
SCIENCE CHINA
Information Sciences

July 2024, Vol. 67, Iss. 7, 172102:1–172102:12

https://doi.org/10.1007/s11432-023-3883-4

c© Science China Press 2024 info.scichina.com link.springer.com

. RESEARCH PAPER .

Blockchain-based immunization against
kleptographic attacks

Changsong JIANG1,2, Chunxiang XU1,2*, Jie CHEN1,2 & Kefei CHEN3

1School of Computer Science and Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China;
2Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China,

Huzhou 313001, China;
3Department of Mathematics, Hangzhou Normal University, Hangzhou 310027, China

Received 29 May 2023/Revised 25 September 2023/Accepted 20 October 2023/Published online 6 June 2024

Abstract Adversarial implementations of cryptographic primitives called kleptographic attacks cause the

leakage of secret information. Subliminal channel attacks are one of the kleptographic attacks. In such

attacks, backdoors are embedded in implementations of randomized algorithms to elaborately control ran-

domness generation, such that the secrets will be leaked from biased outputs. To thwart subliminal channel

attacks, double-splitting is a feasible solution, which splits the randomness generator of a randomized algo-

rithm into two independent generators. In this paper, we instantiate double-splitting to propose a secure

randomness generation algorithm dubbed SRG using two physically independent generators: ordinary and

public randomness generators. Based on public blockchains, we construct the public randomness generator,

which can be verified publicly. Hashes of a sufficient number of consecutive blocks that are newly confirmed

on a blockchain are used to produce public randomness. In SRG, outputs from the two generators are taken

as inputs of an immunization function. SRG accomplishes immunization against subliminal channel attacks.

Additionally, we discuss the application strategies of SRG for symmetric and public-key encryption.

Keywords kleptographic attacks, subliminal channel, blockchain, immunization, randomized algorithm

1 Introduction

Recent years have witnessed a spectacular development of modern cryptography. Notably, cryptographic
applications are based on the assumption that the implementations of cryptographic primitives fully
conform to their specifications which are proved secure by formal security analysis. However, such an
assumption is not always satisfied in the real world. The implementation may deviate from the specifi-
cation. A common example is a bug in which unintended errors could produce a faulty implementation.
Another extreme example is adversarial implementation with backdoors. The subverted implementation
is destructive, as it may leak secret information (e.g., secret keys) undetectably.

Such subversion is defined as kleptographic attacks [1, 2]. Recently, the striking Snowden revelations
of massive surveillance [3] further reveal the real threat of kleptographic attacks. Moreover, subliminal
channel attacks are one of the kleptographic attacks. These attacks stealthily embed a subliminal channel
in the output of randomized algorithms [4, 5]. The infected randomized algorithm chooses a desired
randomness by rejection-sampling, and then generates a biased output such that secret information
can be undetectably leaked to adversaries through the output. Furthermore, an adversary can launch
subliminal channel attacks to any target cryptographic scheme containing randomized algorithms, while
maintaining the implementation indistinguishable from the fair one (i.e., the implementation that fully
conforms to the corresponding specification), even in intensive (black-box) testing [6, 7].

To render cryptographic primitives secure against subliminal channel attacks, a security model dubbed
the watchdog model is introduced [8]. The watchdog model relies on the fact that an algorithm can
usually be split into functional components executed independently following a trusted amalgamation. A

*Corresponding author (email: chxxu@uestc.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-023-3883-4&domain=pdf&date_stamp=2024-6-6
https://doi.org/10.1007/s11432-023-3883-4
info.scichina.com
springerlink.bibliotecabuap.elogim.com

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:2

trusted checker called a watchdog will conduct a black-box test to decide whether the implementation of
each component is consistent with its specification. According to their supervisory power, watchdogs can
be divided into three categories (i.e., offline, online, and omniscient watchdogs). Offline watchdogs can
have oracle access to the (possibly subverted) implementation and perform a one-time test before using
the implementation. Compared with offline watchdogs, online and omniscient watchdogs are allowed to
additionally monitor public interaction between users when the implementation is being used. Omniscient
watchdogs are even privy to private information such as users’ secret keys. In practical applications, the
instantiation of online (or omniscient) watchdogs is costly as they are required to actively monitor all
public communications. Therefore, offline watchdogs will be considered in this paper.

According to the watchdog model, a splitting mechanism was proposed [8]. For a randomized algorithm
decomposed into a randomness generator (RG) and a deterministic algorithm, a hash function is added
as an immunization function tailing RG and hashes output of RG, thereby immunizing the randomized
algorithm. However, a sophisticated adversary would surreptitiously insert the immunization function
and the deterministic algorithm into RG to generate randomness that satisfies the rejection-sampling
condition [9]. Moreover, the adversary inserts a backdoor into RG, so that the corrupted implementation
of RG can produce a random coin that leads to the subliminal leakage of confidential data by rejection-
sampling.

A feasible solution to this issue is to use double-splitting [9], in which RG is split into two randomness
generators, and their outputs are jointly passed to the immunization function. As the output of the
immunization function is not determined by either generator, this strategy prevents rejection-sampling,
and accordingly achieves immunization against subliminal channel attacks in the watchdog model. No-
tably, the watchdog model intrinsically relies on the independent execution of an algorithm’s functional
components. Therefore, two randomness generators of double-splitting as functional components need
to be independently executed. This requirement can be satisfied via two physically independent ran-
dom sources. The design of such random sources for instantiating double-splitting is crucial because
double-splitting can be used to immunize cryptographic primitives, such as encryption schemes.

Herein, to produce random sources for instantiating double-splitting, we adopt an original randomness
generator as one random source and construct a public randomness generator (PubRG) as the other. We
refer to this instantiation as a secure randomness generation algorithm (SRG). In SRG, PubRG is based
on public blockchains. Hashes of a sufficient number of consecutive blocks, which are newly confirmed
on a blockchain (such as Bitcoin [10] and Ethereum [11]), are used as randomness. The immunization
function creates a public randomness using this randomness. According to blockchains’ chain quality
property [12, 13], the adversary’s full control of ϕ-successive blocks is not likely to occur. Therefore, the
probability of undermining public randomness generation is negligible. Our public randomness generator
PubRG circumvents subliminal channel attacks, and enables anyone to verify the correctness of public
randomness generation based on the chain consistency property of blockchains [14, 15]. Armknecht et
al. [16, 17] used blockchains to construct public randomness generators. Their generators adopt a single
block, which is the latest confirmed on a blockchain, to produce public randomness. Due to chain quality,
the use of ϕ-successive blocks guarantees that no adversary can control the output of PubRG, unlike
the use of a single block. Our public randomness generator PubRG achieves higher output entropy than
Armknecht et al.’s public randomness generators [16,17], as ϕ-successive blocks include at least one block
that is not controlled by any adversary.

We describe subversion-resistant strategies using SRG and PubRG for cryptographic schemes. SRG can
be used to instantiate the key generation algorithm and RG in symmetric and public-key encryption [18].
Our public randomness generator PubRG can be used to generate public parameters for public-key en-
cryption (PKE) [19]. Furthermore, our proposed PubRG is suitable for other promising scenarios such
as electronic lotteries [20]. The public randomness generated by PubRG can be used to yield winning
tickets. Since the output of PubRG is publicly verifiable, every player who participates in an electronic
lottery can verify the winning tickets.

The main contributions of this paper are summarized as follows.
•We design a public randomness generator PubRG based on public blockchains. PubRG employs hashes

of blocks that are newly confirmed on a blockchain to create public randomness. It can defend against
subliminal channel attacks. PubRG is also suitable for generating public parameters. The resulting
randomness and parameters can accomplish public verifiability.
• We propose a secure randomness generation algorithm called SRG by instantiating double-splitting.

SRG relies on two independent generators, i.e., an ordinary RG and PubRG, as well as an immunization

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:3

function to produce random coins. SRG with PubRG is secure against subliminal channel attacks.

•We provide a security analysis to demonstrate that SRG and PubRG are resistant to subliminal channel
attacks in the random oracle model. We also show countermeasure strategies to thwart subliminal channel
attacks for symmetric and public-key encryption.

The remainder of this paper is organized as follows. Section 2 presents the related work. In Sect-
ions 3 and 4, we present preliminaries and define the security model, respectively. In Section 5, we
propose SRG. We analyze the security of SRG in Section 6. In Section 7, we discuss subversion-resistant
strategies using SRG for symmetric and public-key encryption. Finally, Section 8 presents the conclusion.

2 Related work

The possibility that the implementation of cryptographic primitive deviates from the specification was
first highlighted by Young and Yung [1,2] in kleptography. Since the Snowden revelations of kleptographic
attacks [3], researchers have extensively investigated kleptographic attacks, including subliminal channel
attacks and relevant countermeasures.

Subliminal channel attacks could compromise secrets through rejection-sampling [5]. Bellare et al. [4]
observed that symmetric encryption yielding unique ciphertexts can effectively defend against such attacks
on the condition that subverted ciphertexts are decryptable. Bellare et al. [21] proposed unique-ciphertext
PKE. Ateniese et al. [22] extended their results and showed that the digital signature producing a unique
signature is subversion-resistant, assuming subverted signatures are valid. Although the deterministic
algorithms with unique output have favorable properties, probabilistic algorithms are definitely needed
to achieve security such as IND-CPA security.

Mironov et al. [23] presented a cryptographic reverse firewall (that is an independent defense com-
ponent) to relax the deterministic structure of the underlying algorithms to a “re-randomized” struc-
ture [24,25]. Relying on a source of trusted randomness, the reverse firewall could honestly re-randomize
all inputs and outputs generated by potentially subverted randomized algorithms, thereby achieving se-
curity of subversion-resistance and security defined by specifications [26]. Analogous to cryptographic
reverse firewalls, Fischlin et al. [27] proposed a self-guarding strategy that requires an honest initializa-
tion phase to thwart malicious tampering. In this phase, unbiased samples can be collected from genuine
implementations. If an implementation is subverted, the unbiased samples are leveraged to re-randomize
tampered outputs to prevent secret leakage. However, this approach fails to guarantee security during
the initialization phase.

As mentioned above, the work in [4] requires a decryptability condition, i.e., ciphertexts output by the
subverted implementation of an encryption algorithm must be correctly decrypted using the correspond-
ing specification. Otherwise, the subversion will be simply detected. Degabriele et al. [28] relaxed the
decryptability condition by considering input-trigger attacks. Such attacks render the detection proba-
bility negligible, even if decryptability is not met. Observe that decryptability can be merely satisfied
via a particular form of detection, which is performed by watchdogs.

Watchdogs can individually test the functional components of algorithms to examine their veracity.
Russell et al. [8] conceived subversion-resistant (trapdoor) one way permutations in the watchdog model,
where a hash function can render the misbehavior of an adversary ineffective. This strategy is also re-
ferred to as the splitting mechanism. To withstand subliminal channel attacks, they further proposed
double-splitting [9], where randomness generation is accomplished by mixing the outputs of two indepen-
dent sources of randomness using an immunization function. With double-splitting, subversion-resistant
symmetric and public-key encryption can be constructed by immunizing each component. Recently,
Chow et al. [6] constructed secure digital signature schemes in the presence of kleptographic attacks.
This construction is the first work on subversion-resistant signature schemes that rely merely on offline
watchdogs, where the generation of keys and randomness is instantiated using double-splitting. Further-
more, to instantiate hash functions (modeled as random oracles), Chow et al. [6] applied the work of
Russell et al. [29], which presented a construction that can fix a subverted random oracle such that the
resulting function is “as good as” an ideal random function. Chen et al. [25] discussed how to employ
double-splitting to build key encapsulation mechanisms that are secure against kleptographic attacks in
the offline watchdog model. Bemmann et al. [7] designed subversion-resilient PKE with practical watch-
dogs that conduct constant-time tests. Additionally, Ateniese et al. [30] developed a subversion-secure
immunizer in the plain model for deterministic primitives by relying on an independent source of public

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:4

...

...

...
...

...

... ...

...

...

Root
value

Hash
value

Hash
value

H(Tx) H(Tx) H(Tx) H(Tx)
Tx Tx Tx Tx Tx Tx Tx Tx Tx

Transactions Transactions Transactions

Block header Block header Block header

Prehash Prehash Prehash

Mroot Mroot Mroot

Nonce

Tstamp

Nonce

Tstamp

Nonce

Tstamp

Block height Block heightBlock hash Block hash Block height Block hash

Figure 1 (Color online) Simplified Ethereum blockchain.

randomness.

On the other hand, Bonneau et al. [31] first proposed the idea of using the upcoming block on Bitcoin
as a public random source. As each block on Bitcoin contains a solution to a proof-of-work puzzle, a
block’s min-entropy is, at minimum, equal to the difficulty of the puzzle, or else a shortcut to solving
the puzzle would exist. Bonneau et al. [31] analyzed the security of this technique by defining a bribing
model, in which attackers with infinite budgets might incentivize miners to mine blocks that satisfy the
attackers’ requirements. The attackers would suffer a monetary penalty because undesired valid blocks
would be discarded and the corresponding block rewards would be forgone. Similar to the research of
Bonneau et al. [31], our work relies on public blockchains such as Bitcoin. We use public blockchains
as random sources and propose PubRG that is secure against kleptographic attacks. Moreover, PubRG
serves as a building block for instantiating double-splitting. Additionally, we analyze the security of our
technique in the watchdog model.

3 Preliminaries

3.1 Notations

We denote the set of finite bit-strings by {0, 1}∗ and the set of bit-strings of length l by {0, 1}l. For a
bit-string w ∈ {0, 1}∗, |w| denotes its length. Given two bit-strings x and y, we denote their concatenation
by x||y. If Q is a set, then |Q| represents the number of elements in Q. For the two sets Q and T , Q∪ T
denotes their union. ⌈n⌉ denotes the smallest integer larger than n. We denote by Pr[e] the probability
that the event e occurs. For an algorithm G, we use y ← G(x) to represent a run of G on input x and
output y.

3.2 Blockchain

Blockchains can be viewed as distributed databases without a central authority. They are publicly
verifiable and intrinsically resistant to modification [32]. A blockchain consists of a series of blocks that
are linked in chronological order to form a chain and are secured by adopting a cryptographic hash
function. Based on a predetermined consensus algorithm such as proof-of-work [10, 11] and proof-of-
stake [33], the chain is built by a group of participants called miners. Miners append new blocks to the
chain securely without needing to trust each other. When a sufficient number of blocks is added on top
of a particular block, the block is confirmed and stored permanently on the blockchain.

In general, we classify blockchains into private blockchains (including consortium blockchains) and
public ones. A private blockchain requires participants to be authorized by the blockchain manager,
while in a public blockchain anyone can join freely. At present, public blockchains play a key role in
decentralized cryptocurrencies such as Bitcoin [10] and Ethereum [11]. The blockchains serve as global
ledgers that record transactions between two entities.

A simplified Ethereum is shown in Figure 1. Each block is composed of a block header and transaction
data. The block header is used to calculate the current block hash, and contains a solution of proof-
of-work puzzles Nonce, the hash of the last block Prehash, a timestamp Tstamp indicating when the
corresponding block is mined, and a root value of a Merkle hash tree Mroot based on the transaction
data. Transaction data contain all the transactions in the current block. More technical details can be
found in [10, 11].

Blockchains have three properties [12–14,34]:

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:5

x

s
G y

x

s

G̃
z

y s

z

(a) (b)

Figure 2 Embedding a subliminal channel in a randomized algorithm G. (a) An honest algorithm; (b) a subverted algorithm.

• k-chain consistency. Blockchains owned by two honest entities at any time are the same except for
the trailing k blocks.

• (ι, ϕ)-chain quality. In any ϕ-consecutive blocks, at least ι of them are mined by honest parties.

• Chain growth. The blockchain owned by honest entities grows at a steady rate.

4 Security model

4.1 Subliminal channels

Subliminal channels, also known as steganographic channels, can be embedded in the outputs of subverted
randomized algorithms. Through subliminal channels, secret information can be leaked to adversaries
from the outputs in a way that is undetectable to other parties. Figure 2 illustrates a subliminal channel
that is injected into a randomized algorithm. For an honest randomized algorithm G(x, s) := y, where
x is an input, s a secret, and y the output, a subverted algorithm G̃z(x, s) := ỹ produces an output ỹ
using a hidden random string z (i.e., backdoor). ỹ reveals no information about s without z, since ỹ
is indistinguishable from the output produced by G(x, s). However, the adversary owning z can recover
all or partial bits of s from ỹ. This illegal behavior can be thought of as a kleptographic attack, thus
subliminal channels are also called subliminal channel attacks.

4.2 Stego-freeness

Stego-freeness was introduced in [9] to define the security against subliminal channel attacks. For a
(randomized) algorithm G with official specification GSPEC, the subverted implementation (i.e., the im-
plementation deviating from GSPEC) provided by adversary A is denoted by GIMPL. Stego-freeness means
that A cannot learn any more information from GIMPL; otherwise, the subversion can be detected by a
trusted third party referred to as watchdogW . The watchdogW can interrogate GIMPL via oracle accesses
to check whether it agrees with GSPEC.

We can classify watchdogs into three categories. Offline watchdogs, the most practical detectors,
perform a one-time check of GIMPL with oracle access. While offline watchdogs have no access to the
communication transcripts between challenger C and adversary A, online watchdogs can monitor and
collect the transcripts by piggybacking on implementations. The most rigorous watchdogs namely omni-
scient watchdogs are privy to the private state (e.g., secret keys) of C. However, instantiating online or
omniscient watchdogs is costly since they need to monitor all communications actively. In this paper, we
consider the offline watchdogs.

The randomized algorithm G has either a single input (security parameter 1λ), such as the randomness
generation and the key generation, or more inputs to capture the remaining cases. Without loss of
generality, we assume someone (who may be the adversary) supplies a randomized input generator IG,
which takes 1λ as input and produces random outputs of length λ, to provide additional inputs for G.
Next, we recall the formal definition of stego-freeness presented in [9].

Definition 1 ([9]). For a (randomized) algorithm G with the specification GSPEC and the potentially
subverted implementation GIMPL, GSPEC is stego-free in the offline-watchdog model if there exists a prob-
abilistic polynomial-time (PPT) watchdog W , s.t., for any PPT adversary A playing the security game
in Figure 3, either the advantage AdvA(1

λ) of A is negligible, or the detection probability DetW,A(1
λ)

of W is non-negligible, where λ is the security parameter. Here, AdvA(1
λ) = |Pr[bC = 1] − 1/2| and

DetW,A(1
λ) = |Pr[WGIMPL(1λ) = 1]− Pr[WGSPEC(1λ) = 1]|.

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:6

TEST PHASE

W A

b
W

 ← W
G

IMPL (1λ)

Prepare G
IMPL

G
IMPL

EXECUTION PHASE

C A

β ← {IMPL, SPEC} 1q

for i = 1 to q

y
i

← G
β
 (1λ)

y
1
, . . . , y

q

β′
b

C
 := 1 if β = β′

b
C
 := 0 otherwise

Figure 3 Stego-freeness game in the offline-watchdog model.

MAH
SPEC

i

Φ̂
SPEC

pr

Figure 4 Simplified version of the public randomness generator specification PubRGSPEC.

5 Proposed SRG

In this section, we first design a building block, namely a public randomness generator PubRG. We then
construct a secure randomness generation algorithm dubbed SRG that leverages two generators (i.e.,
PubRG and an ordinary RG) with independence.

5.1 Public randomness generator

A simplified version of the public randomness generator specification PubRGSPEC is shown in Figure 4,
where MAHSPEC denotes the specification of the functional modular of acquiring hashes (MAH), i an
index, Φ̂SPEC the specification of the immunization function Φ̂SPEC : {0, 1}∗ → {0, 1}l, and pr the output.
Given 1λ, PubRGSPEC then produces uniformly random strings of length λ. Specifically, MAHSPEC acquires
the hashes of ϕ-successive blocks that are newly confirmed on a public blockchain, such as Bitcoin and
Ethereum. We denote these hashes by Blh−ϕ+1,Blh−ϕ+2, . . . ,Blh, where h is the height of the block that
is newly confirmed on the blockchain, and ϕ > 6 and ϕ > 12 are required for Bitcoin and Ethereum,
respectively, due to the property of (ι, ϕ)-chain quality [15]. Let k = ⌈λ

l
⌉, after initializing the index

i to zero, PubRGSPEC computes the randomness candidate pri = Φ̂SPEC(Blh−ϕ+1||Blh−ϕ+2|| · · · ||Blh||i +

1)|| · · · ||Φ̂SPEC(Blh−ϕ+1||Blh−ϕ+2|| · · · ||Blh||i+k) mod 2λ using the hashes and the index. Such a strategy
achieves uniformity of public randomness in the space {0, 1}λ. If the candidate fails to meet the predefined
condition (e.g., passing the primality test for prime numbers), it needs to be recomputed with i+k. This
process will be repeated until the condition is satisfied. Finally, PubRGSPEC outputs the parameter
pr = pri, and publishes the relevant index i and block height h for verification. In Appendix A, we give
an example to demonstrate how to use PubRG in the generation of primes.

Theorem 1. Outputs of the public randomness generator PubRG are unpredictable, publicly verifiable,
and fresh.

Proof. The outputs of MAH are unpredictable. The preimage resistance of a cryptographic hash
function ensures that no entity can predetermine the block hashes. Specifically, as shown in Figure 1, the
block hash Blh = H(Blh−1||Nonce||Tstamp||Mroot), where H(·) is a cryptographic hash function with

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:7

preimage resistance [35] (i.e., given a uniform y, a PPT adversary cannot find a value x satisfying H(x) =
y). If the block hash Blh can be predetermined, the preimage resistance of H(·) is broken. Therefore, the
adversary can only attempt to adjust the blocks used to derive random numbers. Nevertheless, due to
the property of (ι, ϕ)-chain quality [12], an adversary whose hashrate is less than 51% of the network’s
mining hashrate cannot fully control the ϕ-successive blocks, and hence cannot predict the final outputs
of PubRG. Furthermore, recent studies [16, 17, 31] show that a block on a public blockchain contains
64-bit min-entropy. In PubRG, we use ϕ blocks to obtain high entropy, which meets the requirement of
randomness.

We stress that the unpredictability of block hashes produced in the future does not mean that the
hashes cannot be biased by an adversary who has an infinite budget. The adversary might incentivize
a miner who first mines a block to discard the newly mined block and continue to mine if the block
hash does not meet the requirement of the adversary. However, this is very costly as the adversary
must simultaneously perform a huge number of calculations to find valid blocks and forgo the block
rewards [31]. More importantly, the final block hash is still unpredictable to adversaries.

The immunization function Φ̂ (i.e., hash function) is modeled as a random oracle. The output distri-
bution of PubRG is computationally indistinguishable from a uniform distribution in the presence of PPT
adversaries. Additionally, due to the collision resistance of the hash function, any change of the input
will lead to a different output. For the honest function Φ̂, the only way to bias its output is to determine
the output in advance and adjust the input. However, this is impossible as the input (i.e., the output of
MAH) is unpredictable.

As for public verifiability, according to the block height h issued, anyone is able to acquire the same
hashes Blh−ϕ+1,Blh−ϕ+2, . . . ,Blh from the public blockchain due to the blockchains’ chain consistency
property [14]. Once the hashes are determined, there will be an index i′ satisfying the specified con-
dition exactly. A verifier can first search for i′ and check whether i′ matches with the published

one. Then, it verifies the correctness of pr by checking pr
?
= Φ̂SPEC(Blh−ϕ+1||Blh−ϕ+2|| · · · ||Blh||i +

1)|| · · · ||Φ̂SPEC(Blh−ϕ+1||Blh−ϕ+2|| · · · ||Blh||i+ k) mod 2λ, where k = ⌈λ
l
⌉.

Since we use the hash of the newly confirmed block, the timestamp Tstamp of the block enables anyone
to ensure the outputs of PubRG are newly generated, and thus, freshness is guaranteed.

Lemma 1 ([8]). Consider an adversarial implementation ΠIMPL := (F 1
IMPL, . . . , F

k
IMPL) of a specification

ΠSPEC := (F 1
SPEC, . . . , F

k
SPEC), where F

1
IMPL, . . . , F

k
IMPL denote deterministic algorithms with input distribu-

tions X1
λ, . . . , X

k
λ , respectively, and λ denotes the security parameter. If ∃j ∈ [k] such that Pr[F j

IMPL(x) 6=

F j
SPEC(x) : x ← Xj

λ] = δ, a PPT offline watchdog can detect whether F j
SPEC

?
= F j

IMPL with probability at
least δ.

Theorem 2. Consider a public randomness generator PubRG with the specification (MAHSPEC, Φ̂SPEC, i)
illustrated in Figure 4:

• MAHSPEC outputs hashes of ϕ-successive blocks that are newly confirmed on a public blockchain;

• Φ̂SPEC is a hash function that takes a string w ∈ {0, 1}∗ as input and outputs a string of length l;

• i is a public index belonging to the natural number set;

• the specification for PubRG(1λ) is a trusted amalgamation.

PubRGSPEC is stego-free with an offline watchdog if Φ̂SPEC is modeled as a random oracle.

First, note the following two facts.

On the one hand, the offline watchdogW ensures that blockchains are publicly verifiable and resistant
to modification due to chain consistency [14,15]. Since blockchains are public ledgers, any entity is capable
of accessing them. In PubRG, the output of MAH is a set of block hashes. If the output of PubRGIMPL

is not identical to the corresponding block hashes, differences between MAHIMPL and MAHSPEC can be
discovered.

On the other hand, according to Lemma 1, for a deterministic algorithm implemented by adversaries,
W can guarantee that the implementation is consistent with the specification (i.e., GSPEC(x) = GIMPL(x))
with high probability when inputs are sampled from a public input distribution. W evaluates GSPEC and
GIMPL with input x drawn from a known distribution, and then checks whether GSPEC agrees with GIMPL.
Accordingly, the specification of a deterministic algorithm with a public input distribution is stego-free.

Proof. If PubRGSPEC is stego-free, then for any implementation PubRGIMPL := (MAHIMPL, Φ̂IMPL, i)
provided by adversary A, A cannot differentiate between PubRGIMPL and PubRGSPEC, or a watchdog
W can detect the difference. Next, we will show that the detection probability DetW,A of W is non-

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:8

PubRG
SPEC

RG
SPEC

Φ
SPEC

pr

r
0

r

Figure 5 Specification of the secure randomness generation algorithm SRGSPEC.

negligible.
Suppose A replaces Φ̂SPEC with Φ̂IMPL, by Lemma 1, then DetW,A > δ. Since Φ̂SPEC is a deterministic

algorithm with a public input distribution (i.e., MAHIMPL × i), W is able to detect the inconsistency
between Φ̂IMPL and Φ̂SPEC with probability at least δ.

For a subverted implementation where only MAHSPEC is replaced with MAHIMPL, the detection prob-
ability is non-negligible (i.e., DetW,A > δb). Since blockchains are publicly verifiable and intrinsically
immutable, the correctness of hashes output from MAHSPEC can be easily verified. Thus, any malicious
implementation will be detected by W .

Consequently, W can detect the disagreement between PubRGIMPL and PubRGSPEC with a probability
of at least min(δi, δb).

5.2 Construction of SRG

SRG is based on an immunization function and two physically independent random sources, i.e., PubRG
and an ordinary RG.

In SRG, RG is first executed to produce the randomness r0. Then, when a new block is confirmed on the
public blockchain, PubRG creates the public randomness pr. The concatenation of r0 and pr is fed into an
immunization function Φ : {0, 1}2t → {0, 1}t to obtain the final output r = Φ(pr||r0). Such a mechanism
defends against attempts by RG to launch rejection-sampling, since the generation of r0 cannot depend
on pr, which is yielded later. On the other hand, the generation of pr cannot be controlled by adversaries
according to Theorem 2. Consequently, SRG cannot evaluate Φ(pr||r0) during the generation of pr or
r0 since the two randomness generators are independent. If Φ is modeled as a random oracle, then r is
independent of the backdoor of the adversary A. The subliminal channel attacks are resisted. Figure 5
shows the specification of SRG.

6 Security analysis

In this section, we prove that our proposed secure randomness generator SRG’s specification (SRGSPEC)
is stego-free in the random oracle model. We then demonstrate that the specification of a randomized
algorithm with a public input distribution is stego-free when adopting SRGSPEC.

Theorem 3. Consider a secure randomness generation algorithm SRGwith the specification (PubRGSPEC,
RGSPEC,ΦSPEC) described below:
• PubRGSPEC, given 1λ, outputs uniformly random strings of length λ;
• Given 1λ, RGSPEC outputs uniformly random strings of length λ;
• ΦSPEC is a hash function and ΦSPEC(w) has length ⌈|w|/2⌉;
• The specification for SRG(1λ) is a trusted composition: ΦSPEC(PubRGSPEC(1

λ),RGSPEC(1
λ)).

SRGSPEC is stego-free with an offline watchdog if ΦSPEC is modeled as a random oracle.

Proof. SRG is an instantiation of double-splitting, whose proof is based on two basic guarantees pro-
vided by an offline watchdog W [9]. First, W ensures that the discrepancy between the implementation
of a deterministic algorithm with a public input distribution and the corresponding specification can be
detected with non-negligible probability, as shown in Lemma 1. Second, W guarantees that outputs of
a randomness generator’s implementation are unpredictable to adversaries. Note that W also provides
the two guarantees to prove this theorem. In the second guarantee, the implementations of both ran-
domness generators in SRG, namely PubRG and RG, have unpredictability. The output of RGIMPL cannot
be predicted by adversaries; otherwise, the output distribution of RGIMPL would incur collision with a

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:9

PubRG
SPEC

RG
SPEC

Φ
SPEC

pr

r
0

r

x

SRG
SPEC

IG

dG
SPEC

y

Figure 6 Stego-free specification for randomized algorithm G, where x← IG.

significant probability [9]. Besides, according to Theorem 1, the output of PubRGIMPL is unpredictable to
adversaries. The proof of this theorem is analogous to the stego-freeness proof of double-splitting, i.e.,
Theorem 3.4 in [9]. Hence, we omit the concrete proof.

Theorem 4. The specification GSPEC := (SRGSPEC, dGSPEC) for any randomized algorithm G is illus-
trated in Figure 6. Given 1λ, SRGSPEC with the form (PubRGSPEC,RGSPEC,ΦSPEC) outputs uniformly
random strings of length λ (see Figure 5). dGSPEC is a deterministic algorithm that takes the outputs of
SRGSPEC × IG as its input, where IG is an input generator to provide an extra input for G. When the
amalgamation is trusted, GSPEC is stego-free with an offline watchdog if ΦSPEC is modeled as a random
oracle.

The watchdog W to detect GSPEC := (SRGSPEC, dGSPEC) is a combination of two watchdogs. One
watchdog guarantees the stego-freeness of SRGSPEC according to Theorem 3. The other watchdog makes
sure, by Lemma 1, that dGIMPL agrees with dGSPEC on the inputs sampled from a public distribution
SRGSPEC × IG. Hence, the proof is omitted.

7 Subversion-resistant strategies for cryptographic schemes

In this section, we present subversion-resistant strategies for symmetric encryption and PKE using SRG.

7.1 Subversion-resistant symmetric encryption

A symmetric encryption scheme consists of a key generator KG, an encryption algorithm Enc, and a
decryption algorithm Dec, where Enc can be further split into a randomness generator RG′ and a deter-
ministic algorithm dEnc. By Lemma 1, the deterministic algorithm specification DecSPEC is stego-free.
We can use SRGSPEC to serve as KGSPEC and RG′SPEC to guarantee stego-freeness. EncSPEC is stego-free
according to Theorem 4. Figure 7 shows the stego-free specification for symmetric encryption.

7.2 Subversion-resistant public-key encryption

The construction of subversion-resistant PKE follows from that of subversion-resistant symmetric en-
cryption except for two differences. First, the subversion-resistance of public parameters (e.g., primes)
needs to be considered in PKE. The existing studies [1, 2] describe a secretly embedded trapdoor with
universal protection (SETUP) attack to embed backdoors into public parameters. Adversaries owning
the backdoors may obtain secret information (e.g., secret keys) from the public parameters inconspicu-
ously. We can use PubRG to produce public parameters that are verifiable and secure against SETUP
(see Theorems 1 and 2).

Second, the key generation of PKE is more complex, since the asymmetric keys consist of a public
key pk and a private key sk. Compared with the subversion-resistant symmetric encryption, the spec-
ification of asymmetric key generation algorithm KGSPEC has an extra element, namely a deterministic
algorithm specification dKGSPEC. Figure 8 shows a stego-free specification for encryption in PKE, where
the randomness generator and the key generation algorithm are instantiated via SRG.

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:10

PubRG
SPEC

RG
SPEC

Φ
SPEC

k
0

k
1

KG
SPEC

k

PubRG
SPEC

RG
SPEC

Φ
SPEC

r
0

r
1

RG
SPEC

r

m

dEnc
SPEC

c

′

Figure 7 Stego-free specification for symmetric encryption.

PubRG
SPEC

RG
SPEC

Φ
SPEC

Φ
SPEC

RG
SPEC

r

PubRG
SPEC

RG
SPEC

r′
dKG

SPEC
(sk, pk)

r
0

r
0

r
1

r
1

KG
SPEC

m

dEnc
SPEC

c

′

Figure 8 Stego-free specification for encryption in PKE.

8 Conclusion

In this paper, we proposed a secure randomness generation algorithm dubbed SRG by instantiating double-
splitting. SRG relies on two independent randomness generators, and we designed a public randomness
generator PubRG based on public blockchains as one of the two generators. Security analysis shows that
SRG and PubRG can achieve immunization against subliminal channel attacks. Using SRG and PubRG,
we described countermeasure strategies to resist subliminal channel attacks for symmetric and public-key
encryption.

Acknowledgements This work was supported in part by National Nature Science Foundation of China (Grant Nos. 62272091,

61872060) and National Key R&D Program of China (Grant No. 2017YFB0802000).

References

1 Young A, Yung M. The dark side of “black-box” cryptography or: should we trust capstone? In: Proceedings of Annual

International Cryptology Conference, 1996. 89–103

2 Young A, Yung M. Kleptography: using cryptography against cryptography. In: Proceedings of International Conference on

the Theory and Applications of Cryptographic Techniques, 1997. 62–74

3 Perlroth N, Larson J, Shane S. NSA able to foil basic safeguards of privacy on web. The New York Times, 2013. http://www.

nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html

4 Bellare M, Paterson K G, Rogaway P. Security of symmetric encryption against mass surveillance. In: Proceedings of Annual

Cryptology Conference, 2014. 1–19

5 Bellare M, Jaeger J, Kane D. Mass-surveillance without the state: strongly undetectable algorithm-substitution attacks.

In: Proceedings of the 22nd ACM Conference on Computer and Communications Security, 2015. 1431–1440

http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:11

6 Chow S S, Russell A, Tang Q, et al. Let a non-barking watchdog bite: cliptographic signatures with an offline watchdog.

In: Proceedings of IACR International Workshop on Public Key Cryptography, 2019. 221–251

7 Bemmann P, Chen R, Jager T. Subversion-resilient public key encryption with practical watchdogs. In: Proceedings of IACR

International Conference on Public-Key Cryptography, 2021. 627–658

8 Russell A, Tang Q, Yung M, et al. Cliptography: clipping the power of kleptographic attacks. In: Proceedings of International

Conference on the Theory and Application of Cryptology and Information Security, 2016. 34–64

9 Russell A, Tang Q, Yung M, et al. Generic semantic security against a kleptographic adversary. In: Proceedings of ACM

SIGSAC Conference on Computer and Communications Security, 2017. 907–922

10 Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. 2008. https://bitcoin.org/bitcoin.pdf

11 Wood G. Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 2014, 151: 1–32

12 Garay J, Kiayias A, Leonardos N. The Bitcoin backbone protocol: analysis and applications. In: Proceedings of Annual

International Conference on the Theory and Applications of Cryptographic Techniques, 2015. 281–310

13 Badertscher C, Maurer U, Tschudi D, et al. Bitcoin as a transaction ledger: a composable treatment. In: Proceedings of

Annual International Cryptology Conference, 2017. 324–356

14 Pass R, Seeman L, Shelat A. Analysis of the blockchain protocol in asynchronous networks. In: Proceedings of Annual

International Conference on the Theory and Applications of Cryptographic Techniques, 2017. 643–673

15 Zhang Y, Xu C, Cheng N, et al. Chronos+: an accurate blockchain-based time-stamping scheme for cloud storage. IEEE

Trans Serv Comput, 2020, 13: 216–229

16 Armknecht F, Bohli J M, Karame G O, et al. Transparent data deduplication in the cloud. In: Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, 2015. 886–900

17 Armknecht F, Bohli J M, Karame G O, et al. Outsourced proofs of retrievability. In: Proceedings of ACM SIGSAC Conference

on Computer and Communications Security, 2014. 831–843

18 Sun L X, Xu C X, Zhang M W, et al. Secure searchable public key encryption against insider keyword guessing attacks from

indistinguishability obfuscation. Sci China Inf Sci, 2018, 61: 038106

19 Jiang C, Xu C, Cao C, et al. GAIN: decentralized privacy-preserving federated learning. J Inf Secur Appl, 2023, 78: 103615

20 Chow S S M, Hui L C K, Yiu S M, et al. Practical electronic lotteries with offline TTP. Comput Commun, 2006, 29: 2830–2840

21 Bellare M, Hoang V T. Resisting randomness subversion: fast deterministic and hedged public-key encryption in the standard

model. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques,

2015. 627–656

22 Ateniese G, Magri B, Venturi D. Subversion-resilient signature schemes. In: Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, 2015. 364–375

23 Mironov I, Stephens-Davidowitz N. Cryptographic reverse firewalls. In: Proceedings of Annual International Conference on

the Theory and Applications of Cryptographic Techniques, 2015. 657–686

24 Chen R, Mu Y, Yang G, et al. Cryptographic reverse firewall via malleable smooth projective hash functions. In: Proceedings

of International Conference on the Theory and Application of Cryptology and Information Security, 2016. 844–876

25 Chen R, Huang X, Yung M. Subvert KEM to break DEM: practical algorithm-substitution attacks on public-key encryption.

In: Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, 2020.

98–128

26 Jiang C, Xu C, Zhang Z, et al. SR-PEKS: subversion-resistant public key encryption with keyword search. IEEE Trans Cloud

Comput, 2023, 11: 3168–3183

27 Fischlin M Mazaheri S. Self-guarding cryptographic protocols against algorithm substitution attacks. In: Proceedings of the

31st IEEE Computer Security Foundations Symposium, 2018. 76–90

28 Degabriele J P, Farshim P, Poettering B. A more cautious approach to security against mass surveillance. In: Proceedings of

International Workshop on Fast Software Encryption, 2015. 579–598

29 Russell A, Tang Q, Yung M, et al. Correcting subverted random oracles. In: Proceedings of Annual International Cryptology

Conference, 2018. 241–271

30 Ateniese G, Francati D, Magri B, et al. Public immunization against complete subversion without random oracles.

In: Proceedings of International Conference on Applied Cryptography and Network Security, 2019. 465–485

31 Bonneau J, Clark J, Goldfeder S. On Bitcoin as a public randomness source. 2015. https://eprint.iacr.org/2015/1015.pdf

32 Jiang C, Xu C, Zhang Y. PFLM: privacy-preserving federated learning with membership proof. Inf Sci, 2021, 576: 288–311

33 Kiayias A, Russell A, David B, et al. Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Proceedings of

Annual International Cryptology Conference, 2017. 357–388

34 Kiayias A, Panagiotakos G. Speed-security tradeoffs in blockchain protocols. 2015. https://eprint.iacr.org/2015/1019.pdf

35 Katz J, Lindell Y. Introduction to Modern Cryptography. Boca Raton: CRC Press, 2020

Appendix A An example of using PubRG

Assume that we generate a 32-bit prime number p with the PubRG, where Ethereum serves as the public blockchain and SHA-256

the immunization function. First, the functional modular of acquiring hashes (MAH) gets the hashes of 12 blocks that are newly

confirmed on Ethereum (at 2022-01-11 06:13:14 +UTC). These hashes and relevant block heights are shown in Table A1. Let Blheight
denote the hash of the block whose height is height. In this example, l = 256 and λ = 32, so that k = ⌈λ

l
⌉ = 1. After initializing

the index i to be 0, PubRG can compute a prime candidate pr0 = SHA-256(Bl13982511||Bl13982512|| · · · ||Bl13982522||1) mod 232 =

530181258. Since pr0 cannot pass the primality test, PubRG needs to recompute a prime candidate with i = 1 to obtain pr1 = SHA-

256(Bl13982511 ||Bl13982512|| · · · ||Bl13982522||2) mod 232 = 494169299. pr1 is not a prime either. A new candidate will be calculated

with i = 2. The process is repeated until i = 11, and a prime candidate pr11 = SHA-256(Bl13982511||Bl13982512|| · · · ||Bl13982522||12)

mod 232 = 2138032957 survives the primality test. Finally, PubRG outputs the 32-bit prime number p = pr11, and publishes the

relevant index i = 11 and block height h = 13982522 for verification.

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/TSC.2019.2947476
https://doi.org/10.1007/s11432-017-9124-0
https://doi.org/10.1016/j.jisa.2023.103615
https://doi.org/10.1016/j.comcom.2005.10.034
https://doi.org/10.1109/TCC.2023.3266459
https://eprint.iacr.org/2015/1015.pdf
https://doi.org/10.1016/j.ins.2021.05.077
https://eprint.iacr.org/2015/1019.pdf

Jiang C S, et al. Sci China Inf Sci July 2024, Vol. 67, Iss. 7, 172102:12

Table A1 Hashes of the newly confirmed blocks

Block height Block hash

13982511 0x28aa67052049c03d57dc69272e672270cecc283bced965c0662263977128ee81

13982512 0x34db27c61773f9a7e165b429339c0b26fdffd8cbc652e3ddcc5b07ad1b888594

13982513 0x33cd0a433fcb7ca0af5ede95d02ed1d1be498b4639df5a6831aeb35cc08ea9a2

13982514 0x3f13006f208fa1dbb469a755fc59defc8f4d528f89f3e69c76b5c06cf98b83a9

13982515 0x25d4d50cfd6da080eab633ab63d16bb1c2cc40bf0a092d9ac1dcecdd64a8105d

13982516 0x2e489d63b18b1f6c33e616aa45d10c19b26b270d851a3e57c0cc9a4e38fa1f79

13982517 0x6621e8edf3054073e71b76c462c9eb03e4e63b947adba0dc657c50bd0224bbf6

13982518 0x5caee2b00a0c2ef05861fd24d5f1e0424698873b621240cced34025a0f0db075

13982519 0x60d81afe935def5de75c0ac7b9ddb7dbd5f7c6b81c8ed84fa413e084d6db1882

13982520 0xab122933f55657cc966a1ac4f1e4a2b65cf56708c82ffab10ddd45e78ca9fcf2

13982521 0x229fdad0bc72c1d7932497b48c399b606089d3291bade0d011e150cf5fc9fde2

13982522 0x97f02dbd787cfda81818665c3617e3b3ab63891cdb564ace6d82df515c58d889

	Introduction
	Related work
	Preliminaries
	Notations
	Blockchain

	Security model
	Subliminal channels
	Stego-freeness

	Proposed SRG
	Public randomness generator
	Construction of SRG

	Security analysis
	Subversion-resistant strategies for cryptographic schemes
	Subversion-resistant symmetric encryption
	Subversion-resistant public-key encryption

	Conclusion
	An example of using PubRG

