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Abstract In this study, an adaptive neural network (NN) control is proposed for nonlinear two-degree-of-

freedom (2-DOF) helicopter systems considering the input constraints and global prescribed performance.

First, radial basis function NN (RBFNN) is employed to estimate the unknown dynamics of the helicopter

system. Second, a smooth nonaffine function is exploited to approximate and address nonlinear constraint

functions. Subsequently, a new prescribed function is proposed, and an original constrained error is trans-

formed into an equivalent unconstrained error using the error transformation and barrier function transfor-

mation methods. The analysis of the established Lyapunov function proves that the controlled system is

globally uniformly bounded. Finally, the simulation and experimental results on a constructed Quanser’s

test platform verify the rationality and feasibility of the proposed control.

Keywords adaptive NN control, 2-DOF helicopter, global prescribed performance, input constraints

1 Introduction

With the rapid development of science and technology, the unmanned aerial vehicles (UAVs) technology
is gradually improving; in addition, it has been widely studied. As a typical UAV, the helicopter is
not only characterized by low cost, small size, and strong survivability but is also simple in structure
and convenient to use. It has been widely used in military reconnaissance and drone aircraft [1], civil
aviation photography and express transportation [2], disaster relief [3], geographic mapping [4], and other
fields. However, the helicopter is a nonlinear system with uncertainties and cross-coupling between the
axes [5]. These characteristics cause significant challenges in the design of the controller. Therefore, an
effective control method must be developed to overcome these challenges and guarantee the robustness
of helicopter systems.

For the past few years, numerous control strategies have been designed to control the stability of
helicopter systems. Kumar et al. [6] designed a state feedback controller based on a linear quadratic
regulator (LQR) to achieve the angle position tracking of two-degree-of freedom (2-DOF) helicopters.
Ref. [7] proposed a Q-learning control to stabilize 2-DOF helicopters with an unknown model by learning
the optimal function from system data. In [8], a model-based LQR was proposed to track the desired
trajectory of an unknown 2-DOF helicopter system. However, the above studies only considered the
linearized system model and ignored the nonlinear term of helicopter systems, which may destabilize
helicopter systems in practice. Therefore, in the design process of an efficient controller, the nonlinear
aspect of helicopter systems should be considered.

Many control methods have been introduced to investigate the nonlinear characteristics of helicopter
systems. Zou et al. [9] proposed a nonlinear robust control algorithm, which solved the singularity of
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the tracking process using an attitude loop controller and verified it in a helicopter system. In [10],
fuzzy control strategies were designed to optimize the dynamic tracking response of a helicopter system.
In [11], a nonlinear controller was designed to solve the singular problem of roll angle, and the stability
of the helicopter system with actuator fault was verified. However, the above studies assumed that the
helicopter model was known and ignored the uncertainties of helicopter systems in the real situation.
Therefore, uncertainties of nonlinear helicopter systems must be further explored.

In recent years, neural network (NN) control methods have been developed and widely used [12,13]. In
particular, the radial basis function NN (RBFNN) is often exploited to consider the parameter uncertainty
of nonlinear systems because of its simple structure and fast convergence. Yang et al. [14] designed an
RBFNN control algorithm to estimate unknown functions in the system and verified it using a coupled
motor drive. In [15], an RBFNN was used to explore the unknown dynamics model of a hexacopter UAV
system and guarantee a consistent and stable attitude control based on events in finite time. In [16], an
RBFNN was proposed for real-time estimation of a 3-DOF helicopter system with unmodeled dynamics,
which was verified using effective tracking of attitude angles. In [17], an adaptive NN control method
was designed, which used RBFNN to estimate the unknown dynamic model of helicopters and adaptively
solved the unknown backlash-like hysteresis problem. In [18], an RBFNN control method was used
to simultaneously solve the problems of system uncertainty and input backlash nonlinearity in a 2-DOF
helicopter. The above studies attempted to explore the uncertainty of nonlinear systems. However, actual
control systems are typically subjected to input constraints owing to the physical limitations of system
components, which may degrade control performance and even cause system instability. Therefore, in
the design of control systems, input constraints must be considered.

In practical conditions, the system input is affected by various constraints, including the saturation,
hysteresis, and deadzone [19–21]. The input saturation is a factor that affects the stability of the sys-
tem. Thus, many control algorithms have been developed to explore the input saturation constraint.
Zhao et al. [22] established an adaptive NN controller for mobile manipulation subject and solved the
actuator saturated input using an auxiliary system. Sedghi et al. [23] designed adaptive laws to estimate
the unknown parameters of the input saturation of autonomous underwater vehicles to guarantee the
trajectory tracking performance within a finite time. In [24], the RBFNN was exploited to approximate
the saturation error and verify the stability of helicopter systems. In [25], a double closed-loop propor-
tional differential (PD) control method was used to achieve the stable flight of a flapping-wing flying
robot with input saturation. The above studies have significantly contributed to the investigations on
input saturation constraints; however, the problem of prescribed performance of the output in practical
applications cannot be neglected. A prescribed performance can reduce tracking errors and improve the
system’s transient response. Therefore, the prescribed performance must be considered in designing and
implementing control methods for helicopter systems.

The prescribed performance control (PPC) was first proposed in [26], which guaranteed that the
tracking error, convergence rate, and maximum overshoot always evolved within a prespecified range [27–
29]. Recently, the PPC method has yielded significant achievements, and many findings have been
reported in this area. For example, a prescribed performance function was introduced to complete the
error transformation and verify that the error and roll angle were constrained within the prescribed
boundary [30]. Ma et al. [31] developed an adaptive neural network method for helicopter systems
considering the prescribed performance constraints, which retained the tracking error within a small,
prescribed range. In the above studies, PPC was a semi-global result, which depended on the initial
conditions. When the system is restarted or parameters are changed, the prescribed function must be
reset. The global prescribed performance must be considered to eliminate this dependence and reduce
the complexity of the controller in the design process of high performance controllers. Recently, some
studies have considered the global prescribed performance in the design of controllers. In [32], adaptive
tracking controllers were first introduced to address the finite constraint, infinite time constraint, or
even unconstrained problem of a multi-input multi-output (MIMO) system after a period of operation
to achieve a global effect. In [33], a new prescribed function was introduced and a global adaptive
progressive tracking control algorithm was designed; the performance of the proposed function was verified
using a system with an arbitrary relative degree and unknown direction. Chen et al. [34] proposed
an iterative adaptive control method based on global and local information, which solved the global
prescribed performance affected by the mutation strategy and system parameters. Although the global
prescribed performance of nonlinear systems has been significantly improved, the challenging problem of
global prescribed performance of 2-DOF helicopter systems must be further investigated.
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Figure 1 (Color online) Sketch of a 2-DOF helicopter.

Consequently, this study proposes an adaptive NN control for 2-DOF nonlinear helicopter systems
affected by an input saturation and a global prescribed performance. The advantages and main contri-
butions of this study are summarized as follows.

(1) Unlike [24,25], in this study, the saturation function is approximated as a smooth nonaffine function
to solve the nonlinear problem with input constraints and improve the robustness of the system.

(2) This study proposes a new prescribed function that differs from that presented in [30, 31]. As its
initial value is not a bounded constant, this property breaks the dependence of the PPC on the initial
value and achieves the global prescribed performance of tracking errors.

(3) The rationality and efficacy of the suggested control are verified by conducting simulations and
experiments on Quanser’s 2-DOF helicopter experiment platform.

The remainder of this paper is structured as follows. Section 2 describes the model of a 2-DOF
helicopter system and the related preliminary studies. Section 3 presents the design of an adaptive
control based on RBFNN. Section 4 describes the simulation results of the proposed control algorithm.
Section 5 describes the experimental platform that was set up to verify the effectiveness of the proposed
method. Section 6 draws the conclusion.

2 Problem statement and preliminary study

2.1 Problem statement

The sketch of a 2-DOF helicopter is displayed in Figure 1. The model has two identical propellers. The
horizontally placed propeller creates a force Fp at a distance rp, which generates a torque around the
pitch axis to achieve the pitch operation. The vertically placed propeller creates a force Fy at a distance
ry, which generates a torque around the yaw axis to achieve the yaw operation [35]. The helicopter is
an MIMO nonlinear system, in which the system input is the voltage of the direct current motor for
controlling the propeller. The system output is the pitch and yaw angles.

The 2-DOF helicopter system is modeled using the Lagrangian mechanics and is described as the
following dynamic system model [36]:

(Jp +ml2cm)θ̈ = KppVp +KpyVy −mglcm cos(θ)−Dpθ̇ −ml2cmφ̇
2 sin(θ) cos(θ), (1)

(Jy +ml2cm cos2(θ))φ̈ = KypVp +KyyVy −Dyφ̇+ 2ml2cmφ̇θ̇ sin(θ) cos(θ), (2)

where θ is the pitch angle; φ is the yaw angle; m is the mass; lcm is the distance from the center of mass
to the rotation point; g is the gravitational acceleration; Kpp, Kpy, Kyp, and Kyy are the thrust torque
constants; Dp and Dy denote the viscous friction coefficients with respect to the pitch and yaw axes,
respectively; and Jp and Jy represent the rotational inertia around the pitch and yaw axes, respectively.
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Figure 2 (Color online) The input saturation constraint is approximated by a smooth function h(v) (solid line).

The output vector is defined as x = [x1, x2]
T, where x1 = [θ, φ]T and x2 = [θ̇, φ̇]T. It is assumed that

the input constraints and global prescribed performance problems exist in the system; thus, Eqs. (1) and
(2) can be transformed to simplify the controller design as follows:

ẋ1 = x2, (3)

ẋ2 = Q(x1, x2) + ∆Q(x1, x2) + (P (x1, x2) + ∆P (x1, x2))U(v), (4)

y = x1, (5)

where ∆Q(x1, x2) and ∆P (x1, x2) are the system uncertainties, and Q(x1, x2) and P (x1, x2) are repre-
sented as

Q(x1, x2) =





−mglcmcos(θ)−Dpθ̇−ml2cmφ̇2sin(θ)cos(φ)
Jp+ml2cm

−Dyφ̇+2ml2cmφ̇θ̇sin(θ)cos(θ)
Jy+ml2cmcos2(θ)



 , (6)

P (x1, x2) =

[

Kpp

Jp+ml2cm

Kpy

Jp+ml2cm
Kyp

Jy+ml2cmcos2(θ)
Kyy

Jy+ml2cmcos2(θ)

]

. (7)

Furthermore, v in (4) is a controller input, and U(v) = [Vp, Vy]
T is a saturated input, formulated as

follows:

U(v) = sat(v) =

{

sign(v)umax, |v| > umax,

v, |v| < umax,
(8)

with umax being a known bound of U(v).
Moreover, when v = umax, a sharp angle appears, which is not derivable. To avoid this situation, the

input saturation constraint is approximated by a smooth function [37], as shown in Figure 2:

h(v) = umax × tanh

(

v

umax

)

= umax
ev/umax − e−v/umax

ev/umax + e−v/umax
. (9)

A deviation d(v) between U(v) and h(v) exists. Consequently, we can obtain

d(v) = U(v)− h(v). (10)

Owing to the boundedness of sat and tanh functions, we know that the deviation d(v) is a bounded
function with bound as

|d(v)| = |U(v)− h(v)|
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6 max {umax(1− tanh(1), umin(tanh(1)− 1))}
= d̄. (11)

Invoking the mean-value theorem [38], h(v) is expressed as

h(v) = h(v0) + hv̟ (v − v0), (12)

where hv̟ = ∂h(v)
∂v |v=v̟ and v̟ = δv + (1 − δ)v0, with 0 < δ < 1. Therefore, if v0 = 0, we rewrite (12)

as
h(v) = hv̟v. (13)

Applying (10) and (13) into (4) yields

ẋ2 = Q(x1, x2) + ∆Q(x1, x2) + (P (x1, x2) + ∆P (x1, x2))(h(v) + d(v)),

= Q(x1, x2) + P (x1, x2)hv̟v + L(x, v) + P (x1, x2)d(v),
(14)

where L(x, v) = ∆Q(x1, x2) + ∆P (x1, x2)(hv̟v + d(v)).

Assumption 1 ([39]). Unknown positive constants P and P exist such that P 6 |P | 6 P . Without
losing generality, P 6 P 6 P can be assumed.

Lemma 1 ([40]). The Lyapunov function V (t) is bounded if V (0) is bounded, V (t) is continuous and
positive definite, and V̇ (t) satisfies the following:

V̇ (t) 6 −̺V + Y, (15)

where ̺ and Y are positive constants.

Lemma 2 ([41]). The following inequality holds for any κ ∈ ℜ and κ > 0:

0 6 |κ| − κtanh
( κ

κ

)

6 0.2785κ. (16)

2.2 Radial basis function neural network

RBFNNs are frequently used as a tool for controller design of nonlinear systems because of their advan-
tages of approximating arbitrary continuous functions with high accuracy. In this study, the following
RBFNN is employed to approximate the unknown and continuous function fnn(Z) : R

i → R:

fnn(Z) =WTS(Z), (17)

where Z = [z1, z2, . . . , zi]
T ∈ R

i is the input vector, and W = [w1, w2, . . . , wl]
T ∈ R

l is the weight vector,
with l > 1 denoting the NN node number. In addition, S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]

T with sj(Z) are
selected as commonly used Gaussian functions, which are represented as

sj(Z) = exp

[

−(Z −Υj)
T(Z −Υj)

ζ2j

]

, (18)

with Υj = [Υj1,Υj2, . . . ,Υji]
T and ζj being the center of the receptive field and the width of Gaussian

function, respectively.
In general, an RBFNN can smoothly estimate any continuous function over the compact set Ωz ∈ R

j

to any desired accuracy as

f(Z) = W ∗TS(Z) + ε(Z), (19)

where W ∗ is an optimal weight vector, and ε(Z) is an approximation error satisfying ‖ε(Z)‖ 6 ε̄;
furthermore, ε̄ > 0 is the bound of ε. The ideal weight vector W ∗ is defined as

W ∗ = arg min
W∈Rl

{

sup
Z∈Ωz

∣

∣f(Z)−WTS(Z)
∣

∣

}

. (20)

2.3 Global prescribed performance

We define the tracking error as e = x1 − xd with xd = [θd, φd]
T being a desired trajectory.
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2.3.1 Time-varying scale function

A time-varying scaling function ϕ(t) is defined with properties as follows:
(1) ϕ(t) is the complex vector space;
(2) ϕ(r)(t), r = 0, 1, . . . , n is a piecewise smooth derivable and bounded function;
(3) ϕ(t) is monotonically increasing when t > 0 with ϕ(0) = 1 and when t → ∞, ϕ(t) = 1

gc
; gc is a

constant that satisfies 0 < gc ≪ 1.

2.3.2 Prescribed performance function

To avoid the dependence of the prescribed function on the initial value, a new prescribed function related
to the function ϕ(t) is designed as follows:

I(ω) =

√
ϑω√

1− ω2
, (21)

where ω = 1
ϕ(t) is a time-varying function and ϑ is a constant that satisfies ϑ > 0. Based on these

properties of ϕ(t), ω(t) is strictly monotonically decreasing. In addition, ω(0) = 1 and limt→∞ ω(t) = gc;
thus, the initial value of I(ω(0)) = ∞ can be obtained.

According to (21), the derivative of I(ω) is expressed as follows:

İ(ω) =

√
ϑ√

1− ω2(1− ω2)
. (22)

It is shown that I(ω) is strictly monotonically increasing when ω ∈ (−1, 1) holds for any positive
constant ϑ.

Remark 1. Compared with other prescribed functions, the most remarkable feature of the proposed
prescribed function I(ω) is that it eliminates the dependence of the prescribed function on the initial
value, which can be infinite. In addition, a global result can be achieved.

2.3.3 Error transformation

To eliminate the limitation of the initial value and guarantee the global transient prescribed performance
of the system, the tracking error e is transformed and the following normalization function [33] is proposed:

ξ(e) =
e√

e2 + ϑ
, (23)

where ϑ is a constant that satisfies ϑ > 0.
According to (23), the following properties are known:
(1) ξ(e) ∈ (−1, 1) for any e is strictly monotonical;
(2) when e→ ∞, ξ(e) → 1;
(3) when e→ −∞, ξ(e) → −1;
(4) e = 0 ⇐⇒ ξ(e) = 0.

Remark 2. According to (23) and the features of ξ(e), if a constant ξ̄ exists that satisfies |ξ(e)| 6 ξ̄ < 1,

then e =
√
ϑξ√

1−ξ2
is bounded.

2.3.4 Barrier function

To visualize the performance characteristics as tracking error constraints and achieve tracking error
evolution within a prescribed boundary, the following transformation is adopted:

Ψ(t) = ϕ(t)ξ(e). (24)

Based on the properties of ϕ(t) and ξ(e(t)), when t = 0, Eq. (24) can be rewritten as

Ψ(0) = ϕ(0)ξ(e(0)) = ξ(e(0)) ∈ (−1, 1), (25)

where for any initial conditions, including arbitrary initial trajectory error e(0), we have |Ψ(0)| < 1.
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Consider the following barrier function:

η(t) =
Ψ(t)

1−Ψ2(t)
, (26)

where η → ∞ if and only if Ψ → −1 or Ψ → 1.

2.3.5 Discussion

Combined with the above analysis, we suppose that η is bounded for ∀t > 0; then, we can further confirm
|Ψ(t)| < 1 and |Ψ(0)| < 1. Meanwhile, a constant µ > 0 exists satisfying the following:

|Ψ(t)| 6 µ < 1 for ∀t > 0. (27)

According to (24) and ω = 1
ϕ(t) , Eq. (27) can be expressed as follows:

−ω = − 1

ϕ
< −µ

ϕ
6 ξ 6

µ

ϕ
<

1

ϕ
= ϕ. (28)

From the properties of I(ω), we derive

I(−ω) < I(ξ) < I(ω). (29)

Considering (21) and (23), Eq. (29) can be rewritten as

I(−ω) <
√
ϑξ

√

1− ξ2
= e < I(ω). (30)

According to the derivation of the above conjecture, the boundedness of η(t) for ∀t > 0 must be
guaranteed to make the tracking error evolve within a prescribed boundary.

Assumption 2 ([42]). The desired trajectory xd is a smooth function of t. In addition, xd, ẋd, and ẍd
are continuous and bounded.

3 Neural network control design

Taking the derivative of η(t) from (26) results in

η̇ =
1 + Ψ2

(1−Ψ2)2
Ψ̇. (31)

Based on (24), the time derivative of Ψ yields

Ψ̇ = ϕ̇ξ + ϕξ̇, (32)

where the derivative of ξ provided in (23) is derived as

ξ̇ =
ϑė

(e2 + ϑ)
√
e2 + ϑ

. (33)

Subsequently, Eq. (31) can be deduced as follows:

η̇ =
1 + Ψ2

(1 −Ψ2)2
ϕϑė

(e2 + ϑ)
√
e2 + ϑ

+
1 + Ψ2

(1−Ψ2)2
ϕ̇ξ

= ρ1ė+ ρ2

= ρ1(ẋ1 − ẋd) + ρ2, (34)

where ρ1 = 1+Ψ2

(1−Ψ2)2
ϕϑ

(e2+ϑ)
√
e2+ϑ

and ρ2 = 1+Ψ2

(1−Ψ2)2 ϕ̇ξ.
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Then, we define coordinate transformation:

z1 = η, (35)

z2 = x2 − α, (36)

where α is a designed virtual control variable.
According to (34)–(36), ż1 is derived as follows:

ż1 = ρ1(z2 + α− ẋd) + ρ2. (37)

The Lyapunov function candidate V1 is chosen as

V1 =
1

2
zT1 z1. (38)

Its time derivative is expressed as

V̇1 = zT1 ż1 = zT1 (ρ1z2 + ρ1α− ρ1ẋd + ρ2). (39)

We then design a virtual control variable α as

α = − 1

ρ1
(k1z1 + ρ2) + ẋd, (40)

with k1 being a positive definite diagonal matrix.
The substitution of (40) into (39) results in

V̇1 = −zT1 k1z1 + zT1 ρ1z2. (41)

According to (40), α is a function of x1, xd, ẋd, ϕ, and ϕ̇. Differentiating α repeatedly is extremely
complicated in the next steps. To overcome this difficulty, the dynamic surface control technology was
designed in this study. Introducing the following first-order filter τ and letting α pass through it [43]
yields

βτ̇ + τ = α, τ(0) = α(0), (42)

where β is a time constant of the filter.
Moreover, γ = τ − α is defined. Subsequently, we obtain

γ̇ = τ̇ − α̇

= −γ
β
+

(

− ∂α

∂x1
ẋ1 −

∂α

∂xd
ẋd −

∂α

∂ẋd
ẍd −

∂α

∂ϕ
ϕ̇− ∂α

∂ϕ̇
ϕ̈

)

= −γ
β
+M (x1, xd, ẋd, ϕ, ϕ̇) , (43)

where M is a continuous function vector about 0(x1, xd, ẋd, ϕ, ϕ̇). Based on the continuous property, the
set 0(·) is compact for certain initial conditions. A maximum M̄ of M(·) with ‖M‖ 6 M̄ on set 0(·)
exists.

Therefore, Eq. (43) becomes

γ̇ 6 −γ
β
+ M̄. (44)

As for (14), because L(x, v) is unknown and difficult to determine, we employ the RBFNN to approx-
imate this uncertainty term as follows:

L(x, v) = W ∗TS(Z) + ε(Z), (45)

whereW ∗ represents an ideal weight vector that satisfies W̃ = Ŵ −W ∗; S(Z) is a radial basis vector with
Gaussian function; Z = [xT1 , x

T
2 , x

T
d , ẋ

T
d , v

T]T is the input variable to the RBFNN; and ε(Z) describes an
estimation error that satisfies ‖ε(Z)‖ 6 ε̄, where ε̄ > 0 is a constant.

Substituting (14) and (45) into the time derivative of (36) yields

ż2 = ẋ2 − α̇
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= Q+ Phv̟v +W ∗TS(Z) + ε(Z) + Ξ− α̇, (46)

where Ξ = P (x1, x2)d(v). According to Assumption 1 and (11), it is observed that Ξ is bounded.

Subsequently, ‖Ξ‖ < Ξ̄ can be derived, where Ξ̄ > 0 is an unknown constant. Subsequently, ˜̄Ξ = ˆ̄Ξ − Ξ̄
is defined.

The Lyapunov function candidate is selected as

V2 = V1 +
1

2
zT2 z2. (47)

We differentiate (47) to obtain
V̇2 = V̇1 + zT2 ż2. (48)

Substituting (46) into (48) yields

V̇2 = V̇1 + zT2 (Q+ Phv̟v + Ξ + L− α̇). (49)

Subsequently, we construct the controller as follows:

v = (Phv̟)
−1

[

−Q− ŴTS(Z)− ρ1z1 − k2z2 − tanh
(z2

ǫ

)

ˆ̄Ξ + τ̇
]

, (50)

where k2 is a positive constant matrix.

We then define updating laws of Ŵ and ˆ̄Ξ as

˙̂
W = Γw

[

S(Z)zT2 − σwŴ
]

, (51)

˙̄̂
Ξ = ψΞ̄

[

zT2 tanh
(z2

ǫ

)

− σΞ̄
ˆ̄Ξ
]

, (52)

where Γw = ΓT
w ∈ R

l×l, Γw > 0, and ψΞ̄ > 0. In addition, σw and σΞ̄ are the designed positive constants.
Substituting (45) and (50) into (49) yields

V̇2 =V̇1 + zT2

[

−ŴTS(Z)− ρ1z1 − k2z2 − tanh
(z2

ǫ

)

ˆ̄Ξ

+ τ̇ + Ξ +W ∗TS(Z) + ε(Z)− α̇

]

=− zT1 k1z1 − zT2 k2z2 + zT2 Ξ− zT2 W̃
TS(Z) + zT2 ε(Z)

+ zT2 (τ̇ − α̇)− zT2 tanh
(z2

ǫ

)

ˆ̄Ξ. (53)

We select the Lyapunov function candidate as

V3 = V2 + tr

{

1

2
W̃TΓ−1

w W̃

}

+
1

2ψΞ̄

˜̄Ξ2 +
1

2
γTγ. (54)

We thus derive V̇3 as

V̇3 =V̇2 + tr
{

W̃TΓ−1
w

˙̂
W

}

+
1

ψΞ̄

˜̄Ξ
˙̄̂
Ξ + γTγ̇

=− zT1 k1z1 − zT2 k2z2 − σwtr
{

W̃TŴ
}

− σΞ̄
˜̄Ξˆ̄Ξ + (zT2 + γT)

(

−γ
β
+M

)

+ zT2 ε+ zT2 Ξ− zT2 tanh
(z2

ǫ

)

ˆ̄Ξ + ˜̄ΞzT2 tanh
(z2

ǫ

)

. (55)

We consider the following inequalities:

zT2 Ξ 6 Ξ̄

2
∑

k=1

|z2k| , (56)
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zT2 tanh
(z2

ǫ

)

=

2
∑

k=1

(

z2ktanh
(z2k

ǫ

))

. (57)

Applying Lemma 2, we have

2
∑

k=1

|z2k| −
2

∑

k=1

(

z2ktanh
(z2k

ǫ

))

6 0.557ǫ. (58)

Substituting (58) into (55) yields

V̇3 6 −zT1 k1z1 − zT2 k2z2 − σwtr
{

W̃TŴ
}

− σΞ̄
˜̄Ξˆ̄Ξ

+ (zT2 + γT)

(

−γ
β
+M

)

+ zT2 ε+ 0.557ǫΞ̄. (59)

Using the Young’s inequality results in

zT2 ε 6
1

2
zT2 z2 +

1

2
‖ε‖2 6

1

2
zT2 z2 +

1

2
ε̄2, (60)

−z
T
2 γ

β
6
zT2 z2

2β
+
γTγ

2β
, (61)

zT2 M 6
1

2
zT2 z2 +

1

2
‖M‖2 6

1

2
zT2 z2 +

1

2
M̄2, (62)

γTM 6
1

2
γTγ +

1

2
‖M‖2 6

1

2
γTγ +

1

2
M̄2, (63)

−σwtr
{

W̃TŴ
}

6 −σw
2

∥

∥

∥
W̃

∥

∥

∥

2

+
σw

2
‖W ∗‖2 , (64)

−σΞ̄ ˜̄Ξˆ̄Ξ 6 −σΞ̄
2

˜̄Ξ2 +
σΞ̄
2
Ξ̄2. (65)

Substituting (60)–(65) into (55) gains

V̇3 6− zT1 k1z1 − zT2

(

k2 − I − 1

2β

)

z2 −
σw

2

∥

∥

∥
W̃

∥

∥

∥

2

− σΞ̄
2

˜̄Ξ2 −
[

1

2β
− 1

2
I

]

γTγ

+
1

2
ε+ M̄2 +

1

2
σw ‖W ∗‖2 + 1

2
σΞ̄Ξ̄

2 + 0.557ǫΞ̄

6− ̺V3 + Y, (66)

where

̺ = min

{

2λmin(k1), 2λmin

(

k2 − I − 1

2β

)

,

σw

λmax(Γ
−1
w )

, 2λminψΞ̄

(σΞ̄
2

)

, 2λmin

[

1

2β
− 1

2
I

]}

, (67)

Y =
1

2
ε+ M̄2 +

1

2
σw ‖W ∗‖2 + 1

2
σΞ̄Ξ̄

2 + 0.557ǫΞ̄. (68)

To guarantee ̺ > 0, k1, k2, and β are chosen as

λmin(k1) > 0, λmin

(

k2 − I − 1

2β

)

> 0, λmin

[

1

2β
− 1

2
I

]

> 0. (69)

Theorem 1. For the 2-DOF helicopter system described by (3) and (14), under the control law (50)
and updating laws (51) and (52), the globally uniformly bounded in the closed-loop system is proven.

According to (66), tracking errors z1 and z2 and weight errors W̃ and ˜̄Ξ are globally bounded by employing
Lemma 1.
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Table 1 System parameters

Parameter Value Unit Parameter Value Unit

Jp 0.0215 kg · m2 Dy 0.0220 N/V

Jy 0.0237 kg · m2 Kpp 0.0011 N · m/V

lcm 0.0025 m Kpy 0.0021 N · m/V

m 1.0750 kg Kyp −0.0027 N · m/V

Dp 0.0071 N/V Kyy 0.0022 N · m/V
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Figure 3 (Color online) Simulation results considering the global prescribed performance. (a) θ and φ tracking control results;

(b) tracking errors z11 and z12; (c) control inputs v1 and v2; (d) control input saturations U(v1) and U(v2).

Proof. Multiplying both sides of (66) by e̺t provides

d

dt
(V3e

̺t) 6 Y e̺t. (70)

Integrating the inequality (70) yields

0 6 V3 6

(

V3(0)−
Y

̺

)

e−̺t +
Y

̺
. (71)

Moreover, Eq. (71) shows that V3 is convergent, and limt→∞ V3 = Y
̺ . According to the properties of

η,Ψ, and ξ, as expressed in (26), (24), and (23), respectively, we derive limt→∞ e(t) = 0, which proves

that the closed-loop signals z1, z2, W̃ , and ˜̄Ξ are bounded; in addition, it guarantees the global prescribed
performance of the system. Therefore, the proof is completed.

Remark 3. Because the typical prescribed performance constraint control comparison depends on the
output and initial values of the desired trajectory, it is hemispherical in nature. A new prescribed function
is constructed to guarantee the global transient prescribed performance of the system and address the
relationship between the controller and initial parameter values.
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Figure 4 (Color online) Simulation results without the global prescribed performance. (a) θ and φ tracking control results;

(b) tracking errors z11 and z12; (c) control inputs v1 and v2; (d) control input saturations U(v1) and U(v2).

4 Simulation results

Simulations are used to validate the performance of the proposed control. The 2-DOF helicopter’s
structural parameters for simulations are listed in Table 1.

We set the 2-DOF helicopter trajectory tracking command as the continuous-time expected trajectory.
The expected attitude trajectory is set as xd = [ π12 sin(t),

π

9 sin(t)]
T, where t ∈ [0, 20]. The voltage of the

DC motor is ±24 V.

In addition, the initial state of the helicopter flight control simulation is expressed as x1 = [0.2, 0.2]T

and x2 = [0.2, 0.2]T. The control gains are chosen as k1 = diag[18, 18] and k2 = diag[18, 18]. The design
parameters of updating laws are chosen as Γw = 15I32×32, ψΞ̄ = 2I2×2, σw = 0.01, and σΞ̄ = 0.01. Other
design parameters are selected as km = 0.03, ϑ = 2, β = 0.01, and ǫ = 0.45. The NN has 32 nodes and
the variance is 16. The initial weight of the NN is set to zero. The time-varying scaling function ϕ(t) is
selected as ϕ(t) = 1

(1−km)e−1.5t+km

.

4.1 Simulation with global prescribed performance

Figure 3 depicts the simulation results considering the global performance of the system. Figure 3(a)
shows the tracking performance of pitch angle θ and yaw angle φ. The desired trajectory is tracked in
approximately 2 s and a satisfactory tracking performance is obtained. Figure 3(b) depicts the tracking
error of attitude angles. The tracking error under this control algorithm converges to zero extremely
quickly. Figure 3(c) presents the voltage of the control input. Figure 3(d) shows the input voltage with
constraints. The control input is maintained at a safe voltage of 24 V under the saturation constraint.
After considering the saturation constraint, the control input exhibits a satisfactory input performance
at a safe voltage of a maximum of 24 V.
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Figure 5 (Color online) 2-DOF helicopter test platform.
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Figure 6 (Color online) Experimental results considering the global prescribed performance. (a) θ tracking control result; (b) φ

tracking control result; (c) tracking errors z11 and z12; (d) control inputs Vp and Vy.

4.2 Simulation without global prescribed performance

We compared the simulation results with and without global prescribed performance to illustrate the
rationality of the proposed control; the results are displayed in Figure 4. The tracking responses of pitch
angle θ and yaw angle φ in Figure 4(a) show that θ and φ eventually stably track the expected trajectory
with lower performance than that shown in Figure 3(a). According to Figure 4(b), the tracking error
significantly oscillates and violates the preset prescribed performance I and −I. Figures 4(c) and (d)
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Figure 7 (Color online) Experimental results without the global prescribed performance. (a) θ tracking control result; (b) φ

tracking control result; (c) tracking errors z11 and z12; (d) control inputs Vp and Vy.

represent the control input and input saturation response of the system.
Consequently, the proposed method is effective for the stability control of a 2-DOF helicopter system

considering input constraints and global prescribed performance.

5 Experimental results

An experimental platform on Quanser’s 2-DOF helicopter is constructed to further demonstrate the
feasibility and efficacy of the proposed control, as shown in Figure 5. The same parameters are chosen as
discussed in Section 4. The experiments are conducted with and without global prescribed performance.

5.1 Experiments with global prescribed performance

Figure 6 portrays the experimental results considering the global prescribed performance. Figures 6(a)
and (b) depict the pitch angle θ and yaw angle φ responses of the helicopter. The results reveal a
reasonable tracking performance. Figure 6(c) depicts the tracking errors of pitch and yaw angles; it
is obvious that the error is maintained within a prescribed, small, compact range I and −I, and the
tracking effect is satisfactory. Figure 6(d) represents the evolution of the control input, which exhibits a
reasonable trajectory performance.

5.2 Experiments without global prescribed performance

Figure 7 presents a comparison of the experimental results without considering the global prescribed
performance. Figures 7(a) and (b) illustrate the evolution of the pitch and yaw angles, respectively.
It can be seen that the tracking speed is slower around the corner. Figure 7(c) depicts the effect of
the tracking error. The error oscillation amplitude is large, and maintaining the tracking error of each
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attitude within the preset prescribed performance cannot always be guaranteed. Figure 7(d) depicts the
evolution of the control input, which presents a poor response performance.

Consequently, the experiments with the global prescribed performance achieve better tracking perfor-
mance, ensuring that the error does not violate the prescribed performance and quickly converges to zero.
In addition, the input voltage exhibits a reasonable performance. These results validate the stability, ra-
tionality, and efficacy of the developed adaptive NN control for a 2-DOF helicopter system considering
the input constraints and global prescribed performance.

6 Conclusion

This study developed an adaptive NN control for 2-DOF nonlinear helicopter systems considering the
input constraints and global prescribed performance. An RBFNN was used to approximate the system
uncertainties. To solve the nonlinear input constraint, the smooth hyperbolic tangent function was
introduced to approximate the constraint function. Additionally, a new prescribed function was proposed,
and the constraint problem was transformed into an unconstrained error problem using the normalization
and barrier function transformation. Furthermore, the Lyapunov stability analysis proved that the system
was globally uniformly bounded. Finally, the simulation and experimental results were compared to verify
the effectiveness and stability of the proposed control.
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