
SCIENCE CHINA
Information Sciences

July 2024, Vol. 67, Iss. 7, 170303:1–170303:26

https://doi.org/10.1007/s11432-023-3987-y

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Topic: XAI-Enabled Network Automation for 5G and Beyond: Move Closer to Zero-Touch

XRL-SHAP-Cache: an explainable reinforcement
learning approach for intelligent edge service caching

in content delivery networks

Xiaolong XU1, Fan WU1, Muhammad BILAL2, Xiaoyu XIA3, Wanchun DOU4*,

Lina YAO5,6 & Weiyi ZHONG7

1School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2School of Computing and Communications, Lancaster University, Lancaster LA1 4WA, UK;

3School of Computing Technologies, Royal Melbourne Institute of Technology, Melbourne VIC 3001, Australia;
4State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;

5School of Computer Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia;
6Data 61, Commonwealth Scientific and Industrial Research Organization, Sydney VIC 3169, Australia;

7School of Computer Science, Qufu Normal University, Qufu 273165, China

Received 20 July 2023/Revised 19 January 2024/Accepted 20 March 2024/Published online 27 June 2024

Abstract Content delivery networks (CDNs) play a pivotal role in the modern internet infrastructure by

enabling efficient content delivery across diverse geographical regions. As an essential component of CDNs, the

edge caching scheme directly influences the user experience by determining the caching and eviction of content

on edge servers. With the emergence of 5G technology, traditional caching schemes have faced challenges

in adapting to increasingly complex and dynamic network environments. Consequently, deep reinforcement

learning (DRL) offers a promising solution for intelligent zero-touch network governance. However, the black-

box nature of DRL models poses challenges in understanding and making trusting decisions. In this paper,

we propose an explainable reinforcement learning (XRL)-based intelligent edge service caching approach,

namely XRL-SHAP-Cache, which combines DRL with an explainable artificial intelligence (XAI) technique

for cache management in CDNs. Instead of focusing solely on achieving performance gains, this study

introduces a novel paradigm for providing interpretable caching strategies, thereby establishing a foundation

for future transparent and trustworthy edge caching solutions. Specifically, a multi-level cache scheduling

framework for CDNs was formulated theoretically, with the D3QN-based caching scheme serving as the

targeted interpretable model. Subsequently, by integrating Deep-SHAP into our framework, the contribution

of each state input feature to the agent’s Q-value output was calculated, thereby providing valuable insights

into the decision-making process. The proposed XRL-SHAP-Cache approach was evaluated through extensive

experiments to demonstrate the behavior of the scheduling agent in the face of different environmental inputs.

The results demonstrate its strong explainability under various real-life scenarios while maintaining superior

performance compared to traditional caching schemes in terms of cache hit ratio, quality of service (QoS),

and space utilization.

Keywords deep reinforcement learning (DRL), explainable artificial intelligence (XAI), multi-level cache,

content delivery network (CDN), D3QN algorithm, Deep-SHAP

1 Introduction

Content delivery networks (CDNs) have emerged as critical infrastructures for the Internet, enabling
providers to deliver content efficiently to users by caching frequently accessed content on nearby edge
servers (ESs). According to a survey conducted by Akamai Technologies, the global CDN market is
projected to reach $252.17 billion by 2029, with a compound annual growth rate of 10% [1]. This growth
is driven by the escalating demand for high-quality streaming (e.g., Netflix, Hulu and YouTube), online
gaming (e.g., Steam), and e-commerce services (e.g., Amazon and eBay) that require efficient content
delivery across diverse geographical regions. In addition, a survey conducted by ABC Consultancy

*Corresponding author (email: douwc@nju.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3987-y&domain=pdf&date_stamp=2024-6-27
https://doi.org/10.1007/s11432-023-3987-y
info.scichina.com
springerlink.bibliotecabuap.elogim.com

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:2

revealed that 84% of enterprises have incorporated CDNs into their infrastructure, resulting in improved
website performance, reduced latency, and enhanced user experience [2]. The proliferation of digital
enterprises and growing demand for agility and faster content delivery have underscored the increasing
significance of intelligent cache management. Concurrently, the adoption of software-defined networking
(SDN) provides a programmable approach to network management, enabling the dynamic control and
configuration of network resources [3].

To fully harness the potential of CDNs, the development of optimal cache-management mechanisms
for autonomous network operations is imperative. The ultimate objective is to realize a zero-touch
system that empowers network operations (NetOps) team to maintain control while minimizing manual
interventions. However, in today’s digital landscape, with 40% of website visitors abandoning the page,
if it takes more than three seconds to load [4], efficient data caching at the edge is highly sophisticated to
achieve low latency and reduce network traffic. Traditional caching algorithms rely on simple heuristics
or statistical models that may not accurately capture complex patterns in user requests and content
popularity. To overcome this limitation, deep reinforcement learning (DRL) has emerged as a powerful
technique for network automation. DRL combines the strengths of deep learning (DL) and reinforcement
learning (RL), allowing agents to learn optimal actions through environmental interactions. In the context
of network caching, DRL agents can dynamically adapt their caching decisions based on real-time feedback
such as user behavior and network conditions. DRL-driven network automation offers a new paradigm for
intelligent and adaptive decision-making in diverse network resource scheduling scenarios, such as content
caching, network slicing, and traffic routing [5]. By leveraging the real-time feedback on user behavior
and network states, DRL agents can dynamically make decisions that account for content popularity [6],
user access patterns, and network constraints, thereby improving cache hit rates, latency, and quality of
service (QoS).

The application of DRL in network automation introduces challenges pertaining to the black-box na-
ture [7] of DL models (i.e., not readily understandable by humans or easily explainable using intuitive
reasoning). Traditional DRL agents lack interpretability, making it difficult for network administrators
to understand the decision-making process and trust the agents’ actions. This limitation hinders effective
collaboration between humans and automated systems, potentially impeding the adoption of DRL in crit-
ical network operations. To address these challenges, explainable artificial intelligence (XAI) techniques
must be incorporated into network automation. XAI creates a suite of AI techniques that enables human
users to understand, appropriately trust, and effectively manage the emerging generation of artificial
intelligent partners [8]. There is invariably a tradeoff between model explainability and performance. In
other words, simple or shallow models (e.g., naive Bayes, logistic regression, decision trees (DTs)) that
tend to be more explanatory may not achieve the same level of performance as more complex and deeper
models based on neural networks (NNs).

Most current XAI approaches can be categorized as either intrinsic or post-hoc methods. Post-hoc
explanations are derived from pre-trained models and can be model-agnostic, whereas intrinsic explana-
tions are inherent to the model and are usually model-specific. Techniques such as visualization meth-
ods, knowledge extraction, contribution-based methods, and example-based explanations, fall under the
category of post-hoc explanations. Visualization methods provide gradient propagation or activation
masks to facilitate understanding of the model output. Knowledge extraction techniques (e.g., knowledge
distillation [9]) focus on extracting explainable knowledge from complex models. The use of knowl-
edge graphs [10] as a means of structured representation has also gained attention in recent studies.
Contribution-based methods are commonly employed in model-agnostic approaches to estimate the im-
portance or relevance of features. They perturb inputs or internal components and assess the impact on
model performance [11]. Example-based explanations [12] clarify based on specific examples or instances.
Specifically, the post-hoc algorithms commonly used in XAI include local interpretable model-agnostic
explanations (LIME), Shapley additive explanations (SHAP), class activation map (CAM), and layer-wise
relevance propagation (LRP).

However, the effective infusion of explainability into DRL-based caching strategies poses significant
challenges. DRL agents map the states to actions based on a complex internal logic with opacity sur-
rounding the weighting of the factors. Model-specific explanation techniques [10] necessitate pervasive
changes to existing DRL algorithm implementations to inject explainability. This tight integration be-
tween target models and explanation methods hampers flexible adoption across various applications.
Meanwhile, self-explainable methods that directly encode explainability into the model structure (e.g.,
policy networks) can potentially disrupt the emergence of optimal decisions.

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:3

In this study, the transparency of the autonomous network management system is enhanced by incor-
porating Deep-SHAP, which is an improvement over traditional SHAP methods. This enables NetOps
teams to gain insights into the decision-making process, interpret system behavior, and ensure alignment
with organizational goals and policies [13], which ultimately leads to a more reliable and accountable
network automation solution.

The main contributions of this study are as follows:
• Based on the modeling of the multi-level CDN network architecture, a multi-objective optimization

problem targeting an optimal cache policy is formulated to maximize the overall hit rate, QoS, space
utilization, and load balancing of the entire system.

• To enhance the performance of CDNs in dynamic and complex network environments, a multi-
level cache scheduling framework with two edge-side deep double dueling Q-network (D3QN) agents is
proposed to handle caching and maintenance options. The scheduling agents can adjust their strategies
based on real-time environmental feedback, thus making them capable of adapting to rapidly changing
access patterns.

• To address the black-box nature of the D3QN decision-making process, explainability is integrated
into the framework to propose an explainable reinforcement learning (XRL)-based intelligent edge service
caching approach, namely XRL-SHAP-Cache, which combines DRL with the XAI technique for cache
management in CDNs.

• The proposed XRL-SHAP-Cache approach was evaluated through extensive experiments in a simu-
lator environment, with the results demonstrating its superior performance compared to baseline meth-
ods in terms of cache hit ratio, QoS, and resource utilization. In addition, case studies on real-world
scenarios were conducted to showcase its outstanding interpretability for transparent and trustworthy
decision-making.

2 Related work

2.1 DRL based service caching

Previous studies have mainly used static rules and heuristic methods, such as first in first out (FIFO),
least frequently used (LFU), and CLOCK to address the cache management problem, struggling to
adapt to dynamic and complex network environments. To address this issue, Yan et al. [14] proposed a
cache space slicing technique and then leveraged the distributed distributional deep deterministic policy
gradient (D4PG) to optimize the service caching strategy with the highest service coverage rate and low
processing latency. Similarly, Kong et al. [15] designed a joint computing and caching framework by
integrating the deep deterministic policy gradient (DDPG) algorithm.

To alleviate the unnecessary overhead on the backbone network caused by the rapidly growing inter-
net video traffic and users’ increasing quality of experience (QoE) demands, Wang et al. [16] proposed
MacoCache, an intelligent edge-caching framework that is carefully designed to support a massively di-
versified and distributed caching environment, aiming to minimize both content access latency and traffic
costs. Fang et al. [17] proposed a framework to improve content distribution in a layered fog radio access
network (FRAN). For cross-layer cooperative caching and routing decisions, they included a new DRL
policy design based on historical information and available network resources. Nikbakht et al. [18] further
developed an RL-based caching technique that can adapt to time-location-dependent popularity patterns
for on-demand video content, and Lim et al. [19] proposed a DRL-based offloading scheduler (DRL-OS)
that considers the energy balance when selecting the method for task execution, namely local computing,
offloading, or cache dropping.

Unlike most of the aforementioned works, which assume uniform cached content sizes, Zhou et al. [20]
presented a novel size-adaptive content caching (SACC) algorithm using an actor-critic architecture. The
SACC models the requests with random sizes and updates the cache after a batch of requests to satisfy
the real-world requirements.

2.2 Explainability in DRL

DRL agents operate within a Markov decision process (MDP) framework to select actions based on
the observed states and optimize the rewards. However, traditional DRL methods are often regarded
as black boxes that lack transparency in decision-making processes. To address this limitation, recent

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:4

studies have focused on integrating explainability into DRL models, which is also known as XRL. Wells et
al. [21] conducted a comprehensive review of the current approaches and trends in XAI and DRL. Their
study emphasizes the significance of incorporating explainability into DRL models. Vouros [22] further
conducted an extensive analysis of the state-of-the-art methods and challenges in XRL, identifying key
areas for future research.

Several researchers have proposed approaches for enhancing the interpretability of their domain-specific
DRL models. Zhang et al. [23] proposed a backpropagation deep explainer based on SHAP, as an inter-
pretable approach for DRL-based power system emergency control applications. Dassanayake et al. [24]
addressed the interpretability issue of deep neural networks (DNNs), explaining the reactions to prede-
fined constraints and capturing the associated conditions that influence the DNN in a time series. Zhu
et al. [25] focused on developing interpretable techniques for DRL in traffic signal control by utilizing
modified DTs to extract models with simpler hierarchical structures from DRL policies, thereby enabling
human-understandable decision processes. Leveraging knowledge graphs to empower DRL agents, Wu et
al. [10] proposed a novel framework that enables transparent and interpretable explainable AI for commu-
nication network automation. Through a path selection case study, they demonstrated the feasibility of
their proposed architecture by providing human-understandable explanations for network control actions.
Several studies have focused on generating fuzzy rule-based systems to provide explainability. To address
the stability challenges arising from independently controlled yet interdependent motion commands in
autonomous vehicles, Chen et al. [26] presented a conditional deep Q-network (DQN) integrated with
an explainable defuzzification scheme based on fuzzy logic control, to guide directional planning and im-
prove predictive stability. To maintain the fidelity and accuracy of the original networks while lowering
complexity, Aghaeipoor et al. [27] proposed fuzzy-rule-based explainer systems that learn compact yet
accurate fuzzy rule sets based on the importance of features distilled from trained networks. Among
practical industrial applications, there have also been attempts to extract IF-THEN rules [28], M-of-N
rules [29], and DT rules [30, 31] to explain NNs.

In summary, few studies have focused on the explainability of service caching operations, and there
has been little work on adopting DRL for multi-level caching. Therefore, a multi-level cache scheme
incorporating XRL is proposed in this study.

3 Model formulation and problem definition

3.1 Network architecture

As illustrated in Figure 1, the CDN architecture discussed in this paper can be divided into three primary
layers: cloud, edge, and end layers.

The cloud layer encompasses a centralized data center and K services. The datacenter, denoted by
O, serves as the origin server. In this study, data center O is assumed to be always scalable, capable of
accommodating all services within the system, and highly reliable, ensuring uninterrupted operation with-
out any downtimes. The services, represented as S = {s1, s2, . . . , sK}, refer to the various applications
and data hosted in data center O and accessed by end users.

The edge layer consists of N ESs responsible for caching and delivering content to end users, denoted
as E = {e1, e2, . . . , eN}. ESs are strategically placed in optimal locations to ensure that they are geo-
graphically closer to as many end users as possible within their maximum coverage range ri. To optimize
energy consumption and boost performance, all ESs are equipped with a multi-layer cache architecture.
Individual cache layers vary in capacity, I/O speed, and power efficiency, allowing intelligent data place-
ment to maximize QoS. The three cache levels, denoted as L1, L2, and L3, are strategically tiered to
align with distinct purposes within the system. Typically, L1 cache, which is implemented using random
access memory (RAM), is the fastest and has the lowest capacity. In contrast, the L3 cache, which is
often implemented using hard disk drives (HDDs) or tape drives, is the largest although slower in terms
of I/O and consumes significantly more energy.

The end layer comprisesM end users denoted by U = {u1, u2, . . . , uM}. These end users can be located
anywhere around ESs and can access services using a wide range of devices, including desktop personal
computers (PCs), laptops, smartphones, personal digital assistants (PDAs), and tablets. The connection
method of users to ESs can be wired Ethernet, Wi-Fi, or cellular data, that is, global system for mobile
(GSM) communication, long-term evolution (LTE), 4G, and 5G. which exhibit variations in bandwidth,

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:5

Data center

Cloud layer

Edge layer

End layer

…

Edge server e
1

Edge server e
2 Edge server e

N

…

L1 cache

L2 cache

L3 cache

L1 cache

L2 cache L2 cache

L3 cache

L1 cache

L3 cache

End-user u
1

u
2

u
3

u
4

u
5

u
M

Figure 1 (Color online) Architecture of a multi-level cache CDN empowered by edge caching.

latency, and jitter.

End users iterate through all available ESs within the designated range, denoted by {ej |dist(ej , ui) <
ri}, following the order of geographical proximity from closest to farthest. Upon encountering an ES
with a cached service, the user halts further inspections and retrieves the data from that particular ES.
In a scenario in which cache misses occur across all ESs within range, the user automatically resorts
to fetching the required service from the nearest ES. Upon a cache miss, the selected ES retrieves the
requested content directly from datacenter O and then uses its caching policy to determine whether to
store a copy of the content in the cache for future requests.

3.2 Transmission rate model

Communication between users and ESs, as well as between ESs and data center O, can be regarded as
individual channels. According to Shannon’s theorem, the maximum data transmission rate Rmax of a
channel with bandwidth W is determined by the signal-to-noise ratio (SNR), which can be described as

Rmax = W × log2(1 + SNR). (1)

The SNR is a crucial metric used to measure signal quality. In particular, variations in the transmission
distance can significantly affect the SNR. As distance increases, signal attenuation increases, which is
referred to as propagation loss. Propagation loss l is commonly modeled as

l = (k × d)n, (2)

where k is the coefficient, n is the path-loss exponent, and d is the transmission distance. The specific
value of n is environment-dependent and can be obtained from experiments or theoretical calculations [32].
For instance, n is slightly greater than 1 for an ideal open environment, whereas in urban streets and
indoors, n may range from 2 to 6.

In addition to user mobility, environmental noise is another factor that can dynamically affect SNR.
Noise can arise from natural phenomena (such as thunder or rain), human activities (including traffic
and machinery), and electronic devices. Its waveform and amplitude exhibit random variations in time
and space, making it challenging to predict its impact on the signal. To incorporate this randomness, we
introduce a random error term e, which follows a standard Gaussian distribution e ∼ N(0, 1) to simulate
these fluctuations.

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:6

The total undesired noise is the sum of propagation loss l and environmental noise error term e.
Accordingly, the SNR can be expressed as

SNR =
ρ

l + |e|
, (3)

where the fixed propagation loss l represents a conservative estimate of the signal attenuation, ensuring
that the transmission rate does not overestimate the actual achievable rate even under ideal conditions.
Simultaneously, the environmental noise term e introduces a level of uncertainty into the output. With
the combination of fixed l and variable e, the proposed model can provide robust transmission rate
estimates with conservativeness taken into account.

In this study, we adopt k = 0.1 and n = 3 in the propagation loss formula. The signal power ρ is
determined based on the transmission power and gain at the sender, which is simplified as a constant
C = 10. The channel bandwidth is determined considering the bottleneck with the minimum throughput
in the link. Based on these assumptions, the transmission rate between nodes a and b can be modeled as

tr(a, b) = min{bw(a), bw(b)} × log2

1 +
C

[

0.1× dist(a, b)]
3
+ |e|

. (4)

3.3 Response time model

We denote the request from user ui for service sk as reqnui,sk
, where n is the cumulative index of the

requests. The lifecycle of reqnui,sk in a CDN system starts from when ui sends a request to its target
ES etarget and continues until the user receives the requested service sk, which can be divided into the
following three phases.

(1) User-to-edge delay. This refers to the time taken for user ui’s request to reach etarget. Given
the small size of most request data packages, the transmission delay T tran

C2E on the user side is usually
negligible. In contrast, the propagation delay T prop

C2E dominates this phase, which can be calculated as

TC2E ≈ T prop
C2E =

dist(ui, etarget)

vtran × η
, (5)

where vtran is the speed of electromagnetic signal propagation, which equals the speed of light in a vacuum
(approximately 299792 km/s), and η represents the reduction in signal propagation speed due to signal
attenuation in the transmission medium, with a typical value between 0.7 to 0.8.

(2) Datacenter-to-edge delay (optional). For non-cached services, ESs are required to retrieve the
original content from the remote. This involves transferring sk from data center O to etarget via a
backhaul link. Given the high quality of the dedicated backhaul link, the propagation delay is minimal
during data transmission. Therefore, the primary source of time consumption is the transmission delay
T tran
D2E between O and etarget, which can be modeled as

T tran
D2E =

sk.size

tr(O, etarget)
. (6)

Subsequently, sk is written to Cj
target utilizing different storage media that have varying write speeds.

The time it takes to complete the write operation, denoted as Twrite
D2E , can have a substantial impact on

the overall duration of this phase and can be calculated using

Twrite
D2E =

sk.size

io write(Cj
target)

, (7)

where io write(·) is the write speed of the corresponding cache medium.
Thus, the total edge-to-datacenter time consumption TD2E can be described as

TD2E = T tran
D2E + Twrite

D2E . (8)

(3) Edge-to-user delay. This is identified as the most significant time expense in the entire request
lifecycle and comprises three distinct components: queuing time T queue

E2U , I/O retrieval time T retrieval
E2U , and

user downloading time T download
E2U .

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:7

Due to I/O limitations, each level of cache Cj
target can only handle a finite number ωj of concurrent

reads. To prevent the system from becoming overwhelmed, any excessive requests are added to queue
Q = {task1, task2, . . .}. The queueing time T queue

E2U can be expressed as

T queue
E2U =

{

0, curr reads < ωj ,
∑len(Q)

n=1 duration(taskn), curr reads > ωj ,
(9)

where curr reads denotes the current number of concurrent reads, and len(Q) represents the length of
the queue Q containing excessive requests waiting to be processed.

The read speeds of different cache levels can have a significant impact on the retrieval time of services.
For example, services stored in RAM tend to have shorter retrieval durations than services stored in
HDD. The I/O retrieval time T retrieval

E2U can be calculated using

T retrieval
D2E =

sk.size

io read(Cj
target)

. (10)

Finally, the requested si is transmitted back to ui. The time taken for ui to download sk can be
calculated using

T download
E2U =

sk.size

tr(etarget, ui)
. (11)

Thus, the total edge-to-user time consumption TE2U can be expressed as

TE2U = T queue
E2U + T retrieval

E2U + T download
E2U . (12)

It is worth noting that our model focuses on the I/O-intensive nature of CDN and does not consider
other time costs, such as processing time and system call time. These computation-related factors may
also contribute to the overall response time and cannot be ignored in certain applications [14, 33, 34].
However, I/O operations are typically the primary bottleneck in CDNs, necessitating detailed modeling
to alleviate their impact on system performance. Based on the factors mentioned above, the total response
time Ttotal can be modeled as

Ttotal(req) = TC2E + (1− letarget .has cache(si))× TD2E + TE2U, (13)

where l(·) is the conditional function, which equals 1 when the condition (·) is true, and 0 otherwise.

3.4 Energy consumption model

According to [35], the energy consumption of ESs primarily originates from cache media and network
interface controllers (NICs). This study focuses on service caching rather than offloading, and therefore
computation-related factors are beyond the scope of our discussion.

The multi-level cache architecture exhibits inconsistent power consumption across cache levels due to
differences in underlying storage technologies. The L1 cache typically adopts dynamic random-access
memory (DRAM). Despite requiring occasional refreshes to avoid data loss, DRAM can provide rapid
read/write speeds with reasonably low energy consumption. Besides, the small capacity of L1 cache keeps
this power overhead manageable. The L2 cache, which typically employs flash storage, has moderate
energy consumption with the number of charged storage units adjusted according to the represented
data. The energy consumption of the L3 cache is relatively high due to the constant rotation of disks
and the movement of heads for data retrieval. In addition to the variability in energy efficiency across
the underlying cache media, the energy consumption also correlates directly with the amount of I/O
operations. Let the energy coefficient τj denote the expenditure per unit of I/O throughput at the j-th

level of cache. The energy consumption of cache Cj
i can then be calculated as

Pcache(C
j
i) = τj ×

(

∑

I/O history
)

.size. (14)

In terms of NICs, the volume of data transmitted can significantly influence the energy consumption.
Transmitting larger amounts of data requires sustained electrical power for signal propagation, ampli-
fication, and other overhead involved during the transmission process. Moreover, extended durations

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:8

of active requests can lead to prolonged operational states of the NIC, resulting in continuous energy
consumption for maintaining connectivity, data processing, and communication facilitation. Thus, the
energy consumption of NIC is intricately linked to both the volume of data transmitted and the duration
of the requests, which can be expressed as

PNIC(ei) =
∑

req∈{reqs→ei}

[

pkeep alive × T total (req) + ptrans × req.size
]

, (15)

where pkeep alive and ptrans are NIC-related energy consumption factors. Specifically, pkeep alive is the
power required to maintain the connections, measured in watts per second, and ptrans is the power
associated with data transmission, measured in watts per gigabyte.

Consequently, the total energy consumption of the ES ei can be modeled as

Ptotal(ei) =
∑

j∈{L1,L2,L3}

Pcache(C
j
i) + PNIC(ei). (16)

3.5 Statistical quantities

Based on previous modeling, the following metrics can be obtained through statistical analysis and
calculations in measuring the overall network performance.

(1) Cache hit rate. This metric indicates the proportion of requests that can be served directly from
the cache. The cache hit rate for each ei is defined by the ratio of cache hits to the total number of
requests sent to ei, which can be expressed as

hit rate(ei) =

∑

reqn
ui,sk

∈{reqs→ei}
lei.has cache(si)

count
(

reqnui,sk ∈ {reqs → ei}
) . (17)

(2) QoS. This metric quantifies the overall performance of the caching scheme in terms of user experi-
ence and energy consumption. QoS(ei) was calculated using the following formula:

QoS(ei) =
ln (1 + treffective(ei))

Ptotal(ei)
2 =

1

Ptotal(ei)
2 ln

(

1 +

∑

req∈{reqs→ei}
req.size

∑

req∈{reqs→ei}
Ttotal (req)

)

. (18)

where QoS(ei) is proportional to effective transmission rate treffective(ei) and inversely proportional to
the square of Ptotal(ei), necessitating an optimal cache policy that can achieve lower energy consumption
and higher treffective(ei).

(3) Space utilization. This metric quantifies the effectiveness of utilizing the cache space. A higher
space utilization ratio indicates that more data are stored in the cache, which in turn can potentially lead
to higher hit rates and faster response times. The space utilization ratio of ei is given by

space utilize(ei) =

∑

j∈{L1,L2,L3} C
j
i .used

∑

j∈{L1,L2,L3} C
j
i .size

. (19)

(4) Load balancing. This metric measures the ability of the policy to evenly distribute the workload
among multiple ESs in the system. It is the reciprocal of the standard deviation of each ES’s workload,
calculated as

L =
1

√

∑

N
i=1[w(ei)−w(e)]

2

N

, (20)

where w(ei) indicates the workload of ES ei, and w(e) denotes the mean workload of all ESs, calculated

as
∑N

i=1 w(ei)

N .

3.6 Problem definition

The objective is to obtain an optimal cache policy that maximizes the overall hit rate, QoS, space
utilization, and load balancing of the entire CDN system. However, achieving high performance in all
these metrics simultaneously involves tradeoffs between different objectives. To address this issue, let αn

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:9

be the weighted indicators, with α1 + α2 + α3 + α4 = 1 and α1, α2, α3, α4 ∈ [0, 1]. The multi-objective
optimization problem can be formulated as

maximize Obj =

N
∑

i=1

[α1 × hit rate(ei) + α2 ×QoS(ei) + α3 × space utilize(ei)] + α4 × L

Subject to

C1 : 0 6 sk.size 6 Cj
i .free space,

C2 : dist(ui, ej) 6 ri,

C3 : 0 6 w(ei) 6 1,

C4 : Ttotal(req) 6 thresholdTIMEOUT,

(21)

where the capacity constraint C1 ensures that the size of content sk about to be cached in Cj
i does not

exceed the available free space. The distance constraint C2 guarantees that user ui is within the coverage
range of ES ej . Constraint C3 limits the maximum workload for each ES to between 0 and 1. Constraint
C4 specifies the timeout for each request.

The set of constraints defined by C1 to C4 are assumed to be feasible and non-conflicting. In ad-
dition, we assume the implicit convexity of multi-objective space, which facilitates the identification of
Pareto-optimal solutions. Intuitively, the formulated problem is a mixed-integer nonlinear programming
(MINLP) problem, which is generally NP-hard and requires exponential computational time. Therefore,
we will propose a DRL approach in the following section to address this problem in a more efficient
manner.

4 D3QN-based multi-level cache scheme for CDNs

In real-world scenarios, caching resources are typically extensive in scale and exhibit dynamically changing
access patterns. User requests also differ in temporal and spatial locality, resulting in a high degree of
uncertainty and variability. Traditional cache algorithms [36, 37] that rely on manually designed rules
may struggle to perform well in complex environments. In addition, other NN models [38, 39] that learn
policies offline may become outdated due to dynamic changes in the environment and may no longer be
suitable for real-time scenarios. Therefore, DRL provides a new paradigm for addressing the dynamic
network environment by learning and updating cache policies in real time.

The proposed ES cache policy framework is presented in Figure 2, which is designed to be deployed
on all ESs within the network. The agents operating on each ES continuously observe and interact with
the dynamic environment, which enables them to make intelligent decisions regarding the cache content.
Specifically, the framework consists of two distinct agents, each serving a specific role.

• Cache agent C. This agent determines whether to cache the newly requested service snew and the
level of placement Cj

i after retrieving it from the origin O.
• Maintenance agent M. This agent is responsible for traversing the cache and deciding whether to

remove a particular service, which occurs during regular maintenance cycles or when the cache is about
to reach its maximum capacity.

In this section, we initiate our discussion with an overview of the proposed decision-making process,
which leverages D3QN to learn an optimal online caching policy. Subsequently, the feature and action
space are defined to represent the environmental observations and feasible agent actions, respectively.
Finally, reward functions are designed to evaluate the performance of both agents.

4.1 Decision-making process on the edge side

In RL, the Q-value function (i.e., action-value function) is primarily used to evaluate the expected reward
or value of performing a specific action in a given state. The Q-value reflects the expected reward obtained
by performing a certain action in the current state. Specifically, upon performing action a in state t, the
agent transits to a new state t′ and receives reward r. The Q-value function then estimates the expected
cumulative reward that can be obtained by following the optimal policy, denoted as

Q (t, a) = E [r + γ × argmaxa′Q (t′, a′)|t, a] . (22)

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:10

DRL agents

…

…

Environment

…

…
Replay buffer

1. State t
i

2. Take action a
i

3. Reward r
i

4. New state t
i+1

Loss function

′

Gradient
descent

Periodically update weights

r
i

argmax
a
i

 Q
eval

 (t
i
, a

i
)

Q
eval

Q
target

t
i
, a

i
, r

i
, t

i+1

L=[r
i
+γQ

target
(t

i+1
, a

i
)−Q

eval
(t

i
, a

i
)]2

Figure 2 (Color online) D3QN-based cache policy framework.

In the early days, Q-learning was a classic algorithm that utilized the Q-value function by maintaining
a Q-table that recorded all feasible Q(t, a) for each state-action pair. However, storing and updating the
Q-table is challenging when dealing with high-dimensional and continuous state spaces, resulting in low
efficiency and convergence issues. DQN was then proposed to overcome this problem. DQN employs
a DNN, also known as the Q-network, to approximate the Q-value function. Besides, the experience
replay mechanism enables the DQN to store and learn from previous experiences, thereby increasing the
diversity of samples and enhancing the generalization ability and stability of the network. Our agents
are built based upon the D3QN algorithm, which is a notable upgrade to the DQN algorithm in terms of
its double network mechanism [40]. This mechanism involves two NNs with the same structure, namely
the eval network Qeval and the target network Qtarget. The eval network is used to estimate Q(t, a) and
select the action with the highest Q-value output, whereas the target network is used during training
to calculate the target Q-values. This approach effectively alleviates the overestimation problem in the
traditional DQN and requires fewer parameters.

Algorithm 1 outlines the decision process of a D3QN-based agent, which consists of the following
five stages: (1) observing the current state; (2) selecting an action based on the current policy π;
(3) executing the selected action in the environment; (4) observing the new state and receiving a re-
ward; and (5) updating the weights of Qeval and Qtarget. By iterating through these steps, the agent
learns the optimal policy πopt through trial-and-error interactions within the environment.

4.2 Environment analysis and observation set

The two agents responsible for caching and maintaining service si in ES etarget rely on different sets of
observations in making decisions.

In terms of the cache agent C, its input features include the workload of etarget, available storage at each
cache level (L1, L2, and L3), and the Boolean value indicating whether si can fit in. Other observations
include the service size, charm, popularity, and request frequency of si, as well as the number of nearby
cached servers and the request frequency for etarget. By accepting these input features, C can determine
which services to cache and the optimal layer for caching, thereby maximizing QoS.

The maintenance agent M’s observation set consists of free space and service size ratios, service charm
and popularity, request frequency of si and etarget, cache miss rate, and the LFU index. In addition,
the agent can identify whether si is marked as urgent. By assessing these features, M learns which

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:11

Algorithm 1 D3QN-based agent decision process

Input: Eval network Qeval, target network Qtarget , replay buffer buff, exploration fraction ε, action set A, learning rate α;

Output: Optimal actions Aopt;

1: Initialize Qeval and Qtarget weights with random values;

2: Initialize replay buffer buff with the maximum capacity;

3: episode ⇐ 0;

4: while not converged do

5: Observe the environment to get the current state ti;

6: for each ai in A do

7: Calculate the expected Q(ti, ai) of action ai given the current state ti;

8: end for

9: Use the epsilon-greedy policy to select a random action with probability ε or action argmaxai
Qeval (ti, ai) with probability

1 − ε;

10: Agent takes action ai(aopt), obtains the next state ti+1 and reward ri;

11: Store the new experience 〈ti, ai, ri, ti+1〉 in replay buffer buff;

12: if enough experiences in buff then

13: Sample a random minibatch of transitions from buff;

14: Calculate the target Q-values using yi = ri + γQtarget

(

ti+1, a
′

i

)

;

15: Calculate loss value using L = [yi − Q (ti, ai)]
2;

16: Update Qeval by gradient descent Qeval ⇐ Qeval − α × ∂L
Qeval

;

17: Update Qtarget by copying the weights of Qeval, expressed as Qtarget ⇐ Qeval;

18: end if

19: episode ⇐ episode + 1;

20: end while

services can be safely evicted from the cache, thereby liberating space for more valuable content while
simultaneously maintaining satisfactory performance.

4.3 Design of the reward functions

The primary objective of D3QN is to maximize the accumulated reward through iterative parameter
updates. The design of the reward function directly affects the quality of model convergence. Therefore,
it is crucial to formulate a scientific and reasonable reward function for both agents C and M operating
on ei.

Inspired by [41, 42], as both agents operate on the same ES and share common goals, their reward
functions contain a common part. To simplify the discussion, we first present the common part and
then adapt it to the specific characteristics of each agent. The common part incentivizes both agents to
collaborate and maximize their joint performance in terms of hit rate and space utilization, denoted as

Rbase
ei = hit rate(ei)× space utilize(ei). (23)

In addition to Rbase
ei , cache agent C’s reward function incorporates factors that encourage a higher

operation success rate σsuccess and system’s load-balancing factor L, expressed as

RC
ei = Rbase

ei ×QoS (ei)× σsuccess + L, (24)

where σsuccess represents the proportion of successful operations during a given period, which encourages
C to take actions that lead to successful cache operations, thereby increasing the efficiency of the system.
The load-balancing factor L motivates C to distribute the workload more evenly across servers, which
can help improve the overall performance of the system.

For maintenance agent M, the reward function RM
ei incorporates a mechanism that adjusts to the

available storage space and can be defined as

RM
ei = Rbase

ei ∗

[

QoS (ei)
2
×

Cj
i .free

Cj
i .size

+

(

1−
σcache full

σfailed

)

×
Cj

i .used

Cj
i .size

]

. (25)

Specifically, M is more concerned with QoS at the start, as it is not yet affected by the limited available
space. However, as more space is occupied, M gradually shifts its focus to optimizing the cache policy
and preventing overflows.

4.4 Design of the action space

The cache agent C’s action set AC consists of four possible actions: {aidle, aL1, aL2, aL3}; C determines
whether and where to cache service si: cache si to the L1 cache (aL1) offers the fastest access but limited

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:12

D3QN-based cache scheme

State input

Action output

Q
eval

 network model

…

…

Explanation unit

Global explanation

Local explanation

Deep-SHAP

Visualization

Feature importance

Cumulative effects

Feature correlation

Partial dependence

Figure 3 (Color online) D3QN decision-making framework integrated with Deep-SHAP.

capacity, cache si to the L2 cache (aL2) has a higher latency but larger capacity, cache si to the L3 cache
(aL3) has the slowest I/O but the largest capacity, or take no action (aidle). On the other hand, the
action space for M includes two possible actions: AM = {apreserve, adelete}, where apreserve indicates that
si should be left untouched, and adelete evicts si to free up space.

5 Deep-SHAP integration for decision-making explainability

Modern AI-driven CDN systems in 5G and beyond impose new demands in areas such as regulatory
audits, trustworthy decision-making, performance optimization, and human-machine collaboration [43].
However, the use of D3QN models in CDN cache policies often lacks transparency, hindering their ex-
plainability in the decision-making process. To address this issue, existing approaches include LIME,
deep learning important features (DeepLIFT), LRP, and SHAP.

Deep-SHAP, a modern implementation of the traditional SHAP algorithm, was adopted to enable the
interpretability of the D3QN agents. Deep-SHAP offers model-agnostic, global, and local explainability
while maintaining robustness to correlated features. Figure 3 illustrates the integration of Deep-SHAP
into the D3QN framework, which aligns the agents’ decision-making with the needs and goals of network
administrators, verifying whether the model robustly solves the problem. In this section, the computation
of SHAP value, which serves as the foundation for Deep-SHAP, is demonstrated, followed by a discussion
on integrating Deep-SHAP into our framework.

5.1 Computation of SHAP values

The SHAP values, initially proposed in [44], stem from the Shapley value concept of game theory. The
Shapley value assigns a contribution value to each player in a cooperative game based on their marginal
contributions to the overall payout. Similarly, in the context of SHAP values, this concept is applied to
the contribution of individual input features to the output of a model. By viewing the prediction task
as a “game” and the input features as the “players”, SHAP values can provide explanations for complex
and nonlinear models such as DRL models.

Given a dataset D consisting of k input samples X = [x1, x2, . . . , xn], where each xj represents a
feature observed by the agent. Through the black-box D3QN eval network Qeval(·), state inputs are

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:13

mapped to Q-value outputs, denoted as yj = Qeval(xj). The SHAP value φj of a particular feature xj

can be calculated as follows.
First, let S be a coalition of features excluding xj and fill the empty positions with

∑n
i=1 xi

n . The
marginal contribution Fdiff(xj) of the model output with and without xj is then calculated as

Fdiff (xj) = Qeval (S ∪ {xj})−Qeval (S) . (26)

Next, the weight ω assigned to each coalition S is calculated as

ω (S) =
|S|! (k − |S| − 1)!

k!
, (27)

where |S| is the size of coalition |S|, and ! is the factorial operator that calculates the product of all
positive integers up to a given number.

Finally, the Shapley value formula shap(·) is applied to each coalition:

φj = shap (xj) =
∑

S⊆D\{xj}

ω (S) ∗ Fdiff (xj) =
∑

S⊆D\{xj}

[

|S|! (k − |S| − 1)!

k!
∗ Fdiff (xj)

]

. (28)

By iterating the aforementioned steps, the SHAP values for each feature are calculated. φj > 0
indicates a positive contribution of feature xj to the model output, suggesting that its presence increases
the predicted value, and vice versa.

Although SHAP provides insightful feature attributions for black-box models, its time complexity
is O(2n) which increases exponentially with the number of features. This renders the calculation of
SHAP values computationally infeasible for larger datasets or multi-dimensional feature spaces. Thus,
approximation techniques and lower-bounding algorithms, such as kernel-SHAP, gradient-SHAP, and
Deep-SHAP [45], have been proposed to mitigate the computational burden.

5.2 Local and global explainability with Deep-SHAP

The Deep-SHAP implementation in our framework was inspired by techniques used in DeepLIFT [46],
which utilizes an LRP algorithm to backpropagate attribution scores from the model’s output through its
internal layers. Building upon this concept, Deep-SHAP combines the traditional SHAP values computed
for smaller components of the network to obtain values for the entire network through the backpropagation
of DeepLIFT’s multipliers. Formally, the DeepLIFT multiplier is defined as

m∆xj∆Y =
C∆xj∆Y

∆xj
, (29)

where ∆xj = xj − rj ,∆Y = Qeval(X) − Qeval(R). rj is the reference input for xj and is calculated as
rj = E(xj). The set of individual reference inputs {r1, r2, . . . , rn} for each xj forms the total reference
set for the state sample denoted by R.

According to Lundberg and Lee [45], DNNs comprise numerous simple components. When analytical
solutions are available for these components, DeepLIFT’s style of backpropagation enables fast approx-
imations for the full model. Let φj = C∆xj∆Y . For the network components depicted in Figure 4, the
DeepLIFT multipliers can be computed as

mxkf3 =
φj (f3, x)

xk − E (xk)
, (30)

∀k∈1,2 myjfk =
φj (fk, y)

yj − E (xj)
. (31)

Using the chain rule,

myjf3 =
∑

k∈{1,2}

myjfkmxkf3 . (32)

Ultimately, through linear approximations, the equations above can be simplified and expressed as

φj (f3, x) ≈ myjf3 (yj − E (xj)) =
∑

k∈{1,2}

φj (fk, y)

yj − E (xj)
∗

φj (f3, x)

xj − E (xk)
(yj − E (xj)) . (33)

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:14

1f (y)

f
3 f

3

f
1

x
1

y
1

x
2

m
x

1

f
3

m
x

2

f
3

m
y

1

f
3

m
y

2

f
3

y
2

f
1

f
2

f
2

Figure 4 (Color online) Typical composition of a DNN that takes y1, y2 as input and outputs f(y). The left side shows the

forward-propagation inference process, whereas the right side illustrates the computation of SHAP value using Deep-SHAP.

Algorithm 2 Deep-SHAP integration for D3QN explainability

Input: Observation dataset D, D3QN eval network Qeval;

Output: Local explanation φ, global explanation φ;

1: Initialize empty local SHAP value matrix Φ ⇐ [φ1, φ2, . . . , φk];

2: Initialize empty global SHAP value vector φ;

3: for each observation Xi in D do

4: for each feature xj in X do

5: Calculate shap(xi,j) using (33);

6: φ ⇐ φ ∪ shap(xi,j);

7: end for

8: end for

9: for j = 1 to n do

10: Calculate φj using (34);

11: φ ⇐ φ ∪ φj ;

12: end for

13: return φ, φ.

In the context of Deep-SHAP, the scope can be global or local. Local explainability pertains to
understanding individual predictions, whereas global explainability aims to provide a more comprehensive
understanding on how the model behaves across the entire dataset. Considering a specific scenario
represented by dataset D, which is composed of observations X originating from a particular case, the
SHAP values φj obtained can be considered as local explanations that help understand the importance
of each input feature for a given prediction. In addition to local explainability through scenario-based
reasoning, global explainability can provide a more comprehensive overview on how agents make decisions

globally and the overall importance of features. The global SHAP value φj for each feature is calculated
by averaging the SHAP values across all observations, to reflect the overall contribution of each feature
to the model prediction. It can be formulated as

φj =
1

k

k
∑

i=1

shap
(

xi,j

)

, (34)

where φj denotes the global SHAP value for the j-th feature, k represents the number of samples in the
dataset, and xi,j represents the j-th feature of the i-th sample.

Algorithm 2 summarizes the main steps of the Deep-SHAP integration in our framework. Note that the
computational complexity of Deep-SHAP is O(n). By employing this approach, the scalability of Deep-
SHAP was significantly improved for high-dimensional inputs, thus generating both local and global
interpretations without compromising the accuracy or processing time.

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:15

Table 1 Parameter configuration of ESs

Index
Bandwidth

(mBps)

Cache capacity (GB) Service range

(km)

Num of users

within range

Geographic location

L1 L2 L3 X Y

0 331 16 256 1000 22 31 27 33

1 973 64 512 4000 45 87 101 18

2 648 32 512 2000 41 78 67 42

3 70 4 64 320 24 22 12 15

4 255 8 128 500 21 26 103 34

5 670 16 128 1000 48 47 141 14

6 752 8 256 2000 34 66 58 34

50

40

30

20

10

0
0

Y
 (

k
m

)

X (km)

20 40 60 80 100 120 140

User

Service range

Connection link

Figure 5 (Color online) Geographic distribution of ESs and users.

Table 2 Running environment details

Component name Specifications

CPU Intel Core i7-12700KF

Memory (RAM) 64 GB

GPU Nvidia GTX 4090

Programing language Python 3.11.3

IDE VS Code 1.80.0

DL framework PyTorch 1.12.1

Operating system Ubuntu 22.04.2

6 Experiments

6.1 Simulation setup and system environment

Experiments were conducted using our self-built simulator (code: GitHub Link1)) to emulate the opera-
tion of CDNs with the goal of better visualizing the results and evaluating performance. The experimental
environment consisted of 10000 services stored in a centralized data center, 150 users, and 7 ESs (Table 1)
distributed over a 150 km × 50 km area (Figure 5). The size of each service followed a Zipf distribution
(α = 2) between 50 MB to 10 GB, and the charm of each service followed a normal distribution (µ = 1, σ2

= 5). Users have limited downstream bandwidth, and all edge nodes have limited maximum concurrent
requests, coverage range, bandwidth, and storage capacity. In addition, the energy consumptions of cache
levels L1, L2, and L3 were defined as 0.2, 0.5, and 1 watt per gigabyte (W/GB), with the corresponding
I/O throughputs set to 20 GB/s, 1 GB/s, and 150 MB/s, respectively.

Furthermore, the simulator integrates features such as user inactivity, new service uploads, changes in
service attractiveness values, user preferences over time, man-made trends, and popularity rankings. It
can replicate various complex application scenarios such as cold starts, high concurrency, server offline,
and stress testing, to simulate realistic network conditions. The experiments were performed using the
system configuration outlined in Table 2.

1) https://github.com/zzxjl1/CDNCache XRL/tree/main/simulator.

https://github.com/zzxjl1/CDNCache_XRL/tree/main/simulator

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:16

Table 3 Hyper parameters during training

Parameter Value

Learning rate 1e−4

Discounted reward factor γ 0.9

Replay buffer size 1e6

Target network update frequency 5e−3

Exploration fraction ε Start: 0.95, end: 0.05

Exploration decay factor 1e−4

Batch size 128

6.2 Model convergence analysis

For all agents, the target network Qtarget and evaluation network Qeval utilized the same four-part struc-
ture. The first part served as the input layer and received the state feature vector as input, with the
number of neurons equal to the number of input features. The second part consisted of four convolutional
layers with 64, 128, 256, and 256 filters, each with a stride of 1. The first three convolutional layers had
a kernel size of 3 × 3, whereas the size of the last layer was 1 × 1 to merge different channels. The
output of each convolutional layer was passed through a rectified linear unit (ReLU) activation function
to extract latent features. The third part was a fully connected hidden layer that received the output of
the final convolutional layer as a one-dimensional vector. This layer plays a critical role in linking the
convolutional layers’ output with the final Q-value estimation, thereby enabling the model to capture
higher-level abstractions and complex interactions. The last layer provided the Q-value output, and the
number of neurons in this layer corresponded to the possible actions of the given agent.

In training the network, the mean squared error (MSE) loss function was used to measure the dis-
crepancy between the predicted and target Q-values obtained from the Bellman equation. The Adam
optimizer was used to update the network parameters. The hyperparameters used during the training
are listed in Table 3.

The choice of the learning rate is a critical determinant of the training dynamics of the proposed DRL
model. An excessively high learning rate can induce instability and hinder convergence, whereas an ex-
cessively low learning rate can lead to slow convergence. To strike a balance between these considerations,
we set the learning rate to 1e−4 through grid search iterations, to enable stable policy updates without
the risk of divergence. The discounted reward factor γ was set to 0.9, emphasizing the importance of
immediate rewards while acknowledging the potential influence of future rewards. This balanced weight-
ing ensures that the model effectively captures both short-term gains and long-term considerations. The
replay buffer, with its size set to 1e6, served as a reservoir for past experiences, allowing the agent to learn
from a diverse range of situations. Although a larger buffer can accommodate more varied experiences
for robust learning, it requires more memory resources. The chosen size accommodates this tradeoff,
fostering effective learning without imposing excessive memory demands. The exploration fraction ε
represents the proportion of exploratory actions performed by the agent. As the system starts without
any knowledge (or bias) of the task at hand, using the best-known action at each step, the system may
get trapped in a local optimum. To overcome this, ε was initially set to 0.95, implying that the system
explores 95% of the time at the beginning of the training phase. Then, ε was linearly reduced to 0.05 over
the first 9000 steps. This ensures that the agent explores the environment extensively at the beginning
but gradually relies more on learned knowledge as training progresses. After 9000 steps, ε remained
constant at 0.05, allowing continued exploration to improve performance. Finally, a batch size of 128 was
chosen to balance the computational efficiency and effective learning from experience.

The learning process for both agents can be divided into three stages, as shown in Figure 6. In
the starting stage (first 22000 episodes), both agents gradually learn to manipulate cache based on
environmental observations. Initially, the average reward is low as the agents begin to explore and learn.
However, the average reward increases over time as the agents improve their decision-making abilities.
Subsequently, moving on to the transition stage (episodes 22000 to 38000), the agents face the challenge of
handling cache overflow. The average reward fluctuates as the agents experiment with different strategies.
A slight dip in the average reward is observed as the agents tackle this challenge, followed by a gradual
increase as they find better approaches. Finally, in the fine-tune stage (after 38000 episodes), the average
reward stabilizes. This indicates that the agents converge to an optimal strategy and a point of consistent
and predictable performance. Random variations in the environment or slight adjustments made by the

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:17

Fine-tune stageTransition stageStarting stage

2500

2000

1500

1000

500

0

A
v
er

ag
e

re
w

ar
d

0 10000 20000 30000 40000 50000

Number of episodes

Cache agent

Maintenance agent

Figure 6 (Color online) Average reward over episodes.

agents to fine-tune their strategies can still generate minor fluctuations during this stage.

6.3 Performance comparison with established baselines

To evaluate the feasibility and performance of the proposed multi-level cache scheme based on D3QN, we
compared RL-SHAP-Cache with five well-established algorithms. The baselines used in our evaluation
experiment are as follows:

• Random selection. Randomly selects a cache level that can accommodate the requested service as
the destination. When the cache is full, services are randomly selected for eviction.

• FIFO. FIFO caches services in the order of their arrival, starting from the L1 cache and progressing
to the L3 cache. When the cache is full, the oldest cached service is removed first.

• LFU. LFU considers the number of accesses within a specific time frame to determine cache actions.
When the cache is full, it prioritizes the removal of the least accessed data.

• Q-learning. As a model-free reinforcement learning algorithm that aims to maximize a Q-function,
it estimates the expected cumulative reward for taking a specific action in a given state.

• DQN. DQN extends the Q-learning algorithm by leveraging an NN to approximate the Q-function.
DQN incorporates techniques like experience replay and target networks to enhance stability and efficiency
during learning, enabling better adaptability to complex scenarios.

During the experiments, we set up anchor points within the simulation environment to collect perfor-
mance data at predefined time intervals. These anchor points were triggered when the timestamp reached
a specified value, thereby enabling the collection of performance metrics for each baseline algorithm. The
results of the performance comparison are presented in Table 4.

During the initial 2-minute cold start period, the proposed XRL-SHAP-Cache cached as many services
as possible in the L1 cache, achieving the highest L1 cache utilization of 92.72%. This resulted in the
best QoS and average response time among all the baselines. At the 2-hour mark, the performances of all
baseline algorithms were generally at their peak as the caches had just been filled, ranking their highest
hit rates during the entire lifecycle. At this point, the proposed XRL-SHAP-Cache outperformed other
baselines in all evaluation metrics. At the 1-day mark, the previously cached services were no longer
relevant due to shifts in user interests. Hard-coded baselines struggled to adapt to the new environment
at this point, with the random selection hit rate decreasing by 63.54%. In contrast, XRL-SHAP-Cache
continued to perform well by continuously learning from environmental observations, achieving an 87.91%
hit rate, 43.24 s average response time and a load balancing factor of 92.71. Note that the utilization of L2
and L3 cache in XRL-SHAP-Cache is slightly lower than that of the other baselines. This is because com-
pletely filling the cache leads to frequent evictions, increasing energy consumption and adversely affecting
QoS. Therefore, XRL-SHAP-Cache agents prefer to retain cache space to improve overall performance.
Among all caching schemes, RL-based algorithms achieve superior performance owing to their ability to

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:18

Table 4 Performance comparison of different caching schemes over timea)

Time Algorithm Hit rate (%) Avg response time (s) QoS
Space utilization (%)

Load balancing
L1 L2 L3

2 min

Random 89.71 45.49 1.32 62.58 1.95 0.36 50.59

FIFO 89.42 43.92 1.56 87.41 6.32 0 52.41

LFU 91.54 37.15 1.71 88.36 6.27 0 55.87

Q-learning 88.67 35.40 1.84 88.03 5.12 0 60.25

DQN 90.33 33.92 1.93 90.24 5.44 0.47 59.04

Ours 90.64 32.56 2.04 92.72 5.52 0.02 61.88

5 hour

Random 90.81 47.65 0.90 92.75 96.77 99.52 27.11

FIFO 91.59 48.36 0.85 89.24 97.16 99.39 34.92

LFU 91.02 45.19 0.78 91.39 98.64 99.28 48.30

Q-learning 92.13 43.13 1.22 93.21 97.20 99.87 79.03

DQN 92.94 42.62 1.41 93.69 98.52 99.41 88.20

Ours 93.46 41.86 1.53 93.77 98.81 99.89 90.52

1 day

Random 34.27 68.35 0.30 87.87 98.63 99.38 14.46

FIFO 63.58 60.13 0.44 91.02 95.15 99.27 34.32

LFU 74.11 52.84 0.59 90.76 97.81 99.14 45.25

Q-learning 77.19 49.10 0.94 91.18 94.97 94.84 77.84

DQN 83.01 47.06 1.21 90.14 98.09 97.46 87.92

Ours 87.91 43.24 1.47 91.40 94.13 95.49 92.71

a) The best performance in each evaluation metric is in bold.

adapt dynamically to changing environments. In particular, DQN surpassed Q-learning by 5.82% in hit
rate and 3.96 s in response time. Our proposed D3QN-powered XRL-SHAP-Cache further outperformed
DQN by 4.9% in hit rate and 5.2 s reduction in response time.

These results validate the feasibility and effectiveness of XRL-SHAP-Cache in CDNs. The proposed
approach consistently outperformed the other algorithms in terms of QoS and load-balancing metrics. It
adapted well to varying workloads and conditions over time, demonstrating its robustness and suitability
in real-life environments.

6.4 Case study with local explainability

In this subsection, we present a series of case studies demonstrating the local explainability of the XRL-
SHAP-Cache model in various real-world scenarios. These case studies utilized samples collected during
the training process of the XRL-SHAP-Cache model. Each case study focuses on unique conditions,
providing insight into the decision-making process of the model.

6.4.1 Cold start

CDNs may encounter the “cold start” scenario when deployed in new environments, with little to no
cached data or optimization for the upcoming workload. In this scenario, CDNs struggle to adaptively
optimize their performance due to the lack of historical usage records, whereby an issue known as “cache
breakdown” may arise when all requests fail to hit the cache, causing a surge of requests being forwarded
to the origin server. Traditionally, to address this problem, in prewarming [47] the cache is filled with
randomly selected content. However, the proposed approach relies on D3QN agents to manage the cache
dynamically during the request process, thereby allowing for a more adaptive and elastic caching strategy.

Figure 7 illustrates the impact of different input features on the Q-value output of each action for the
cache agent when the cache is almost empty. The Q-value for action aidle is significantly reduced by the
high free-storage size ratio of the cache. Conversely, the Q-values for aL1, aL2, aL3 are positively affected.
Consequently, the cache agent is confident in not choosing aidle. These behaviors are reasonable because
the cache agent must prioritize caching as much content as possible to improve the cache hit rate.

Figure 8 further analyzes the impact of input features on the expected Q-value output of maintenance
agent’s actions apreserve and adelete for 100 newly deployed ES request samples. The analysis shows that
the majority of input features contribute positively to the expected Q-value of the maintenance agent’s
output apreserve. Specifically, the high free-space ratio and high ES cache miss rate during cold start have
the most significant impact, leading to Q-values of approximately 600. However, the high free-space ratio

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:19

other 12 features

free_space_ratio_L3

free_space_ratio_L1

free_space_ratio_L2

−1500 −1000 −500 0 500 1000 1500

−1500 −1000 −500 0 500 1000 1500

Q-value output

IDLE

L1

L2

L3

Figure 7 (Color online) Multi-output decision plot for cache agent actions captured on a newly deployed ES, where from bottom

to top of the plot, SHAP values for each feature are added, showing how features contribute to the overall Q-value output.

500

−500

−1000

−1500

−2000

10 20 30 40 50 60 70 80 90 0

0

es_cache_miss_rate

free_space_ratio

es_cache_miss_rate

(a)

(b)

Figure 8 (Color online) Maintenance agent actions on 100 newly deployed ES request samples, where red (blue) indicates a

positive (negative) impact on the Q-value output. (a) PRESERVE; (b) DELETE.

negatively affects the expected output of adelete, resulting in Q-values below zero. This suggests that the
maintenance agent takes a conservative approach, prioritizing apreserve over adelete to allow for a higher
tolerance for cache hits and fewer evictions. Such decision-making tendencies help prevent the premature
eviction of potentially popular content and excessive energy consumption, as the agent lacks sufficient
historical data to accurately identify which content is truly unpopular.

6.4.2 Cache management under resource-constrained conditions

Due to the complexity of the proposed multi-level cache architecture, selecting the optimal cache level is
critical for ensuring QoS. In addition, the cache maintenance process requires a delicate balance between
preserving and evicting data. Aggressive cache eviction policies can lead to Cache Thrashing, causing
frequent cache emptying and refilling, which results in significant performance degradation. Conversely,
excessive data preservation can increase cache hit rate but also increase the risk of cache overflow.

Figure 9 provides insights into the influence of free storage space at different cache levels on cache level
selection by the agent. The key findings are as follows:

(a) Adaptive cache level selection. When the free-space ratio is high in the L1 cache, the agent tends
to favor caching the data at the L1 level. As the free-space ratio in the L1 cache decreases, the agent
gradually shifts its preference to L2 and eventually to L3 cache. This demonstrates that the agent is
adapting its decisions based on the available cache resources to maintain an optimal cache hit rate.

(b) Cache level preference. The agent’s sensitivity to the free storage space ratio varies across different
cache levels. Specifically, the agent shows higher sensitivity (indicated by higher SHAP values) to the
free-space ratio in the L1 cache compared to the L2 and L3 caches. This preference aligns with the
characteristics of the L1 cache, which has the lowest latency and highest I/O speed, making it crucial for
ensuring QoS.

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:20

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9 (Color online) Dependence plot for the impact of free storage space on cache level selection. Consecutive rows (cache

to L1: (a)–(c), cache to L2: (d)–(f), cache to L3: (g)–(i)) represent actions of caching at different levels. The three graphs display

the impact of the free-space ratio on the decision-making process for each of the three cache levels respectively.

(a) (b)

Figure 10 (Color online) Dependence plot displaying the impact of free space on maintenance agent actions. (a) PRESERVE;

(b) DELETE.

(c) Improved action success rate. When the cache has a high free-space ratio, the can fit feature has
a greater impact on the decision-making process. This indicates that the agent is more likely to select a
cache level capable of accommodating the data, thereby increasing the probability of a successful cache
action.

In Figure 10, the maintenance agent exhibits the following patterns:

(a) Progressive cache eviction. The RL agent avoids aggressive cache eviction policies, particularly for
the L1 cache. It only starts to consider evicting data from cache (SHAP values above 0) when the free
space ratio is below a certain threshold possibly because the agent wants to maintain a certain level of
cached data to prevent cache thrashing and maximize overall performance.

(b) Priority control. When the is urgent flag is set to true, the agent becomes more aggressive in cache
eviction to free up space for high-priority data. This strategy helps avoid exceeding cache limits, thereby
preventing performance degradation.

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:21

6.4.3 Services of intensive or moderate demand

Modern CDNs implement strategies that prioritize services based on resource usage, which is crucial for
an efficient allocation of resources as services are not accessed equally by users, and their resource require-
ments can vary significantly. Efficient allocation involves storing services with high resource demands for
longer durations in the cache to avoid quick eviction. Conversely, services with a lower demand should
be evicted more readily.

Highly attractive (e.g., charming) services tend to attract more traffic, resulting in increased bandwidth
and CPU requirements. Figure 11 illustrates how the model dynamically adjusts its caching strategy
based on the popularity of requested services. By analyzing the SHAP value patterns in the input
features charm, req freq and is popular, the following conclusions can be drawn.

(a) Favoring high-demand services. The agent prioritizes popular services over less popular ones such
that services with higher appeal and request frequency are more likely to be cached earlier and preserved
for longer periods.

(b) Tolerance variation. Even for less popular services, larger cache capacities demonstrate higher
tolerance. With abundant space, they can afford caching some lower-demand services in case their
popularity increases over time.

(c) Decisive is popular feature. The is popular feature has substantial weight in agent decisions. If a
service is designated as a popular trend, it can induce agents to boost their caching priority and lengthen
their retention period. This is likely because of the possibility of sudden traffic surges to hot-listed
services, which encourages agents to provide them with preferential treatment.

Service size is another significant factor that determines the demand for resources. Figure 12 provides
a detailed analysis of the agent actions when dealing with services of varying sizes. The behavior of the
cache agent in Figure 12(a) is consistent with the findings discussed in Subsection 6.4.2, and highlights
the following points. The L1 cache is well-suited for lightweight services. However, it may struggle
to accommodate bulky services because of limited capacity, resulting in significant adverse effects. By
contrast, the L2 cache proved to be more versatile with moderate size and satisfactory I/O throughput,
allowing it to effectively handle services of various sizes. For bulky services, the L3 cache is the most
suitable with its large capacity. However, the relatively low speed makes it less favorable for minuscule
services that require quick access times.

The heatmap in Figure 12(b) is somewhat noisy in that as the service scale increases, its impact on
the Q-value of adelete does not exhibit the expected linear upward trend. Instead, it reaches its maximum
positive impact at the 4-th sample and then gradually decreases to approximately 0. This phenomenon
may indicate that in real-world applications, an increase in service volume does not always directly lead
to a linear positive impact on adelete but can be influenced by various complex factors. Specifically,
significantly large services that are not subject to eviction often possess greater flexibility in terms of
popularity, causing the agent to shift its focus to state inputs other than service size. Nevertheless, the
maintenance agent may be perceived as attempting to strike a balance between two competing objectives:
avoiding cache overflow (thereby evicting bulky services) and minimizing the need for a time-consuming
reloading process for these services.

6.4.4 Collaboration across geo-distributed nodes

Recent advancements [48] in multi-agent reinforcement learning (MARL) have enabled collaboration
across geo-distributed nodes. When selecting a DRL algorithm for interpretability, we opted for D3QN as
the interpretable model. While multi-agent systems are known to excel in scheduling tasks in distributed
systems, the inherent complexity introduced by the coordination among multiple agents can impede the
interpretability goals. For a more straightforward demonstration and analysis of interpretable results, we
focused on a single-agent approach.

Figure 13 demonstrates that even without employing the MARL algorithms, XRL-SHAP-Cache still
allows for a certain level of collaboration between ESs. This collaboration is facilitated by the utilization
of the nearby cached server count features. As the number of nearby nodes that are caching the requested
service increases, cache agents tend to either remain idle or cache the data to a high-capacity storage level,
such as HDD. This behavior aims to reduce the repetition overhead and improve overall performance.

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:22

f(x) f(x)

charm

service_

req_freq

is_popular

f(x)

charm

service_

req_freq

is_popular

f(x)

charm

service_

req_freq

is_popular

f(x)

charm

service_

req_freq

is_popular

charm

service_

req_freq

is_popular

f(x)

charm

service_

req_freq

is_popular

0 2 4 6 8

Sample index

0 2 4 6 8

Sample index

0 2 4 6 8

Sample index

0 2 4 6 8

Sample index

0 2 4 6 8

Sample index

0 2 4 6 8

Sample index

(a) (b) (c)

(d) (e) (f)

Figure 11 (Color online) Heatmap for the correlation between service popularity and agent actions (cache agents: (a)–(d) and

maintenance agents: (e) and (f)) based on 10 samples with their charm increasing over time, where f(x) counts the cumulative

effect of all SHAP values shown in the figure and the grey horizontal line represents the threshold f(x) = 0. (a) IDLE; (b) cache

to L1; (c) cache to L2; (d) cache to L3; (e) PRESERVE; (f) DELETE.

IDLE

L1

L2

L3

0 2 4 6 8

Sample index

0 2 4 6 8

Sample index

PRESERVE

DELETE

(a)

(b)

Figure 12 (Color online) Heatmap for the correlation between service size and agent actions based on 10 samples sorted by

gradually increasing size. Each color block represents the proportion of input feature service size SHAP values among all features,

calculated as φservice size/
∑N

j=1 |φj |. (a) Cache agent; (b) maintenance agent.

6.5 Visualizing feature importance for agent actions with global explainability

The contribution magnitude of each state input to the agent’s decision is depicted in Figure 14. By exam-
ining these global explainability visualization graphs, deeper insights can be acquired into the overarching
propensity underlying the strategies learned by agents across all state inputs.

For the cache agent, the storage-space-related features (i.e., can X fit, free storage size ratio X and
service size) exhibit the largest impact on the Q-values across all actions, as cache capacity limitation
is the most fundamental feasibility constraint in its environment. This aligns with our objective of
maximizing the success rate of caching actions, as the agent consistently prioritizes services that can fit
within the available storage capacity. Once the fundamental capacity constraint is addressed, the next
objective is to maximize cache hits by retaining the most reusable services. Thus, service popularity-
related features (i.e., is popular and charm) were observed to have the second-most substantial impact.

For the maintenance agent, the is urgent flag stands out as the most dominant impact, demonstrating
that the agent’s top priority in promptly addressing the critical space release, is to ensure system avail-

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:23

300

200

100

0

−100

−200

S
H

A
P

 v
al

u
e

100

0

50

50

−100

−10

−20

−30

−50S
H

A
P

 v
al

u
e

S
H

A
P

 v
al

u
e

200

100

0

−100

−200

−300

S
H

A
P

 v
al

u
e

0 1 2 3 54 0 1 2 3 54

nearby_cached_server_count nearby_cached_server_count

0 1 2 3 54 0 1 2 3 54

nearby_cached_server_count nearby_cached_server_count

40

30

20

10

0

(a)
(b)

(c) (d)

Figure 13 (Color online) Violin plot for the influence of nearby cached server coun features on cache agent actions. (a) IDLE;

(b) cache to L1; (c) cache to L2; (d) cache to L3.

ability. This robust behavior aligns seamlessly with the role of is urgent as a final warning flag when
the storage resources on an ES reach dangerously scarce levels. The free space ratio feature emerges as
having the next most impact on decisions based on the heightened risks of cache failures when capacity
becomes highly constrained. This learned prioritization of avoiding capacity bottlenecks aligns with re-
ward function design and real-world system reliability objectives. Features reflecting request frequency
(i.e., least freq index and service req freq) exert moderate impacts, emphasizing in-demand services for
maintaining performance despite pressing capacity needs. By contrast, feature es req freq has the low-
est importance, as the workload and network burden on ESs are less directly relevant to cache eviction
decisions versus end user access patterns.

The global proportionality of feature impacts reveals structured prioritization cascades that are intrinsic
to the agents’ specialized contexts. Cache agents exhibit storage-feasibility filtering, prioritizing capacity
constraints and only thereafter maximize service reusability. Maintenance agents demonstrate decisive
capacity safeguarding during critical shortages, retaining frequently accessed services for their continued
availability. Ultimately, the explanation hierarchies validate how agents intrinsically develop precise
domain-tuned logics spanning from foundational constraints to goal optimization in a graded manner.

6.6 Feasibility analysis of model inference speed

The proposed XRL-SHAP-Cache incorporates D3QN to create a more adaptive and intelligent caching
strategy, capable of handling high-dimensional state inputs and dynamic environments. However, the
computational burden associated with the NN backbone of D3QN raises concerns regarding its practical
application in real-world scenarios. To assess the feasibility of XRL-SHAP-Cache under high-concurrency
conditions, we conducted a benchmark of its inference speed across various hardware configurations. The
stress-test results are listed in Table 5.

Table 5 reveals that the cache agent C and maintenance agent M exhibit comparable transactions per
second (TPS) results across different hardware configurations. This similarity arises from the adoption
of identical network structures, including the same number of layers and weights for both agents. Both
agents achieved an inference speed exceeding 3500 TPS even on a low-power laptop processor (Core i5-
8250U). When utilizing a more potent processor, such as Core i7-12700KF, the system attained an even
higher inference speed, exceeding 8000 TPS. CDN servers are typically I/O bound, and ESs experiencing
higher workloads are likely to be equipped with more advanced hardware. Therefore, the demonstrated

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:24

can_L1_fit

free_space_ratio_L1

can_L2_fit

can_L3_fit

free_space_ratio_L2

free_space_ratio_L3

service_size

is_popular

charm

service_req_freq

nearby_cached_serer_count

es_req_freq

es_load

IDLE

L3

L2
L1

Average impact on Q-value Average impact on Q-value

is_urgent

free_space_ratio

least_freq_index

service_req_freq

cached_in_L1

cached_in_L2

cached_in_L3

service_size_ratio

service_charm

es_cache_miss_rate

es_req_freq

0 500 1000 1500 2000 0 500 1000 1500 2000

PRESERVE

DELETE

(a) (b)

Figure 14 (Color online) Summary plot for global feature importance ranking of both agents, where each color stands for a

specific action. (a) Cache agent; (b) maintenance agent.

Table 5 Inference speed comparison across different hardware specifications

Device type Model name
Inference speed (TPS)

Cache agent Maintenance agent

CPU

Core i5-8250U 3614.21 3568.38

E3-1230 v3 5507.35 5421.96

Core i7-12700KF 8495.42 8204.35

GPU
Tesla T4 14926.73 14893.99

RTX 4090 26283.98 26106.93

TPU Google TPU v2 7531.60 7317.13

performance is deemed sufficient for addressing the demands of most real-world scenarios. Addition-
ally, notable increases in TPS have been observed by leveraging graphical processing units (GPUs) and
application-specific integrated circuits (ASICs) for hardware acceleration. Transitioning to the Tesla T4
GPU resulted in a remarkable 176% inference performance increase compared with the Core i7-12700KF,
reaching over 14000 TPS. Similarly, employing RTX 4090 yielded a substantial 309% TPS increase for
both agents, escalating from 8200+ TPS on Core i7-12700KF to 26000+ TPS on RTX 4090. Notably, the
GPU performance gain over the CPU was not as prominent as that observed in other DL applications.
This is attributed to the design of the XRL-SHAP-Cache ensuring real-time decision making, such that
multiple requests are not merged, thus leading to a constant batch size of 1. Consequently, GPUs cannot
fully utilize their parallel processing capabilities. Future efforts will include improving GPU efficiency
by batching input samples based on time slices, whereby requests within a designated time interval can
be aggregated and batched, thereby allowing for better parallelism during the inference process. Even
in extreme cases where the inference speed is still insufficient to meet the required standard, model
compression techniques (e.g., quantization and pruning) can be implemented to further optimize the
performance. Moreover, given the inherently distributed nature of CDNs, where both clouds and ESs are
equipped with substantial computational resources, a distributed inference approach [33] can be adopted
to allocate resources efficiently within the network for collaborative decision-making model inference.

In conclusion, the robust performance of XRL-SHAP-Cache, coupled with its capacity for continuous
refinement through diverse optimization techniques, underscores its promise as a feasible method for
deployment in real-world CDN environments.

7 Conclusion and future work

In this study, a D3QN-based multi-level cache scheme combined with Deep-SHAP technology was pro-
posed to enhance the transparency of decision-making in network automation. The feasibility of the
proposed solution was demonstrated through various scenarios, presenting the explainability results of
the DRL agents through comprehensive case studies. Furthermore, the XRL-SHAP-Cache approach was
compared with five well-established baselines to validate its superiority. The experimental results confirm
its outstanding performance and effectiveness, showcasing significant improvements in key performance

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:25

metrics.

Several promising directions exist for future research in this field. One direction involves incorporating
node interactions, such as service replication and service movement, into our network model to better
address real-world challenges. Additionally, applications that can be built upon XAI techniques for error
analysis, robustness testing, refinement, and human-machine interactions deserve further investigation.
Finally, the assessment of the accuracy of such XAI techniques should continue to be a paramount focus
for future advancements in this field.

Acknowledgements This work was supported in part by National Natural Science Foundation of China (Grant No. 92267104)

and Natural Science Foundation of Jiangsu Province of China (Grant No. BK20211284).

References

1 Phillips N A. Content Delivery Network (CDN) Market: Global Industry Trends, Share, Size, Growth, Opportunity and

Forecast 2023–2028. IMARC Market Research Report. 2022

2 Zolfaghari B, Srivastava G, Roy S, et al. Content delivery networks. ACM Comput Surv, 2020, 53: 1–34

3 Nisar K, Jimson E R, Hijazi M H A, et al. A survey on the architecture, application, and security of software defined

networking: challenges and open issues. Internet Things, 2020, 12: 100289

4 Nygren E, Sitaraman R K, Sun J. The Akamai network. SIGOPS Oper Syst Rev, 2010, 44: 2–19

5 Zhu G X, Lyu Z H, Jiao X, et al. Pushing AI to wireless network edge: an overview on integrated sensing, communication,

and computation towards 6G. Sci China Inf Sci, 2023, 66: 130301

6 Hu Z, Fang C, Wang Z, et al. Many-objective optimization-based content popularity prediction for cache-assisted cloud-

edge-end collaborative IoT networks. IEEE Int Things J, 2024, 11: 1190–1200

7 He C, Ma M, Wang P. Extract interpretability-accuracy balanced rules from artificial neural networks: a review.

Neurocomputing, 2020, 387: 346–358

8 Rachha A, Seyam M. Explainable AI In education: current trends, challenges, and opportunities. SoutheastCon, 2023, 2023:

232–239

9 Kaadoud I C, Bennetot A, Mawhin B, et al. Explaining Aha! moments in artificial agents through IKE-XAI: implicit

knowledge extraction for explainable AI. Neural Netw, 2022, 155: 95–118

10 Wu Y, Lin G, Ge J. Knowledge-powered explainable artificial intelligence for network automation toward 6G. IEEE Netw,

2022, 36: 16–23

11 Bacciu D, Numeroso D. Explaining deep graph networks via input perturbation. IEEE Trans Neural Netw Learn Syst, 2023,

34: 10334–10345

12 Du Y, Antoniadi A M, McNestry C, et al. The role of XAI in advice-taking from a clinical decision support system: a

comparative user study of feature contribution-based and example-based explanations. Appl Sci, 2022, 12: 10323

13 Padovan P H, Martins C M, Reed C. Black is the new orange: how to determine AI liability. Artif Intell Law, 2023, 31:

133–167

14 Yan H, Xu X, Dai F, et al. Service caching for meteorological emergency decision-making in cloud-edge computing.

In: Proceedings of IEEE International Conference on Web Services (ICWS), 2022. 120–128

15 Kong X, Duan G, Hou M, et al. Deep reinforcement learning-based energy-efficient edge computing for Internet of Vehicles.

IEEE Trans Ind Inf, 2022, 18: 6308–6316

16 Wang F, Wang F, Liu J, et al. Intelligent video caching at network edge: a multi-agent deep reinforcement learning approach.

In: Proceedings of IEEE Conference on Computer Communications, 2020. 2499–2508

17 Fang C, Xu H, Yang Y, et al. Deep-reinforcement-learning-based resource allocation for content distribution in fog radio

access networks. IEEE Int Things J, 2022, 9: 16874–16883

18 Nikbakht R, Kahvazadeh S, Mangues-Bafalluy J. Video on demand streaming using RL-based edge caching in 5G networks.

In: Proceedings of IEEE Conference on Standards for Communications and Networking (CSCN), 2022. 208

19 Lim D, Lee W, Kim W T, et al. DRL-OS: a deep reinforcement learning-based offloading scheduler in mobile edge computing.

Sensors, 2022, 22: 9212

20 Zhou X, Liu Z, Guo M, et al. SACC: a size adaptive content caching algorithm in fog/edge computing using deep reinforce-

ment learning. IEEE Trans Emerg Top Comput, 2022, 10: 1810–1820

21 Wells L, Bednarz T. Explainable AI and reinforcement learning — a systematic review of current approaches and trends.

Front Artif Intell, 2021, 4: 550030

22 Vouros G A. Explainable deep reinforcement learning: state of the art and challenges. ACM Comput Surv, 2023, 55: 1–39

23 Zhang K, Zhang J, Xu P D, et al. Explainable AI in deep reinforcement learning models for power system emergency control.

IEEE Trans Comput Soc Syst, 2021, 9: 419–427

24 Dassanayake P M, Anjum A, Bashir A K, et al. A deep learning based explainable control system for reconfigurable networks

of edge devices. IEEE Trans Netw Sci Eng, 2021, 9: 7–19

25 Zhu Y, Yin X, Chen C. Extracting decision tree from trained deep reinforcement learning in traffic signal control. IEEE

Trans Comput Soc Syst, 2023, 10: 1997–2007

26 Chen L, Hu X, Tang B, et al. Conditional DQN-based motion planning with fuzzy logic for autonomous driving. IEEE

Trans Intell Transp Syst, 2022, 23: 2966–2977

27 Aghaeipoor F, Sabokrou M, Fernández A. Fuzzy rule-based explainer systems for deep neural networks: from local explain-

ability to global understanding. IEEE Trans Fuzzy Syst, 2023, 31: 3069–3080

28 Soares E, Angelov P P, Costa B, et al. Explaining deep learning models through rule-based approximation and visualization.

IEEE Trans Fuzzy Syst, 2020, 29: 2399–2407

29 Mereani F, Howe J M. Exact and approximate rule extraction from neural networks with Boolean features. In: Proceedings

of the 11th International Joint Conference on Computational Intelligence, Vienna Austria, 2019. 424–433

30 Dhebar Y, Deb K, Nageshrao S, et al. Toward interpretable-AI policies using evolutionary nonlinear decision trees for

discrete-action systems. IEEE Trans Cybern, 2024, 54: 50–62

31 Qiao L, Wang W, Lin B. Learning accurate and interpretable decision rule sets from neural networks. In: Proceedings of

the AAAI Conference on Artificial Intelligence, New York, 2021. 4303–4311

https://doi.org/10.1145/3380613
https://doi.org/10.1016/j.iot.2020.100289
https://doi.org/10.1145/1842733.1842736
https://doi.org/10.1007/s11432-022-3652-2
https://doi.org/10.1109/JIOT.2023.3290793
https://doi.org/10.1016/j.neucom.2020.01.036
https://doi.org/10.1016/j.neunet.2022.08.002
https://doi.org/10.1109/MNET.005.2100541
https://doi.org/10.1109/TNNLS.2022.3165618
https://doi.org/10.3390/app122010323
https://doi.org/10.1007/s10506-022-09308-9
https://doi.org/10.1109/TII.2022.3155162
https://doi.org/10.1109/JIOT.2022.3146239
https://doi.org/10.3390/s22239212
https://doi.org/10.1109/TETC.2021.3115793
https://doi.org/10.3389/frai.2021.550030
https://doi.org/10.1145/3527448
https://doi.org/10.1109/TCSS.2021.3096824
https://doi.org/10.1109/TNSE.2021.3083990
https://doi.org/10.1109/TCSS.2022.3225362
https://doi.org/10.1109/TITS.2020.3025671
https://doi.org/10.1109/TFUZZ.2023.3243935
https://doi.org/10.1109/TFUZZ.2020.2999776
https://doi.org/10.1109/TCYB.2022.3180664

Xu X L, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 170303:26

32 Singh I, Smith P J, Dmochowski P A. Optimal SNR analysis for single-user RIS systems in Ricean and Rayleigh environments.

IEEE Trans Wireless Commun, 2022, 21: 9834–9849

33 Xu X, Tian H, Zhang X, et al. DisCOV: distributed COVID-19 detection on X-ray images with edge-cloud collaboration.

IEEE Trans Serv Comput, 2022, 15: 1206–1219

34 Gao Z H, Chen X M, Shao X D. Robust federated learning for edge-intelligent networks. Sci China Inf Sci, 2022, 65: 132306

35 Yang C, Xu X, Zhou X, et al. Deep Q network-driven task offloading for efficient multimedia data analysis in edge computing-

assisted IoV. ACM Trans Multimedia Comput Commun Appl, 2022, 18: 1–24

36 Zhao H, Wang Q, Wang J, et al. Popularity-based and version-aware caching scheme at edge servers for multi-version VoD

systems. IEEE Trans Circ Syst Video Technol, 2020, 31: 1234–1248

37 Einziger G, Eytan O, Friedman R, et al. Lightweight robust size aware cache management. ACM Trans Storage, 2022, 18:

1–23

38 Cho M, Kang D. ML-CLOCK: efficient page cache algorithm based on perceptron-based neural network. Electronics, 2021,

10: 2503

39 Araf S, Saha A S, Kazi S H, et al. UAV assisted cooperative caching on network edge using multi-agent actor-critic

reinforcement learning. IEEE Trans Veh Technol, 2022, 72: 2322–2337

40 Hu H, Wu D, Zhou F, et al. Intelligent resource allocation for edge-cloud collaborative networks: a hybrid DDPG-D3QN

approach. IEEE Trans Veh Technol, 2023, 72: 10696–10709

41 Yang Y, Lou K, Wang E, et al. Multi-agent reinforcement learning based file caching strategy in mobile edge computing.

IEEE ACM Trans Netw, 2023, 31: 3159–3174

42 Zhang D, Wang W, Zhang J, et al. Novel edge caching approach based on multi-agent deep reinforcement learning for

Internet of Vehicles. IEEE Trans Intell Transp Syst, 2023, 24: 8324–8338

43 Paleja R, Ghuy M, Arachchige N R, et al. The utility of explainable AI in ad hoc human-machine teaming. Adv Neural

Inform Process Syst, 2021, 34: 610–623

44 Datta A, Sen S, Zick Y. Algorithmic transparency via quantitative input influence: theory and experiments with learning

systems. In: Proceedings of IEEE Symposium on Security and Privacy (SP), 2016. 598–617

45 Lundberg S M, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 31st International

Conference on Neural Information Processing Systems (NIPS’17), Red Hook, 2017. 4768–4777

46 Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: Pro-

ceedings of International Conference on Machine Learning, 2017. 3145–3153

47 Romero F, Chaudhry G I, Goiri ı́, et al. Faa$T: a transparent auto-scaling cache for serverless applications. In: Proceedings

of the ACM Symposium on Cloud Computing, Seattle, 2021. 122–137

48 Yan H, Bilal M, Xu X, et al. Edge server deployment for health monitoring with reinforcement learning in Internet of Medical

Things. IEEE Trans Comput Soc Syst, 2024. doi: 10.1109/TCSS.2022.3161996

https://doi.org/10.1109/TWC.2022.3179776
https://doi.org/10.1109/TSC.2022.3142265
https://doi.org/10.1007/s11432-020-3251-9
https://doi.org/10.1145/3548687
https://doi.org/10.1109/TCSVT.2020.2991408
https://doi.org/10.1145/3507920
https://doi.org/10.3390/electronics10202503
https://doi.org/10.1109/TVT.2022.3209079
https://doi.org/10.1109/TVT.2023.3253905
https://doi.org/10.1109/TNET.2023.3278032
https://doi.org/10.1109/TITS.2023.3264553
https://doi.org/10.1109/TCSS.2022.3161996

	Introduction
	Related work
	DRL based service caching
	Explainability in DRL

	Model formulation and problem definition
	Network architecture
	Transmission rate model
	Response time model
	Energy consumption model
	Statistical quantities
	Problem definition

	D3QN-based multi-level cache scheme for CDNs
	Decision-making process on the edge side
	Environment analysis and observation set
	Design of the reward functions
	Design of the action space

	Deep-SHAP integration for decision-making explainability
	Computation of SHAP values
	Local and global explainability with Deep-SHAP

	Experiments
	Simulation setup and system environment
	Model convergence analysis
	Performance comparison with established baselines
	Case study with local explainability
	Cold start
	Cache management under resource-constrained conditions
	Services of intensive or moderate demand
	Collaboration across geo-distributed nodes

	Visualizing feature importance for agent actions with global explainability
	Feasibility analysis of model inference speed

	Conclusion and future work

