure multi-party computation, secret sharing, privileged

party

1 Introduction

It is observed that a significant number of studies have explored privacy-preserving data mining (PPDM).
Decision trees, as one of the most popular data mining algorithms, have gained widespread acclaim for
their ability to process a wide range of tasks in machine learning and data analysis. The training of
decision trees, similar to that of other data mining algorithms, requires a large number of datasets
that are often owned by different organizations, such as government agencies, corporations, and so on,
that may have different levels of hierarchy and authority. Due to regulatory requirements as well as
associated individuals’ inclinations, these organizations do not allow the use of their confidential raw
data for interactions with other parties. Hence, they need to adopt secure multi-party learning (MPL)
protocols for privacy-preserving decision tree training.

The majority of currently used MPL frameworks [1–4] are designed considering multiple parties having
the same privileges. These frameworks are generally efficient, robust, and can tolerate the appearance
of malicious parties or the withdrawal of parties. However, they cannot make distinctions regarding
participant privileges. Therefore, in this paper, we propose a privacy-preserving scheme for decision tree
training based on the recently proposed pMPL framework [5], that can be used in scenarios involving a
privileged party.
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Figure 1 (Color online) Example scenario.

In the pMPL framework, parties are divided as follows: the privileged party and assistant parties, each
with different functionalities. Consider the scenario in Figure 1 as an example. The testing agency is a
government department with a supervisory function, and the companies work as data providers for the
testing agency. The testing agency aims to complete decision tree training based on its own dataset and
the dataset owned by the companies. According to the pMPL framework, the testing agency is regarded
as a privileged party, that usually acts as the initiator of the machine learning task, with the privilege of
obtaining the final training results, while the companies are regarded as assistant parties; during training,
these companies are allowed to drop out or collude with each other. Parties secret-share their raw data,
and interact with each other using secure shares.

Although pMPL can fulfill the requirements of our scenario, its building blocks are insufficient to
complete privacy-preserving decision tree training. For example, the division operation for calculating
the Gini impurity and the comparison operation for comparing the Gini impurity in the decision tree
training algorithm are not provided in [5]. Therefore, in this study, we first focus on the design of
new building blocks that ensure privacy and efficiency during decision tree training. The main challenge
during the design of these blocks is that division protocols aiming for high precision often involve complex
processes and have lower efficiency, whereas more efficient division protocols may sacrifice precision.
Hence, balancing the extent of efficiency and precision is a critical consideration. Moreover, the recently
proposed comparison protocols [6, 7] based on function secret sharing (FSS) have demonstrated good
performance, but designing an FSS-based comparison protocol adapted to the unique framework of pMPL

is a challenging task. However, the design of new building blocks overcomes these challenges, and we
ensure both efficiency and data security when implementing a pMPL-based privacy-preserving decision
tree training method.

1.1 Our contributions

In this paper, we develop new building blocks considering the pMPL framework. Subsequently, we design
a privacy-preserving decision tree training scheme based on these blocks. The key contributions of this
paper are listed below.

• We design several novel protocols for basic operations for the pMPL framework, including secure
division, secure comparison and secure asymmetric multiplication; these protocols show significant per-
formance improvement as compared to the existing protocols.

• We propose SecureCART, a privacy-preserving decision tree training scheme with a privileged party
by combining the designed building blocks of pMPL, that ensures security against semi-honest adversaries
while maintaining efficiency and robustness.

•We perform experiments on various datasets and compare SecureCART with similar schemes proposed
in past studies. The results provide strong evidence of the efficiency of SecureCART.
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1.2 Paper organization

The remainder of this paper is structured as follows. Section 2 discusses the relevant works. Section 3
provides a concise overview to the preliminaries. Section 4 outlines the system model and threat model,
and also explains our design goals. Sections 5 and 6 include the design details of building blocks and their
implementation to realize a multi-party privacy-preserving decision tree training scheme with a privileged
party. The complete implementation and performance evaluation results of the proposed protocols and
model are given in Section 7. Finally, Section 8 presents the conclusion and provides insights for further
research.

2 Related work

Studies on privacy protection for decision trees typically focus on processes such as training and eval-
uation, in which training is usually achieved by classical algorithms including ID3 [8], C4.5 [9] and
classification and regression tress (CART) [10].

In a multi-party environment, the entire dataset can be partitioned in three distinct ways: horizontal
partitioning, vertical partitioning, and arbitrary partitioning.

In horizontal partitioning, each party holds the same features but different subsets of instances. Lindell
et al. [11] pioneered a two-party privacy-preserving decision tree algorithm for horizontally partitioned
data, that achieved perfect security through cryptography-based techniques such as oblivious transfer;
however, this algorithm had significant computational overhead. Subsequently, several other improved
solutions [12–15] for horizontally partitioned data were proposed. In arbitrary partitioning, the dataset
can be partitioned both horizontally and vertically; and typical privacy-preserving decision tree schemes
for arbitrary partitioning including [16–18].

In vertical partitioning, the dataset is divided into multiple subsets based on features, with each party
owning distinct feature subsets. Since this study deals with vertically partitioned data, we will mainly
focus on studies that have used vertically partitioned data. To the best of our knowledge, existing
solutions have certain limitations that do not fully meet the requirements of our scenario.

Some of these studies have shortcomings in terms of privacy protection. Du et al. [19] introduced
the first solution for a two-party privacy-preserving decision tree with vertical datasets, that privately
calculated the information gain for ID3 decision tree training by masking the sensitive attributes with
random numbers. However, the major drawbacks of this approach is that labels are disclosed to all parties.
The methods proposed by She et al. [20] and Wang et al. [21] both focus on constructing decision trees
on the joins of multiple private tables. While they achieve scalability, they do not ensure data privacy.
Vaidya et al. proposed schemes [22, 23] for privacy-preserving ID3 algorithm with vertically partitioned
datasets that offered better security; however, these schemes did not ensure complete data privacy as a
risk of revealing intermediate results was attached to the scheme design. Additionally, Dansana et al. [24]
designed a multi-party CART algorithm based on the secure sum protocol and intersection protocol, that
attempted to minimize the information leakage. Hu et al. [25] also aimed to reduce data leakage, wherein
users continued to have the opportunity to learn intermediate data such as split statistics. Cheng et
al. [26] constructed SecureBoost using the Paillier homomorphic encryption algorithm. Although this
approach avoided leakage of labels and features, it still shared the optimal feature splits with the label
holder.

However, some of these studies have drawbacks in terms of efficiency. The scheme introduced in [22]
faces certain performance bottlenecks regarding computing information gain. Recently, Abspole et al. [27]
have presented an approach for achieving the privacy protection during decision trees training, that can
handle all types of attributes. Although it adopted techniques such as secret sharing and a sorting network
to efficiently compute the Gini impurity, the computational overhead remains high. Pivot, introduced
by Wu et al. [28], mainly utilized homomorphic encryption to design a secure CART algorithm for
semi-honest parties. This approach ensured zero leakage of private data; however, it also incurred high
computational overhead due to the use of cryptographic techniques. Zheng et al. [29] designed Privet,
a framework supporting privacy-preserving VFL service for gradient boosted decision tables. While this
solution boasts of high accuracy, it requires improvement in terms of efficiency.

Additionally, some schemes have limitations apart from privacy and efficiency concerns. Chen et
al. [6] designed PriVDT, which is an efficient two-party framework for vertical CART decision trees. This
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Table 1 Notations

Notation Description Notation Description

[x] / 〈x〉 The shares of additive / vector space secret sharing F
(i)
j

The dataset associated with the j-th feature held by Pi

x / x Scalar / vector m(i) The number of features held by Pi

x · y / x ◦ y Dot product / element-wise product of vectors δ
(i)
j

The number of splits of the j-th feature held by Pi

α0, . . . , α′′
3 The public constants used for reconstruction γ The vector of current available samples

P The set of n parties t The number of training samples

Λ The minimal access structure Lµ The vector of samples belonging to the µ-th class

A The authorized subset of Λ Cµ The vector of available samples belonging to the µ-th class

F The set of features held by all parties M The number of classes

framework improved both data privacy and algorithm efficiency as compared to that of previous solutions;
however, it required the involvement of a trusted third party. Therefore, considering the abovementioned
disadvantages of the existing schemes, our proposed approach, that overcomes these disadvantages, has
been discussed in terms of the designed improvements in Subsection 1.1.

3 Preliminaries

In this section, we explain the notations mentioned frequently throughout this paper, as shown in Table 1.
Subsequently, we review the relevant decision tree algorithms briefly, with a particular focus on the
training processes of decision trees. Finally, we introduce some of the underlying cryptographic techniques
such as secret sharing.

3.1 Decision tree

The decision tree method stands out as a powerful machine learning algorithm adept at handling both
classification and regression tasks. In this work, we employ the CART algorithm [10] to implement the
classification tree training task. The CART decision tree is constructed recursively as a binary decision
tree, and its features are selected with the Gini impurity minimization criteria. The CART algorithm is
specifically demonstrated as follows.

(1) Assuming that the dataset of the available sample corresponding to the current node is D, the Gini
impurity is calculated for all splits of the features. More specifically, for each possible split value sv of
each feature, the current dataset D is divided into two subsets, Dl and Dr, by determining whether the
feature value fj of each sample equals to (or belongs to) sv; subsequently, the variant form of the Gini
impurity is calculated by (1) as shown below:

G̃(D, fj = sv) =

∑M
µl=1|C

2
µl|

|Dl|
+

∑M
µr=1|C

2
µr|

|Dr|
, (1)

where |Dl| represents the count of samples for subset Dl, and |Cµl| represents the count of samples that
belongs to the class Cµl in Dl, as well as |Dr| and |Cµr|.

(2) The optimal split is selected based on the maximum value of G̃. With the optimal split and its
corresponding feature, we can separate the samples into two parts, namely Dl and Dr, to generate a pair
of child nodes of the current node. The left node’s dataset is Dl, and the right node’s dataset is Dr.
After generating two child nodes, the value of the optimal split is discarded from consideration.

(3) Steps (1) and (2) are called recursively to the left and right child nodes until the stopping conditions
are met (i.e., when the number of samples is below a certain threshold or there are no available features
for further splitting).

Based on the training dataset, starting from the root node, we can eventually construct a well-trained
CART decision tree by implementing the above steps.

3.2 Cryptographic primitives

3.2.1 Vector space secret sharing

We adhere to the definition of vector space secret sharing from [30]. The characteristic of vector space
secret sharing lies in allowing parties of certain combinations to jointly reveal the secret value, while
parties of other combinations cannot reconstruct the secret value despite colluding with each other.

Formally, let P = {P0, P1, . . . , Pn−1} be a set of n parties, and Λ be the minimal access structure, that
contains the minimum sets of parties that can reveal the secret value. Let ZN be the domain of values
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in the proposed scheme with a size N = 2l, where l is the bit length. For an integer d > 2, we define Z
d
N

as a d-dimension vector space over ZN .

The scheme of vector space secret sharing comprises the following three stages:

• Setup. Let (1, 0, . . . , 0) be a d-dimension target vector. The distributor defines the function ψ such
that the public vector ψ(P0),ψ(P1), . . . ,ψ(Pn−1) corresponding to each party satisfies the following:
(1, 0, . . . , 0) ∈ 〈ψ(Pj) : Pj ∈ A〉 ⇔ A ∈ Λ, where A =

{

Pi0 , Pi1 , . . . , Pim−1

}

is the minimal authorized
subset, and m denotes the count of parties in A. For 0 6 j < n, ψ(Pj) ∈ Z

d
N is the public d-dimensional

vector of Pj .

• Sharing. For the secret σ ∈ ZN , the distributor Pi first selects a vector w = (w0, w1, . . . , wd−1)
T
∈

Z
d
N , where w0 = σ and w1, . . . , wn are random values over ZN . Subsequently, the distributor calculates
ψ(Pj)·w and sends it to Pj (0 6 j < n, j 6= i) over a secure channel as Pj ’s share, that is, 〈x〉j = ψ(Pj)·w.

•Reconstruction. For any authorized subset A, since (1, 0, . . . , 0) ∈ 〈ψ(Pj) : Pj ∈ A〉 ⇔ A ∈ Λ, there
exists public contants α0, α1, . . . , αm−1 that are not all zeros, such that: (1, 0, . . . , 0) = α0 ·ψ(Pi0 )+ · · ·+
αm−1 · ψ(Pim−1). In this case, the secret value σ = w0 = (1, 0, . . . , 0) ·w = (α0 · ψ(Pi0 ) + · · · + αm−1 ·
ψ(Pim−1 )) · w = α0 · 〈σ〉0 + α1 · 〈σ〉1 + · · · + αm−1 · 〈σ〉m−1. Therefore, we can reconstruct the secret
s by multiplying each share 〈σ〉 with the corresponding constant, subsequently summing the calculated
values.

3.2.2 Function secret sharing

FSS extends the concept of additive secret sharing. It diverges from classical secret sharing since the
shared secret is not an element over a group, ring or field, but rather a computational function. Given
a function f : {0, 1}

κ
→ ZN , each party Pi holds a share [f ]i, and these shares need to satisfy the

following equation: f(x) = [f(x)]0 + · · ·+ [f(x)]n modN . More formally, an FSS scheme comprises two
fundamental algorithms:

• Gen(1λ, f) → (k0, . . . , kn) is used to generate secret keys, given the security parameter λ and a
function f , and it outputs several keys (k0, . . . , kn).

• Eval(i, ki, x) → [f(x)]i is used for evaluation, given the party index i ∈ {0, . . . , n}, the key ki
and the public function input x; and it outputs the share [f(x)]i for each party respectively, where
f(x) =

∑n
i=0 [f(x)]i.

A distributed point function (DPF) is known as a concrete instance of (two-party) FSS. As stated
in [31], a DPF is defined as follows:

f ·a,b(x) =

{

b, if x = a,

0|b|, otherwise,
(2)

where a ∈ {0, 1}
κ
and b ∈ ZN .

Referring to [32–34], we discover that the FSS scheme for a DPF, that includes a set of algorithms
(Gen·a,b,Eval

·
a,b), tends to meet both correctness and security demands.

Correctness. For any DPF f ·a,b(x) and public input x, if Gen(1λ, f) → (k0, k1), then Pr[Eval(0, k0, x)+
Eval(1, k1, x) = f ·a,b(x)] = 1.

Security. In simple terms, the security of a DPF lies in the fact that even if an adversary obtains
either k0 or k1, they still cannot learn the information of a and b.

Inspired by the scheme for a DPF, Boyle et al. [34] developed an efficient FSS scheme for a distributed
comparison function (DCF). Similar to a DPF, a DCF is defined as follows:

f<
a,b(x) =

{

b, if x < a,

0|b|, otherwise.
(3)

The FSS scheme designed for a DCF also involves two algorithms (Gen<a,b,Eval
<
a,b). Moreover, it also

satisfies the aforementioned requirements of correctness and security.
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Figure 2 (Color online) System model of SecureCART.

4 System architecture

4.1 System model

Following the framework pMPL proposed in [5], the set of all parties is represented as P = {P0, P1, P2},
where P0 is the privileged party, that will continually engage in the training process and ultimately
acquire the training results. P1 and P2 serve as assistant parties, with the condition that either party
can drop out or for both parties can collude with each other. Consequently, the minimal access structure
is defined as Λ = {{P0, P1, P2} , {P0, P1} , {P0, P2}}.

In a synchronous network, parties communicate via pairwise secure channels to participate in the
training. However, to prevent private raw data from being exposed to other parties, each party performs
vector space secret sharing (〈·〉-sharing) on its data before the training process. This implies that the
communication data during the training process takes the form of 〈·〉-shares.

For the sake of clarity, we consider the entire system in terms of two phases: pre-training and training,
as depicted in Figure 2.

4.1.1 Pre-training

In this phase, parties primarily engage in the secret sharing of their data nd simultaneously execute
necessary preprocessing tasks, such as precomputing vector multiplication triplets.

To execute vector space secret sharing, according to the properties of vector space secret sharing, a
4× 3 public matrix is selected for pMPL, that can be regarded as consisting of four 3-dimensional public
vector ψ(i), where ψ(i) represents the i-row of the public matrix ψ(P).

As mentioned in Subsection 3.2, the 4× 3 public matrix ψ(P) should satisfy the following:

(1, 0, 0) = α0 · ψ(0) + α1 · ψ(1) + α2 · ψ(2)

= α′0 · ψ(0) + α′1 · ψ(1) + α′3 · ψ(3)

= α′′0 ·ψ(0) + α′′2 · ψ(2) + α′′3 ·ψ(3).

(4)

Note that constants α0, α1, . . . , α
′′
3 are supposed to be elements of ZN and are public to all parties.

For the raw data σ to be shared, its owner Pi constructs a 3-dimensional vector w = (σ,w1, w2)
T for

it, where w1 and w2 are random numbers. Subsequently, the owner computes 〈σ〉j = ψ(Pj) ·w, where
0 6 j 6 3. After distributing shares, the privileged party P0 is required to hold 〈σ〉0 and 〈σ〉3, while
assistant parties P1 and P2 are required to hold 〈σ〉1 and 〈σ〉2, respectively.

The sharing process mentioned above has been formalized in protocol Πshr [5], where parties execute
Πshr(Pi, σ) on all of the data required to be transferred to others.

4.1.2 Training

In this phase, the inputs of parties are in the form of 〈·〉-shares. During the training, all of the intermediate
results are also presented as 〈·〉-shares to avoid leakage. Upon completion of training, only the privileged
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party possesses the final result, that is, a well-trained CART tree. A more detailed description of the
training process is provided in Section 6.

Besides, the training phase may involve the reconstruction of shares. In the reconstruction protocol
Πrec(P , 〈σ〉) [5], if no assistant party drops out, we can reveal the secret value via (5a). If an assistant
party P2 (or P1) drops out, the secret value can be revealed using (5b) (or (5c)).

σ = α0 · 〈σ〉0 + α1 · 〈σ〉1 + α2 · 〈σ〉2 (5a)

= α′0 · 〈σ〉0 + α′1 · 〈σ〉1 + α′3 · 〈σ〉3 (5b)

= α′′0 · 〈σ〉0 + α′′2 · 〈σ〉2 + α′′3 · 〈σ〉3. (5c)

4.2 Threat model

As in the pMPL framework, the semi-honest (also referred as passive or honest-but-curious) security
model is adopted in our framework, in which the adversary attempts to extract more information than
expected during the interaction that occurs during the training process while strictly adhering to the
protocol specifications. Moreover, we assume that the privileged party does not collude with any other
party, whereas assistant parties have the potential for colluding with each other.

Formally, we establish the privacy of our scheme by employing the standard simulation paradigm
with the real-ideal world model [35]. Assuming the presence of a P.P.T (probabilistic polynomial time)
adversary A in the real world that can corrupt parties in two cases: corrupting P0, or corrupting P1

and P2 (i.e., P1 and P2 collude with each other). In the ideal world, we define S as a simulator, where
S serves as an honest party and simulates the behavior of the adversary in the real world. Based on
the ideal functionality F , we establish the security of the semi-honest protocols Π by demonstrating
the computational indistinguishability (denoted as ∼=) between the views in the ideal and real worlds as
follows:

{

viewΠ
A(λ, 〈x〉0, 〈x〉1, 〈x〉2), output

Π(y)
}

∼= Sim(λ, 〈x〉i, f(〈x〉0, 〈x〉1, 〈x〉2)).

4.3 Design goals

In this paper, we aim to enhance the efficiency and privacy protection of a multi-party decision tree
training scheme with a privileged party. In summary, our design goals can be described as follows.

• Privacy protection. To ensure the privacy of private data among multiple parties, the inputs of
parties and the intermediate results must not be improperly learned. Furthermore, given the uneven
distribution of privileges among parties, access to the final model is granted only to the privileged party.

• Robustness. In this system, training should smoothly and correctly proceed to completion even in
the event of dropout from one of the assistant parties or collusion between multiple assistant parties.

• High efficiency. The protocols used in this system should consume as little computing time and
communication overhead as possible to accommodate some resource-constrained execution environments.

5 Building blocks

In this section, we augment the existing pMPL framework with novel sub-protocols, that is, secure division
protocol, secure comparison protocol, and the extension protocol of secure multiplication. These sub-
protocols will play a significant role in privacy protection for decision tree training within a multi-party
setting.

Note that the secure addition protocol Πadd, secure multiplication protocol Πmul, vector multiplication
triplets generation protocol Πvmtgen, and sharing conversion protocols Πa2v, Πv2a are already provided
in [5]. Hence, we do not discuss them in this paper.

5.1 Secure division

Since division is one of the most commonly used operations, implementing a secure and efficient multi-
party division protocol under the pMPL framework is essential. We provide the details of the secure
division protocol Πdiv in Algorithm 1.

The entire protocol comprises two phases: the preprocessing phase and the online phase, where the
operations in the preprocessing phase are conducted offline. During the preprocessing phase, each party
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Algorithm 1 Secure division Πdiv(P, 〈x〉 , 〈y〉)

Preprocessing:

1: Pi generates a random number ri, for i ∈ {0, 1, 2};

2: Pi executes Πshr(Pi, ri), for i ∈ {0, 1, 2};

3: Pi locally computes 〈r〉i = 〈r0〉i + 〈r1〉i + 〈r2〉i, for i ∈ {0, 1, 2}. In addition, P0 computes the alternate share 〈r〉3 in the same

way;

Input: 〈x〉 and 〈y〉;

Output: 〈z〉 =
〈

x
y

〉

;

1: Parties execute Πmul(P, 〈r〉 , 〈y〉) interactively to obtain 〈r · y〉;

2: Parties execute Πrec(P, 〈r · y〉) interactively, and thus they all obtain r · y;

3: Parties execute Πmul(P, 〈r〉 , 〈x〉) interactively to obtain 〈r · x〉;

4: Pi locally computes 〈z〉i =
〈r·x〉i
r·y for i ∈ {0, 1, 2}, and P0 computes an alternate share 〈z〉3 =

〈r·x〉3
r·y additionally.

Algorithm 2 Secure comparison Πcomp3(P, 〈x〉 , 〈y〉)

Preprocessing:

1: P0 evaluates Gen<N
2

,1
→ (k1, k2), and sends ki to Pi for i ∈ {1, 2};

Input: 〈x〉 and 〈y〉;

Output: 〈z〉 = 〈1 {x > y}〉;

1: P0 generates a random number r;

2: Pi computes 〈x− y〉i = 〈x〉i − 〈y〉i locally, for i ∈ {0, 1, 2};

3: Parties interactively execute Πextmul(P, r, 〈x− y〉) to obtain 〈r · (x− y)〉;

4: P0 sends 〈r · (x− y)〉0 to Pi, who then exchange shares with each other, for i ∈ {1, 2}. Thus, P1 and P2 compute (5a) locally

to obtain r · (x− y);

5: Pi evaluates Eval<N
2

,1
(i, ki, r · (x− y))→ [f ]i, for i ∈ {1, 2};

6: P1 and P2 interactively reconstruct f = [f ]1 + [f ]2, and then one of them executes Πshr(Pi, f);

7: Pi sets 〈z〉i = 〈f〉i, for i ∈ {1, 2}. Besides, P0 computes 〈z〉0 = 〈f〉0 ⊕MSB(r) locally and sets 〈z〉3 = 〈f〉3.

Pi first generates a random number ri ∈ ZN respectively and executes Πshr(Pi, ri) on it. Consequently,
Pi obtains three shares 〈r0〉i, 〈r1〉i and 〈r2〉i. P0 additionally holds 〈r0〉3, 〈r1〉3 and 〈r2〉3. Subsequently,
Pi sums up these shares locally to obtain 〈r〉i = 〈r0〉i + 〈r1〉i + 〈r2〉i, and P0 also calculates an alternate
share 〈r〉3. Thus, parties cooperate to acquire the corresponding share 〈r〉i without knowing the real
value of r; therefore, r can be used later to mask the value that requires to be kept secret.

During the online phase, parties execute Πmul(P , 〈r〉 , 〈y〉) jointly. Thus, Pi obtains 〈r · y〉i. Next, P0

obtains an alternate share 〈r · y〉3. Subsequently, by executing the reconstruction protocol Πrec(P , 〈r · y〉),
parties collaborate to reveal the value of r · y, that is, all of the parties obtain the denominator y masked
by the prepared random value r. Analogously, parties interactively execute Πmul(P , 〈r〉 , 〈x〉). After that,
Pi holds 〈r · x〉i, and P0 additionally holds an alternate share 〈r · x〉3. Finally, each party Pi computes

〈z〉i =
〈r·x〉i
r·y locally. Besides, P0 extra computes 〈z〉3 =

〈r·x〉3
r·y .

Theorem 1 (Correctness of Πdiv). For shares 〈x〉 and 〈y〉 held by online parties, where 〈x〉 , 〈y〉 ∈ ZN ,
Πdiv can correctly outputs shares of division result 〈xy 〉 for all parties. Proof details are provided in
Appendix A.

Theorem 2 (Security of Πdiv). The division protocol Πdiv securely realizes the functionality Fdiv in
the case of passive adversaries. Proof details are provided in Appendix B.

5.2 Secure comparison

During the training process of the decision tree, comparison operations are required to determine the
magnitude of the Gini impurity. As we know, FSS-based protocols are generally more effective in two
prevalent scenarios: (1) offline communication is more cost-effective than online communication, or (2)
network latency is the primary factor leading to performance degradation. In an MPC environment with
preprocessing, FSS-based methods outperform mixed-mode MPC approaches in terms of both round
complexity and online round communication.

Thus, we design an FSS-based comparison protocol, that inputs the shares of 〈x〉 and 〈y〉 as input, and
outputs the secret shared comparison result 〈z〉, where z = 1 if x > y and z = 0 otherwise. Note that for
integers over the ring ZN , we map the positive numbers to {0, 1, . . . , N/2− 1}, and the negative numbers
are mapped to {N/2, . . . , N − 1}. In other words, the most significant bit of x is 0, that is, MSB(x) = 0,
when x ∈ ZN is positive and MSB(x) = 1 otherwise.

For the case where no party drops out, the secure three-party comparison protocol Πcomp3 is described in
Algorithm 2. In the preprocessing phase, the privileged party P0 generates keys ki for the assistant parties
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Algorithm 3 Secure comparison Πcomp2(P, 〈x〉 , 〈y〉)

Input: 〈x〉 and 〈y〉;

Output: 〈z〉 = 〈1 {x > y}〉;

1: Pi generates a random number ri, for i ∈ {0, 1};

2: P0 and P1 interactively evaluate Gen<r0+r1,1 → (k0, k1), where Pi holds ki for i ∈ {0, 1};

3: Pi locally computes 〈y〉i − 〈x〉i + ri/α
′
i for i ∈ {0, 1, 2}. P0 additionally computes 〈y〉3 − 〈x〉3;

4: Parties jointly reconstruct y − x + r0 + r1 using (5b);

5: Pi evaluates Eval<r0+r1,1(i, ki, y − x+ r0 + r1)→ [f ]i, for i ∈ {0, 1};

6: Pi executes Πshr(Pi, [f ]i) respectively, for i ∈ {0, 1};

7: Pi locally computes 〈z〉i =
〈

[f ]0
〉

i
+

〈

[f ]1
〉

i
for i ∈ {1, 2}. Besides, P0 computes 〈z〉3 =

〈

[f ]0
〉

3
+

〈

[f ]1
〉

3
.

by Gen<N
2 ,1

, where i ∈ {1, 2}. In the online phase, P0 generates a random number r. Each party Pi locally

computes 〈x〉i−〈y〉i to obtain 〈x− y〉i, and P0 additionally compute 〈x− y〉3 = 〈x〉3−〈y〉3. Subsequently,
all parties jointly execute Πextmul(P , r, 〈x− y〉), and thus P0 obtains 〈r · (x− y)〉0 and 〈r · (x − y)〉3, while
the assistant party Pi obtains 〈r · (x − y)〉i, where i ∈ {1, 2}. The assistant parties receive 〈r · (x− y)〉0
from P0 and exchange their shares with each other; consequently, they can reconstruct r · (x− y). Since
the value of r is unknown to P1 and P2, and P0 has not reconstructed r · (x−y) although it knows r, none
of the parties will have the knowledge of the real value of x− y. Pi evaluates Eval

<
N
2 ,1

(i, ki, r · (x− y)) to

obtain the additive shares of 1{r · (x− y) < N
2 }, that are denoted as [f ]i for i ∈ {1, 2}. Subsequently, P1

and P2 sum their shares to obtain the value of f , secretly sharing f subsequently. Therefore, Pi holds
〈z〉i = 〈f〉i for i ∈ {1, 2}. Additionally, P0 holds 〈z〉3 = 〈f〉3 and locally computes 〈z〉0 = 〈f〉0 ⊕MSB(r).

For the case where one of the assistant parties drops out, for example, if P2 drops out, the secure
two-party comparison protocol Πcomp2 is described in Algorithm 3. Our protocol shares similarities in
terms of ideation with the comparison protocol in [6], with the difference that our protocol refers to the
approach in [34] to eliminate the dependency on a trusted dealer.

Theorem 3 (Correctness of Πcomp). For shares 〈x〉 and 〈y〉 held by online parties, where 〈x〉, 〈y〉 ∈ ZN ,
Πcomp can correctly output shares of the comparison result for all parties.
Proof. To prove the correctness of Πcomp, it is necessary to demonstrate that the shares outputted by
Πcomp can be reconstructed using Πrec to obtain the correct value of 1 {x > y}. The reconstruction
process is explained for two scenarios as follows:

If no assistant party drops out,

z = α0 · 〈z〉0 + α1 · 〈z〉1 + α2 · 〈z〉2
= α0 · (MSB(r) ⊕ 〈f〉0) + α1 · 〈f〉1 + α2 · 〈f〉2
= MSB(r) ⊕ f

=







MSB(r) ⊕ 1, if r · (x− y) <
N

2
,

MSB(r) ⊕ 0, otherwise.

(6)

More specifically, there is MSB(x − y) = 0 when x > y. If MSB(r) = 0, then r · (x − y) < N/2;
therefore, parties have z = 0 ⊕ 1 = 1. If MSB(r) = 1, then r · (x − y) > N/2; therefore, parties can
obtain z = 1 ⊕ 0 = 1. Regarding x < y, MSB(x − y) = 1. If MSB(r) = 0, then r · (x − y) > N/2;
therefore, parties obtain z = 0 ⊕ 0 = 0. If MSB(r) = 1, then r · (x − y) < N/2; therefore, parties can
obtain z = 1 ⊕ 1 = 0. To summarize, parties can reconstruct z = 1 when x > y and z = 0 when x 6 y,
that satisfies z = 1 {x > y}.

If one of the assistant parties (for example, P2) drops out,

z = α′0 · 〈z〉0 + α′1 · 〈z〉1 + α′3 · 〈z〉3
= α′i · (〈[f ]0〉i + 〈[f ]1〉i), i ∈ {0, 1, 3}

= [f ]0 + [f ]1

=

{

1, if y − x+ r0 + r1 < r0 + r1,

0, otherwise.

(7)

Thus, the online parties can reconstruct z = 1 when x > y and z = 0 otherwise, that is, z = 1 {x > y}.

Theorem 4 (Security of Πcomp). The comparison protocol Πcomp securely realizes the functionality
Fcomp in the case of passive adversaries. Proof details are provided in Appendix C.
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Algorithm 4 Extension of multiplication Πextmul(P, x, 〈y〉)

Preprocessing:

1: Parties execute Πvmtgen(P) to generate the shares of vector multiplication triplets 〈u〉, 〈v〉 and 〈h〉;

Input: x (held by P0) and 〈y〉;

Output: 〈z〉 = 〈x · y〉;

- If no assistant party drops out:

1: P0 receives 〈u〉i from Pi, where i ∈ {1, 2}, and then obtains u by computing (5a);

- If one assistant party (P2) drops out:

2: P0 receives 〈u〉1 from P1, and then obtains u by computing (5b);

3: P0 locally computes e = x+ u and sends e to Pi for i ∈ {1, 2};

4: Pi locally compute 〈d〉i = 〈y〉i + 〈v〉i for i ∈ {0, 1, 2}, Besides, P0 computes 〈d〉3 = 〈y〉3 + 〈v〉3;

5: Parties jointly execute Πrec(P, 〈d〉) and thus they all obtain d = y + v;

6: Pi locally computes 〈z〉i = 〈h〉i − 〈v〉i · e for i ∈ {1, 2}. Meanwhile, P0 locally computes 〈z〉3 = 〈h〉3 − 〈v〉3 · e and 〈z〉0 =
x·d
α0

+ 〈h〉0 − 〈v〉0 · e.

5.3 Extension of secure multiplication

The extension protocol of secure multiplication is used to perform multiplication in the case that the
privileged party P0 owns the plaintext data x, and 〈y〉 is secret-shared among three parties, and they
jointly compute the shares of result 〈x · y〉. Through this protocol, the data held exclusively by the
privileged party can be securely multiplied with the intermediate data in the form of secret sharing,
without the need for an additional execution of the sharing protocol. We describe the extension protocol
of secure multiplication in Algorithm 4.

Similar to Πmul [5], the vector multiplication triplets need to be generated by executing Πvmtgen during
preprocessing. During the online phase, P0 first receives the share(s) from the assistant party (or parties),
and reconstructs u. Subsequently, P0 masks the plaintext x with u, which gives e = x+u, and then sends
e to the assistant parties. All parties locally compute 〈d〉 = 〈y〉+ 〈v〉, and then reconstruct d = y + v by
executing Πrec. Considering that x · y = x · (y + v)− v · (x+ u) + u · v and that x is held only by P0, we
let P0 compute 〈z〉0 = x·d

α0
+ 〈h〉0 − 〈v〉0 · e, while the other shares are computed as 〈z〉i = 〈h〉i − 〈v〉i · e

for i ∈ {1, 2, 3}.

Theorem 5 (Correctness of Πextmul). For the plaintext x held by P0 and the shares 〈y〉 held by online
parties, where x, 〈y〉 ∈ ZN , Πextmul can correctly outputs shares of the multiplication result 〈x · y〉 for all
parties. Proof details are provided in Appendix D.

Theorem 6 (Security of Πextmul). The extension protocol of secure multiplication Πextmul securely
realizes the functionality Fextmul in the case of passive adversaries. Proof details are provided in
Appendix E.

6 SecureCART

In this section, we outline the process of designing SecureCART, a scheme for training decision trees with
privacy preservation under the pMPL framework by combining building blocks.

6.1 Overview

Similar to [6], the training samples in SecureCART are partitioned vertically among three participants,
indicating that Pi holds all the sample data corresponding to certain features, rather than holding all
the feature data for certain samples (known as horizontal partitioning). However, unlike the common
multi-party decision tree training models previously seen, the privilege of the three parties in our training
model is asymmetrical. P0, as the privileged party, is regarded as the initiator of the training, that holds
not only the samples of certain features but also the labels, and ultimately obtains the final training
result. The two assistant parties P1 and P2 serve as databases, supplementing P0 with additional feature
data of the existing samples, with the possibility of dropping out.

Based on the above structure, during the pre-training phase, each party locally represents its samples
belonging to different splits of features as vectors. Additionally, the privileged party P0 represents samples
as vectors based on distinct labels. Subsequently, P0 completes initialization, and the assistant parties
P1 and P2 execute the sharing protocol on their vectorized sample data.

After completing the local preprocessing of samples, parties jointly determine the best split of features
and update the model using a combination of building blocks, according to the original CART training
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Figure 3 (Color online) Instance of SecureCART.

algorithm and the formula for the variant form of the Gini impurity. The above training process will be
completed when the stopping conditions are met, yielding the well-trained model of CART tree to P0.

6.2 Detailed scheme

In this subsection, we offer a detailed explanation of SecureCART, the proposed privacy-preserving de-
cision tree training scheme with a privileged party, that comprises two phases, namely, pre-training and
training, where training involves the calculation of the variant Gini impurity, selection of the optimal
split, and model updating.

The set of all features held by three parties is denoted as F = {F
(0)
1 , F

(0)
2 . . . , F

(1)
1 , . . . , F

(2)
1 }, where F

(i)
j

represents the dataset corresponding to the j-th feature held by Pi, with j ∈ {1, . . . ,m(i)}. Additionally,

F
(i)
j can be divided into δ

(i)
j splits. Each split is represented in vector form as f

(i)
j,k, that is a vector

indicating whether the sample belongs to the k-th split of F
(i)
j , with k ∈ {1, . . . , δ

(i)
j }. It has to be

mentioned that all of the vectors used in SecureCART have the same length t, which is the number
of training samples. In these vectors, 1 indicates belonging (or equivalence); conversely, 0 represents
non-belonging (or non-equivalence).

We consider Figure 3 as a simple example. In this scenario, the privileged party P0 possesses the private

datasets of samples F
(0)
1 and F

(0)
2 , along with the corresponding labels. The two assistant parties, P1

and P2, own their sensitive data F
(1)
1 and F

(2)
1 respectively. Note that we assume that the datasets held

by different parties have already been matched through some method, such as private set intersection.

Local preprocessing of samples (pre-training). Each party represents each of its datasets as f
(i)
j,k

in a vector form based on distinct splits of features, and P0 organizes the samples into M classes based
on labels, representing the samples belonging to the µ-th class as a vector Lµ, where µ ∈ {1, 2, . . . ,M}.
Subsequently, all parties apply the sharing protocol to some of their plaintext data that needs to be
shared. P0 initializes the vector of current available samples γ = (1, 1, . . . , 1), which is then secret-shared
by executing Πshr(P0,γ). Due to the potential for assistant parties to drop out, if their datasets are only
held by themselves, the training process will be interrupted when one of them drops out. Consequently,
it becomes essential for P1 and P2 to secret-share their private data, ensuring the continuity of training

in the event of a dropout. Therefore, P1 and P2 respectively execute Πshr(Pi,f
(i)
j,k), for i ∈ {1, 2}, to

protect their plaintext data from being disclosed to others during the training process. Regarding the
privileged party P0, which never drops out, it does not need to share its raw data and can participate in
the training via executing Πextmul.

After implementing the above steps, each assistant party Pi′ holds 〈f
(i)
j,k〉i′ and 〈γ〉i′ , where i

′ ∈ {1, 2},

while P0 holds f
(0)
j,k , 〈γ〉0 and 〈γ〉3. These shares serve as the inputs for the first round of training; this

indicates that preprocessing only needs to be performed once at the very beginning and does not need to
be involved in subsequent recursion.

Calculation of the variant Gini impurity. First, it is necessary to determine whether the current
node meets the conditions to be a leaf node. If it does meet the condition, the corresponding label should
be returned. Next, the variant Gini values for various feature splits need to be calculated. According to
(1), parties interactively compute 〈Cµ〉 = Lµ ◦ 〈γ〉 by executing Πextmul element-wise. And then parties
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Algorithm 5 SecureCART

Input: 〈f
(i)
j,k
〉, 〈Cµ〉 and 〈γ〉.

Output: A well-trained CART tree.

1: if the conditions for being a leaf node are satisfied then

2: return The label with majority class;

3: end if

4: for µ← 1, . . . ,M do

5: Parties jointly execute 〈Cµ〉 ← Πextmul(P,Lµ, 〈γ〉) in an element-wise manner;

6: end for

7: Initialize 〈g̃∗〉, 〈i∗〉, 〈j∗〉 and 〈k∗〉 to 〈0〉;

8: for i← 0, 1, 2 do

9: for j ← 1, . . . ,m(i) do

10: for k ← 1, . . . , δ
(i)
j do

11: - If i = 0, parties jointly executes 〈dl〉 ← Πextmul(P,f
(i)
j,k

, 〈γ〉) and 〈dr〉 ← Πextmul(P, 1− f
(i)
j,k

, 〈γ〉);

12: - If i ∈ {1, 2}, parties jointly executes 〈dl〉 ← Πmul(P, 〈f
(i)
j,k
〉, 〈γ〉) and 〈dr〉 ← Πmul(P, 〈1− f

(i)
j,k
〉, 〈γ〉);

13: Set 〈lc〉 = 〈0〉 and 〈rc〉 = 〈0〉;

14: for µ← 1, . . . ,M do

15: - If i = 0, parties jointly executes 〈lcµ〉 ← Πextmul(P, f
(i)
j.k

, 〈Cµ〉) and 〈rcµ〉 ← Πextmul(P, 1− f
(i)
j.k

, 〈Cµ〉);

16: - If i ∈ {1, 2}, Parties jointly executes 〈lcµ〉 ← Πmul(P, 〈f
(i)
j,k
〉, 〈Cµ〉) and 〈rcµ〉 ← Πmul(P, 〈1− f

(i)
j,k
〉, 〈Cµ〉);

17: Parties jointly executes 〈lc2µ〉 ← Πmul(P, 〈lcµ〉, 〈lcµ〉) and 〈rc2µ〉 ← Πmul(P, 〈rcµ〉, 〈rcµ〉);

18: Parties locally compute 〈lc〉 = 〈lc〉+ 〈lc2µ〉 and 〈rc〉 = 〈rc〉+ 〈rc
2
µ〉;

19: end for

20: Parties jointly executes 〈lp〉 ← Πdiv(P, 〈lc〉, 〈dl〉) and 〈rp〉 ← Πdiv(P, 〈rc〉, 〈dr〉);

21: Parties locally compute 〈g̃
(i)
j,k
〉 = 〈lp〉+ 〈rp〉;

22: end for

23: end for

24: for j ← 1, . . . ,m(i) do

25: for k ← 1, . . . , δ
(i)
j do

26: Parties jointly executes 〈u〉 ← Πcomp(P, 〈g̃
(i)
j,k
〉, 〈g̃∗〉);

27: Parties jointly executes 〈g̃∗〉 ← Πmul(P, 〈u〉, 〈g̃
(i)
j,k
− g̃∗〉) + 〈g̃∗〉, and compute the corresponding 〈k∗〉, 〈j∗〉

and 〈i∗〉 in the same way;

28: end for

29: end for

30: end for

31: P0 receives 〈k∗〉i′ , 〈j
∗〉i′ and 〈i∗〉i′ from Pi′ , where i′ ∈ {1, 2}, and uses (5a) to obtain the optimal feature F

(i∗)

j∗
and

its corresponding best split (i.e., the k∗-th split);

32: Parties execute 〈γl〉 ← Πmul(P, 〈γ〉, 〈f
(i∗)

j∗.k∗ 〉) and 〈γr〉 ← Πmul(P, 〈γ〉, 〈1− f
(i∗)

j∗.k∗ 〉) in an element-wise manner.

compute the value of the variant Gini impurity for each split of features, denoted as 〈g̃
(i)
j,k〉, by interactively

executing Πmul, Πextmul and Πdiv, along with local addition operations. Since the computational and
communication overhead of Πdiv is higher than that of the local addition operations, unlike [6], we
minimize the overhead by first summing and ultimately dividing once.

Selection of the optimal split. Parties interactively execute Πcomp to select the maximum value of

the variant Gini impurity, denoted as 〈g̃∗〉. The best feature split corresponding to 〈g̃∗〉 is 〈f
(i∗)
j∗,k∗〉. The

assistant parties send their shares 〈k∗〉i′ , 〈j
∗〉i′ and 〈i∗〉i′ , where i

′ ∈ {1, 2}, to the privileged party P0.
Thus, only P0 has the ability able to reconstruct the value of i∗, j∗ and k∗, and learn the optimal feature

F
(i)
j,k and its best split (i.e., the k-th split).

Model update. In this step, the set of available samples 〈γ〉 for the current node is supposed to be

divided into two subsets according to the optimal feature split 〈f
(i∗)
j∗,k∗〉. Specifically, parties interactively

compute 〈γl〉 = 〈γ〉 ◦ 〈f i∗

j∗,k∗〉 by executing Πmul(P , 〈γ〉, 〈f
(i∗)
j∗ .k∗〉) in an element-wise manner, and then

locally compute 〈γr〉 = 〈γ〉 − 〈γl〉, with 〈γl〉 as the dataset available for the left child node and 〈γr〉 as
the dataset available for the right child node.

The above operations for one node with the set of available samples 〈γ〉 are summarized in Algorithm 5,
that are recursively executed.

7 Evaluation

In this section, we present the experimental setup of SecureCART and the selected datasets, followed by
its performance evaluation and comparison with recent similar schemes.
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Table 2 Accuracy and efficiency of SecureCART

Dataset
Accuracy (%) Runtime on LAN (s) Runtime on WAN (s)

Original CART SecureCART PriVDT SecureCART PriVDT SecureCART

Iris 97.82 97.24 0.88 0.41 43.24 35.72

Bank Marketing 88.16 87.02 10.78 3.29 238.70 173.20

Credit Card Client 83.84 83.17 13.42 4.73 311.28 221.24

7.1 Experimental setup

Settings. We performed all experiments using the existing pMPL framework1) on three Linux servers
equipped with 2.3 GHz Intel(R) Xeon(R) Processor (Skylake, IBRS) and 8 GB of RAM running the
64-bit Ubuntu 18.04 system, each of which represents one of P0, P1 and P2. Besides, the FSS-based
comparison protocol is implemented based upon the LibFSS library2). We simulate two kinds of network
environments: one is the LAN setting with a bandwidth of 2 Gbps and the RTT (round-trip time) latency
is 0.3 ms, the other one is the WAN setting with 40 Mbps bandwidth and 40 ms RTT latency. In both
network environments, we implement SecureCART in C++ over the ring Z2l , with a setting of l = 64
and the least significant bits lf = 20 as the fractional part, which aligns with the settings of PriVDT [6]
and pMPL [5]. Furthermore, considering the parameters given in [5], the public matrix can be set as
ψ(P) = [ψ(0), ψ(1), ψ(2), ψ(3)]T, where ψ(0) = (1, 0, 1), ψ(1) = (1, 1, 2l − 1), ψ(2) = (2, 2, 2l − 3) and
ψ(3) = (3, 3, 2l − 4). Then we can obtain the value of the constants using (4), where α0 = 1, α1 = 2l − 2,
α2 = 1, α′0 = 1, α′1 = 2l − 3, α′3 = 1, α′′0 = 1, α′′2 = 3 and α′′3 = 2l − 2.

Datasets. Here we utilize the same datasets as that in [6], which are provided by the UC Irvine
Machine Learning Repository [36].

• Iris Dataset. It is among the earliest known datasets for classification tasks. It comprises instances
labeled into three categories, with each label corresponding to a distinct kind of iris plant and containing
50 instances. And each instance has four numeric features.

• Bank Marketing Dataset. It contains 4521 instances with 17 features, and the final feature serves
as the desired result, which predicts if the client will subscribe to a fixed deposit, in the form of a binary
(“Yes” or “No”).

• Default of Credit Card Client Dataset. It contains 30000 instances with 23 features, and uses
the default payment as the output, which is in a binary form with “Yes =1” and “No =0”.

7.2 Evaluation of accuracy

We analyze the accuracy of models trained by the original CART and SecureCART on various datasets
respectively; the results of this analysis are provided in Table 2. Although the accuracy of SecureCART
is slightly reduced as compared to other schemes, which is mainly caused by the accuracy sacrifice of the
division protocol and the fixed-point representation, this minor loss is acceptable in practical scenarios.

7.3 Evaluation of efficiency

In this subsection, we first evaluate the performance of building blocks. Table 3 gives the runtime and
communication overhead for the existing secure interactive protocols of pMPL in the LAN and WAN
environments respectively, which is not covered in [5]. Here, 3PC indicates the scenario where no party
drops out, and 2PC denotes a scenario wherein one assistant party drops out. In practical experiments,
we enhance the efficiency of the scheme by executing protocols on vectors, where the dimension of the
vector corresponds to the number of instances in the dataset. We can observe that the runtime of each
protocol increases as the vector dimension gradually increases, but this increase is slow rather than
in a multiplicative form. Moreover, the addition and multiplication protocols we used are faster even
compared to the two-party PriVDT [6].

For the proposed secure division protocol Πdiv, Figure 4(a) illustrates the runtime and communication
overhead of the division operation with PriVDT. We can observe that Πdiv of SecureCART is approxi-
mately 93.5×–560.4× faster than PriVDT. Furthermore, as the vector dimension increases, the difference
of runtime between these division protocols gradually widens. In the case of 3PC, Πdiv of SecureCART

1) https://github.com/FudanMPL/pMPL.

2) https://github.com/frankw2/libfss.

https://github.com/FudanMPL/pMPL
https://github.com/frankw2/libfss
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Table 3 Runtime and communication overhead of secure sharing, reconstruction, addition and multiplication protocols

Setting Dimension
Runtime on LAN (ms) Runtime on WAN (ms) Communication (kB)

Shr. Rec. Add. Mul. Shr. Rec. Add. Mul. Shr. Rec. Add. Mul.

3PC

100 0.08 0.08 <0.001 0.16 2.04 40.40 <0.001 79.79 2.34 3.12 0.00 6.25

500 0.14 0.10 <0.001 0.21 2.18 40.61 <0.001 80.24 11.71 15.62 0.00 31.25

1000 0.19 0.12 <0.001 0.25 2.28 40.86 <0.001 81.86 23.43 31.24 0.00 62.50

1500 0.26 0.15 <0.001 0.43 2.39 41.22 <0.001 82.67 35.13 46.86 0.00 93.75

2000 0.33 0.17 <0.001 0.54 2.56 41.53 <0.001 83.40 46.86 62.48 0.00 120.50

2PC

100 0.08 0.04 <0.001 0.10 2.04 40.28 <0.001 79.55 2.34 1.56 0.00 3.12

500 0.14 0.05 <0.001 0.13 2.18 40.48 <0.001 79.98 11.71 7.81 0.00 15.62

1000 0.19 0.06 <0.001 0.17 2.28 40.62 <0.001 81.62 23.43 15.63 0.00 31.24

1500 0.26 0.07 <0.001 0.35 2.39 40.87 <0.001 82.43 35.13 23.43 0.00 46.86

2000 0.33 0.09 <0.001 0.46 2.56 41.12 <0.001 83.16 46.86 31.25 0.00 62.48

Figure 4 (Color online) Comparing the runtime and communication overhead of (a) the division operation and (b) the comparison

operation with that for PriVDT.

Figure 5 (Color online) Comparing the runtime and communication overhead of the multiplication operation with that for PriVDT.

(a) Under the 3PC setting of SecureCART; (b) under the 2PC setting of SecureCART.

reduces the communication overhead by 91% compared to that of PriVDT, while in the case of 2PC, our
Πdiv incurred the communication overhead of only 7% as compared to that for PriVDT.

For the secure comparison protocol Πcomp of SecureCART, Figure 4(b) shows the runtime and com-
munication overhead of the comparison operation with that of PriVDT. Since our scheme is based on
the special asymmetric framework of pMPL, that is, it includes two roles, that of a privileged party and
assistant party, the FSS-based Πcomp designed for SecureCART is inevitably more complex than those for
the two-party PriVDT. Nevertheless, our division protocol Πcomp, whether in the 2PC or 3PC setting,
has a runtime that is roughly comparable to that for PriVDT’s. This is because the time overhead of the
comparison protocols mainly results from the element-wise Eval< in the vector, and the runtime of other
operations considered in our comparison, such as Πextmul and Πshr, is relatively small as compared to
this value.

In the 2PC setting for our comparison protocol, there is a significant increase in the communication
overhead as compared to that for PriVDT due to the conversion from [·]-sharing to 〈·〉-sharing completed
by Πshr and the masking process adapted to the pMPL framework through Πextmul. In the 3PC setting,
the involvement of more participants leads to a further increase in the communication overhead of our
comparison protocol. Although the performance of our Πcomp is inferior to that of PriVDT, it remains
within an acceptable range, and it still outperforms comparison protocols of schemes such as [28]. In
future studies, we aim to improve the multi-party FSS to achieve a better performance of our secure
comparison protocol for pMPL.

For the proposed extension of secure multiplication protocol Πextmul, we compare its runtime and
communication overhead with that of the original multiplication operation of pMPL and PriVDT in
Figure 5. In the case where the privileged party has the plaintext data x, and each party holds a share
〈y〉, Πextmul can perform secure multiplication without secret-sharing x. In contrast, PriVDT and pMPL

require executing the secure multiplication protocol after Πshr. Therefore, it is reasonable to compare our
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Πextmul with the existing Πshr +Πmul. In the 3PC setting of SecureCART, Πextmul is around 1.1×–1.42×
faster than Πshr + Πmul of PriVDT and 1.25×–1.37× faster than Πshr + Πmul of pMPL. However, our
communication overhead is higher than PriVDT due to the greater number of parties. In the 2PC setting
of SecureCART, Πextmul is approximately 1.5× faster than PriVDT and 1.26×–1.39× faster than pMPL.
Additionally, the communication overhead of Πextmul is reduced by 20.2% compared to PriVDT.

We then evaluate the performance of SecureCART on different datasets. Table 2 provides the runtime of
SecureCART on LAN and WAN, comparing it with the training procedure of PriVDT. Our scheme is over
2× faster than PriVDT on LAN for three kinds of datasets, and over 1.3× faster than on WAN. The better
performance on LAN is due to the higher communication overhead of 3PC compared to the two-party
PriVDT. This implies that SecureCART’s advantage is even greater in a lower latency environment.

8 Conclusion

In this paper, we propose SecureCART, a privacy-preserving decision tree training scheme based on a
special framework, pMPL. To be specific, we design three novel building blocks based on pMPL, including
the secure division, the secure comparison and the extension of secure multiplication, which achieve
better performance compared to existing solutions via random masking and FSS. SecureCART, which is
completed by combining these building blocks, consequently provides significant performance advantages.
Moreover, while SecureCART in this paper is conducted by three parties, we can also incorporate more
assistant parties into the training by designing suitable public matrices.

In future studies, we will continue to optimize building blocks that need to be improved and expand
SecureCART to make it applicable to various forms of datasets. Additionally, since the privacy-preserving
decision tree inference is not include in our scheme, and similar solutions all have shortcomings in privacy
or efficiency, we also consider designing a multi-party privacy-preserving decision tree inference scheme
based on pMPL, which will prove to be secure and efficient.
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